Suchergebnis: Katalogdaten im Herbstsemester 2017
Umweltnaturwissenschaften Bachelor ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
529-2001-02L | Chemie I ![]() | O | 4 KP | 2V + 2U | W. Uhlig, J. E. E. Buschmann, S. Canonica, P. Funck, E. C. Meister, R. Verel | |
Kurzbeschreibung | Allgemeine Chemie I: Chemische Bindung und Molekülstruktur, chemische Thermodynamik, chemisches Gleichgewicht. | |||||
Lernziel | Erarbeiten von Grundlagen zur Beschreibung von Aufbau, Zusammensetzung und Umwandlungen der materiellen Welt. Einführung in thermodynamisch bedingte chemisch-physikalische Prozesse. Mittels Modellvorstellungen zeigen, wie makroskopische Phänomene anhand atomarer und molekularer Eigenschaften verstanden werden können. Anwendungen der Theorie zum qualitativen und quantitativen Lösen einfacher chemischer und umweltrelevanter Probleme. | |||||
Inhalt | 1. Stöchiometrie Stoffmenge und Stoffmasse. Die Zusammensetzung von Verbindungen. Die Reaktionsgleichung. Gasgesetze. 2. Atombau und Chemische Bindung Elementarteilchen und Atome. Die Elektronenkonfiguration der Elemente. Elektronische Eigenschaften der Elemente und ihre Periodizität. 3. Die chemische Bindung und ihre Darstellung. Raumstruktur von Molekülen. Molekülorbitale. 4. Grundlagen der chemischen Thermodynamik System und Umgebung. Der Formalismus zur Beschreibung des Zustands und der Zustandsänderungen chemischer Systeme. 5. Erster Hauptsatz Innere Energie, Wärme und Arbeit. Enthalpie und Reaktionsenthalpie. Thermodynamische Standardbedingungen. 6. Zweiter Hauptsatz Entropie. Entropieänderungen im System und im Universum. Reaktionsentropie durch Reaktionswärme und durch Stoffänderungen. 7. Gibbs-Energie Kombination der zwei Hauptsätze. Die Reaktions-Gibbs-Energie und ihre Abhängigkeiten. 8. Chemisches Potential Das chemische Potential als Parameter der Energie des Einzelstoffs. Stoffaktivitäten bei Gasen, kondensierten Stoffen und gelösten Spezies. Die Gibbs-Energie im Ablauf chemischer Reaktionen und die Bedeutung ihres Minimums. Die Gleichgewichtskonstante. 9. Chemisches Gleichgewicht Massenwirkungsgesetz, Reaktionsquotient und Gleichgewichtskonstante. Aktivität gelöster wässriger Spezies. Gleichgewicht bei Phasenübergängen. 10. Säuren und Basen Das Verhalten von Stoffen als Säure oder Base. Der pH-Begriff. Dissoziationsfunktionen von Säuren. Berechnung von pH-Werten. Graphische Darstellung von Säure-Base-Systemen und die Bestimmung ihres pH-Werts. Säure-Base-Puffer. Mehrprotonige Säuren und Basen. 11. Auflösung und Fällung Heterogene Gleichgewichte. Der Lösungsprozess. Löslichkeitskonstante und -Gleichgewicht. Graphische Repräsentation und Bestimmung von Löslichkeitsgleichgewichten. Das Kohlendioxid-Kohlensäure-Carbonat-Gleichgewicht in der Umwelt. | |||||
Skript | Online-Skript mit durchgerechneten Beispielen. | |||||
Literatur | - Charles E. Mortimer, Chemie - Das Basiswissen der Chemie. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015. Weiterführende Literatur: Brown, LeMay, Bursten CHEMIE (deutsch) Housecroft and Constable, CHEMISTRY (englisch) Oxtoby, Gillis, Nachtrieb, MODERN CHEMISTRY (englisch) | |||||
401-0251-00L | Mathematik I: Analysis I und Lineare Algebra | O | 6 KP | 4V + 2U | L. Halbeisen | |
Kurzbeschreibung | Diese Vorlesung behandelt mathematische Konzepte und Methoden, die zum Modellieren, Lösen und Diskutieren wissenschaftlicher Probleme nötig sind - speziell durch gewöhnliche Differentialgleichungen. | |||||
Lernziel | Mathematik ist von immer grösserer Bedeutung in den Natur- und Ingenieurwissenschaften. Grund dafür ist das folgende Konzept zur Lösung konkreter Probleme: Der entsprechende Ausschnitt der Wirklichkeit wird in der Sprache der Mathematik modelliert; im mathematischen Modell wird das Problem - oft unter Anwendung von äusserst effizienter Software - gelöst und das Resultat in die Realität zurück übersetzt. Ziel der Vorlesungen Mathematik I und II ist es, die einschlägigen mathematischen Grundlagen bereit zu stellen. Differentialgleichungen sind das weitaus wichtigste Hilfsmittel im Prozess des Modellierens und stehen deshalb im Zentrum beider Vorlesungen. | |||||
Inhalt | 1. Differential- und Integralrechnung: Wiederholung der Ableitung, Linearisierung, Taylor-Polynome, Extremwerte, Stammfunktion, Hauptsatz der Differential- und Integralrechnung, Integrationsmethoden, uneigentliche Integrale. 2. Lineare Algebra und Komplexe Zahlen: lineare Gleichungssysteme, Gauss-Verfahren, Matrizen, Determinanten, Eigenwerte und Eigenvektoren, Darstellungsformen der komplexe Zahlen, Potenzieren, Radizieren, Fundamentalsatz der Algebra. 3. Gewöhnliche Differentialgleichungen: Separierbare Differentialgleichungen (DGL), Integration durch Substitution, Lineare DGL erster und zweiter Ordnung, homogene Systeme linearer DGL mit konstanten Koeffizienten, Einführung in die dynamischen Systeme in der Ebene. | |||||
Literatur | - Thomas, G. B., Weir, M. D. und Hass, J.: Analysis 1, Lehr- und Übungsbuch (Pearson). - Gramlich, G.: Lineare Algebra, eine Einführung (Hanser). - Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler, Bd. 1 und 2 (Vieweg+Teubner). | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Vertrautheit mit den Grundlagen der Analysis, insbesondere mit dem Funktions- und Ableitungsbegriff. Mathe-Lab (Präsenzstunden): Mo 12-14, Di 17-19, Mi 17-19, stets im Raum HG E 41. | |||||
701-0007-00L | Umweltproblemlösen I ![]() Nur für Umweltnaturwissenschaften BSc. | O | 5 KP | 4G | C. E. Pohl, P. Krütli, B. B. Pearce | |
Kurzbeschreibung | In der Fallstudie analysieren wir jedes Jahr ein anderes Problem aus dem Nachhaltigkeitsbereich und entwickeln Lösungsvorschläge. | |||||
Lernziel | Die Studierendenden können: - zu einem gegebenen Thema ein umfassendes Falldossier erarbeiten, welches (a) den Stand des Wissens und (b) den Wissens- und Handlungsbedarf aufzeigt. - Wissen aus unterschiedlichen Perspektiven in einem qualitativen Systemmodell integrieren, Probleme innerhalb des Systems identifizieren und aus der Perspektive bestimmter Stakeholder Lösungsvorschläge entwickeln. - zu einer gegebenen Fragestellung eine Recherche durchführen, die Ergebnisse strukturiert darstellen, im Bezug auf die Fragestellung interpretieren, in einen Bericht fassen und präsentieren. - die verschiedenen Rollen in einer Gruppe benennen, erklären für welche sie besonders geeignet sind, sich in Gruppen organisieren, Probleme der Zusammenarbeit erkennen und diese konstruktiv angehen. | |||||
Inhalt | Das erste Semester dient dazu das vorhandenen Wissen zum Problem, seinen Ursachen und möglichen Lösungsansätzen zu sammeln. Dazu verfassen die Studierenden in Gruppen eine Recherche zu einem bestimmten Teilaspekt des Problems. Diese Recherche umfasst eine inhaltliche Analyse und eine Analyse der Stakeholder. Während der Semesterferien findet die Synthesewoche statt. In dieser Woche werden die Ergebnisse der verschiedenen Teilanalysen mittels eines qualitativen Systemmodels integriert. Im System werden einzelne Probleme identifiziert und Lösungsvorschläge entwickelt. Die Studierenden arbeiten die meiste Zeit selbständig in Gruppen. In zentralen Schritten werden sie von TutorInnen unterstützt. Speziell eingeführt werden die Studierenden in: - Das Thema der Fallstudie - Recherche, wissenschaftliches Schreiben und Literaturverwaltung (durch ExpertInnen der ETH Bibliothek), - Rollenverhalten und Zusammenarbeit in der Gruppe, - Verfassen von Berichten, Postern und Präsentationen, - Erstellen eines qualitativen Systemmodells (Systaim), - Entwickeln von Lösungsideen (design thinking, Checklands' soft systems methodology). | |||||
Skript | Das Falldossier wird von den Studierenden erarbeitet. | |||||
Literatur | Unterlagen zu den Methoden werden während der Fallstudie abgegeben, zusammen mit der entsprechenden Hintergrundliteratur. | |||||
551-0001-00L | Allgemeine Biologie I ![]() | O | 3 KP | 3V | U. Sauer, O. Y. Martin, A. Widmer | |
Kurzbeschreibung | Organismische Biologie um die Grundlagen der klassischen und molekularen Genetik, der Evolutionsbiologie und der Phylogenie zu vermitteln. Erster Teil einer zweisemestrigen Biologievorlesung für Studierende der Argrar-, Lebensmittel- und Umweltnaturwissenschaften. | |||||
Lernziel | Verständnis einiger grundlegender Konzepte der Biologie (Vererbung, Evolution und Phylogenie) und ein Ueberblick über die Vielfältigkeit der Lebensformen. | |||||
Inhalt | Diese Vorlesung fokussiert auf organismische Biologie mit Genetik, Evolution, and unterschiedliche Lebensformen mit dem Campbell Kapiteln 12-34. Woche 1-7 von Alex Widmer, Kapitel 12-25 12 Cell biology Mitosis 13 Genetics Sexual life cycles and meiosis 14 Genetics Mendelian genetics 15 Genetics Linkage and chromosomes 20 Genetics Evolution of genomes 21 Evolution How evolution works 22 Evolution Phylogentic reconstructions 23 Evolution Microevolution 24 Evolution Species and speciation 25 Evolution Macroevolution Woche 8-14 von Oliver Martin, Kapitel 26-34 26 Diversity of Life Introdution to viruses 27 Diversity of Life Prokaryotes 28 Diversity of Life Origin & evolution of eukaryotes 29 Diversity of Life Nonvascular&seedless vascular plants 30 Diversity of Life Seed plants 31 Diversity of Life Introduction to fungi 32 Diversity of Life Overview of animal diversity 33 Diversity of Life Introduction to invertebrates 34 Diversity of Life Origin & evolution of vertebrates | |||||
Skript | Kein Skript | |||||
Literatur | Campbell et al. (2015) Biology - A Global Approach. 10th Edition (Global Edition | |||||
Voraussetzungen / Besonderes | Die Vorlesung ist der erste Teil einer zweisemestrigen Biologievorlesung für Studierende mit Biologie als Grundlagenfach. | |||||
701-0243-01L | Biologie III: Ökologie | O | 3 KP | 2V | C. Buser Moser | |
Kurzbeschreibung | Ökologische Grundkonzepte und ihre praktische Bedeutung werden mit Beispielen aus aquatischen und terrestrischen Ökosystemen vorgestellt. Studierende lernen, welche Faktoren die Verbreitung von Organismen bestimmen, wie sich Populationen entwickeln, wie Lebensgemeinschaften aufgebaut sind, wie Ökosysteme funktionieren, was Biodiversität bedeutet und mit welchen Massnahmen sie geschützt werden kann | |||||
Lernziel | Die TeilnehmerInnen können - ökologische Grundbegriffe definieren und konkrete Beispiele dazu geben; - den Einfluss von Umweltfaktoren auf Organismen beschreiben und Anpassungen erklären; - die Vorgänge beschreiben, welche die Entwicklung von Populationen, das Zusammenleben von Arten in Lebensgemeinschaften und die Funktion von Ökosystemen bestimmen; - natürliche und menschliche Einflüsse auf diese Vorgänge erläutern; - Muster der Biodiversität beschreiben; aktuelle Naturschutzprobleme erläutern; - das ökologische Grundwissen anwenden, um neue Beobachtungen oder Untersuchungsergebnisse zu interpretieren, Situationen zu beurteilen, Entwicklungen vorherzusagen, oder Lösungen für bestimmte Probleme vorzuschlagen. | |||||
Inhalt | - Übersicht der aquatischen und terrestrischen Lebensräume mit ihren Bewohnern - Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen - Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation - Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze) - Lebensgemeinschaften: Struktur, Stabilität, Sukzession - Ökosysteme: Kompartimente, Stoff- und Energieflusse - Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung - Aktuelle Naturschutzprobleme und -massnahmen - Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution | |||||
Skript | Unterlagen, Vorlesungsfolien und relevante Literatur sind in der Lehrdokumentenablage abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung. | |||||
Literatur | Generelle Ökologie: Townsend, Harper, Begon 2009. Ökologie. Springer, ca. Fr. 70.- Aquatische Ökologie: Lampert & Sommer 1999. Limnoökologie. Thieme, 2. Aufl., ca. Fr. 55.-; Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.- Naturschutzbiologie: Baur B. et al. 2004. Biodiversität in der Schweiz. Haupt, Bern, 237 S. Primack R.B. 2004. A primer of conservation biology. 3rd ed. Sinauer, Mass. USA, 320 pp. | |||||
701-0027-00L | Umweltsysteme I | O | 2 KP | 2V | C. Schär, S. Bonhoeffer, N. Dubois | |
Kurzbeschreibung | Die Vorlesung vermittelt eine wissenschaftliche Einführung in Umweltaspekte aus den Bereichen Erd-, Klima- und Gesundheitswissenschaften. | |||||
Lernziel | Die Studierenden können wichtige Eigenschaften der drei Umweltsysteme erläutern, sie sind in der Lage kritische Entwicklungstrends und Nutzungskonflikte zu diskutieren und Lösungsansätze zu vergleichen. | |||||
Inhalt | Die Vorlesung erläutert anhand von aktuellen Beispielen die Rolle der betrachteten Umweltsysteme für Mensch und Natur. Dabei werden exemplarisch einige ausgewählte Umweltprobleme vorgestellt. Darunter fallen die Förderung von Rohstoffen und fossilen Energieträger, der Klimawandel und seine Auswirkungen auf Mensch und Natur, sowie sowie die Verbreitung und Kontrolle von Krankheitserregern in der menschlichen Bevölkerung und in Agrarsystemen. | |||||
Skript | Slides werden durch Dozenten abgegeben und sind via moodle verfügbar. | |||||
701-0029-00L | Umweltsysteme II | O | 3 KP | 2V | B. Wehrli, C. Garcia, M. Sonnevelt | |
Kurzbeschreibung | Die Vorlesung vermittelt eine wissenschaftliche Einführung in drei wichtige Umweltsysteme und ihre Nutzung: Gewässer, Wälder und Agrarsysteme. | |||||
Lernziel | Die Studierenden können wichtige Funktionen der drei Umweltsysteme erläutern, sie sind in der Lage kritische Entwicklungstrends und Nutzungskonflikte zu diskutieren und Lösungsansätze zu vergleichen. | |||||
Inhalt | Gewässer als Ökosysteme, Wassernutzung und ihre Auswirkungen, Gefährdung und Sicherung der Wasserqualität, Wasser & Gesundheit, Wassertechnologien, Wasser & Energie Waldökosysteme und ihre Nutzung, veränderte Landnutzung und Verlust an Waldfläche, nachhaltige Waldwirtschaft. Die wichtigsten Funktionen, Trends und Herausforderungen von Agrar- und Food Systemen werden anhand der vier Dimensionen der Ernährungssicherheit (Verfügbarkeit, Zugang und Verwendung von Nahrungsmitteln, sowie Stabilität der Ernährungssysteme) diskutiert. | |||||
Skript | Skript bzw. Vorlesungsunterlagen werden durch Dozenten abgegeben und ist via moodle verfügbar. | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
252-0839-00L | Einsatz von Informatikmitteln ![]() | O | 2 KP | 2G | L. E. Fässler, M. Dahinden | |
Kurzbeschreibung | Die Studierenden lernen ausgewählte Konzepte und Informatikmittel einzusetzen, um interdisziplinäre Projekte zu bearbeiten. Themenbereiche: Modellieren und Simulieren, Visualisierung mehrdimensionaler Daten, Daten verwalten mit Listen, Tabellen und relationalen Datenbanken, Einführung in die Programmierung | |||||
Lernziel | Die Studierenden lernen - für wissenschaftliche Problemstellungen adäquate Informatikmittel zu wählen und einzusetzen, - reale Daten aus ihren Fachrichtungen zu verarbeiten und zu analysieren, - mit der Komplexität realer Daten umzugehen, - universelle Methoden zum Algorithmenentwurf kennen. | |||||
Inhalt | 1. Modellieren und Simulieren 2. Visualisierung mehrdimensionaler Daten 3. Datenverwaltung mit Listen und Tabellen 4. Datenverwaltung mit relationalen Datenbanken 5. Automatisieren mit Makros 6. Programmiereinführung mit Python | |||||
Skript | Alle Materialien zur Lehrveranstaltung sind verfügbar unter www.evim.ethz.ch | |||||
Voraussetzungen / Besonderes | Diese Vorlesung basiert auf anwendungsorientiertem Lernen. Den grössten Teil der Arbeit verbringen die Studierenden damit, Projekte mit naturwissenschaftlichen Daten zu bearbeiten und die Resultate mit Assistierenden zu diskutieren. Für die Aneignung der Informatik-Grundlagen stehen elektronische Tutorials zur Verfügung. | |||||
529-0030-00L | Praktikum Chemie | O | 3 KP | 6P | N. Kobert, M. Morbidelli, M. H. Schroth, B. Wehrli | |
Kurzbeschreibung | Im Praktikum Chemie werden grundlegende Techniken der Laborarbeit erlernt. Die Experimente umfassen sowohl analytische als auch präparative Aufgaben. So werden z. B. Boden-und Wasserproben analysiert, ausgewählte Synthesen durchgeführt, und die Arbeit mit gasförmigen Substanzen im Labor wird vermittelt. | |||||
Lernziel | Einblick in die experimentelle Methodik der Chemie: Verhalten im Labor, Umgang mit Chemikalien. Beobachten und Beschreiben grundlegender chemischer Reaktionen. | |||||
Inhalt | Natürliche und künstliche Stoffe: Merkmale, Gruppierungen, Persistenz. Solvatation: vom Wasser bis zum Erdöl. Protonenübertragungen. Lewis-Säuren und Basen: Metallzentren und Liganden. Elektrophile C-Zentren und nukleophile Reaktanden. Mineralbildung. Redoxprozesse: Uebergangsmetallkomplexe. Gase der Atmosphäre. | |||||
Skript | Das Skript zum Praktikum und die Versuchsanleitungen werden auf einer eigenen homepage zugänglich gemacht. Die entsprechenden Informationen werden am 1. Semestertag bekanntgegeben. | |||||
Literatur | Die genaue Vorbereitung anhand des Praktikums- und des Vorlesungsskripts ist Voraussetzung für die Teilnahme am Praktikum. | |||||
751-0801-00L | Biologie I: Uebungen (in G) ![]() | O | 1 KP | 2U | E. B. Truernit | |
Kurzbeschreibung | Grundlagen und Methoden der Lichtmikroskopie. Herstellung von Präparaten, mikroskopieren und dokumentieren. Bau der Samenpflanzen: Von der Zelle zum Organ. Besonderheiten der Pflanzenzelle. Bau und Funktion von Pflanzenorganen. Anatomische Anpassungen an verschiedene Standorte. | |||||
Lernziel | Fertigkeit im Präparieren, Mikroskopieren und Dokumentieren pflanzlicher Objekte. Verstehen der Zusammenhänge zwischen Struktur und Funktion auf der Ebene der Organe, Gewebe und Zellen. Erkennen der Zusammenhänge zwischen Anatomie, Systematik, Physiologie, Ökologie und Entwicklungsbiologie. | |||||
Inhalt | Grundlagen der Optik. Prinzip des Lichtmikroskops. Die Teile des Lichtmikroskops und ihre Funktionen. Köhlersches Beleuchtungsprinzip. Optische Kontrastierverfahren. Messen im Mikroskop. Herstellen von mikroskopischen Präparaten. Färbemethoden. Besonderheiten der Pflanzenzelle: Plastiden, Vakuole, Zellwand. Bau der Samenpflanzen: Von der Zelle zum Organ. Bau und Funktion verschiedener Pflanzengewebe (Epidermis, Leitgewebe, Holz, etc.). Bau und Funktion verschiedener Pflanzenorgane (Wurzel, Stängel, Blatt, Blüte, Frucht, Samen). Anatomische Anpassung an verschiedene Standorte. | |||||
Skript | Handouts | |||||
Literatur | Als Ergänzung (muss nicht angeschafft werden): Gerhard Wanner: Mikroskopisch-Botanisches Praktikum, Georg Thieme Verlag, Stuttgart. | |||||
Voraussetzungen / Besonderes | Gruppen von maximal 30 Studierenden. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
![]() ![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
402-0063-00L | Physik II | O | 5 KP | 3V + 1U | A. Vaterlaus | |
Kurzbeschreibung | Einführung in die Denk- und Arbeitsweise in der Physik anhand von Demonstrationsexperimenten: Elektromagnetismus, Brechung und Beugung von Wellen, Elemente der Quantenmechanik mit Anwendung auf die Spektroskopie, Thermodynamik, Phasenumwandlungen, Transportphänomene. Wo immer möglich werden Anwendungen aus dem Bereich des Studienganges gebracht. | |||||
Lernziel | Förderung des wissenschaftlichen Denkens. Es soll die Fähigkeit entwickelt werden, beobachtetete physikalische Phänomene mathematisch zu modellieren und die entsprechenden Modelle zu lösen. | |||||
Inhalt | Elektromagnetismus, Elektromagnetische Wellen, Wellenoptik, Strahlenoptik, Quantenoptik, Quantenmechanik, Thermische Eigenschaften, Transportphänomene, Wärmestrahlung | |||||
Skript | Skript wird verteilt. | |||||
Literatur | Friedhelm Kuypers Physik für Ingenieure und Naturwissenschaftler Band 2 Elektrizität, Optik, Wellen Wiley-VCH, 2012 ISBN 3527411445, 9783527411443 Douglas C. Giancoli Physik 3. erweiterte Auflage Pearson Studium Hans J. Paus Physik in Experimenten und Beispielen Carl Hanser Verlag, München, 2002, 1068 S. Paul A. Tipler Physik Spektrum Akademischer Verlag, 1998, 1522 S., ca Fr. 120.- David Halliday Robert Resnick Jearl Walker Physik Wiley-VCH, 2003, 1388 S., Fr. 87.- (bis 31.12.03) dazu gratis Online Ressourcen (z.B. Simulationen): www.halliday.de | |||||
752-4001-00L | Mikrobiologie ![]() | O | 2 KP | 2V | M. Ackermann, M. Schuppler, J. Vorholt-Zambelli | |
Kurzbeschreibung | Vermittlung der Grundlagen im Fach Mikrobiologie mit Schwerpunkt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie. | |||||
Lernziel | Vermittlung der Grundlagen im Fach Mikrobiologie. | |||||
Inhalt | Der Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie. | |||||
Skript | Wird von den jeweiligen Dozenten ausgegeben. | |||||
Literatur | Die Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms | |||||
401-0624-00L | Mathematik IV: Statistik ![]() | O | 4 KP | 2V + 1U | D. Stekhoven | |
Kurzbeschreibung | Einführung in einfache Methoden und grundlegende Begriffe von Statistik und Wahrscheinlichkeitsrechnung für Naturwissenschaftler. Die Konzepte werden anhand einiger Daten-Beispiele eingeführt. | |||||
Lernziel | Fähigkeit, aus Daten zu lernen; kritischer Umgang mit Daten und mit Missbräuchen der Statistik; Grundverständnis für die Gesetze des Zufalls und stochastisches Denken (Denken in Wahrscheinlichkeiten); Fähigkeit, einfache und grundlegende Methoden der Analytischen (Schlussfolgernden) Statistik (z. B. diverse Tests) anzuwenden. | |||||
Inhalt | Beschreibende Statistik (einschliesslich graphischer Methoden). Einführung in die Wahrscheinlichkeitsrechnung (Grundregeln, Zufallsvariable, diskrete und stetige Verteilungen, Ausblick auf Grenzwertsätze). Methoden der Analytischen Statistik: Schätzungen, Tests (einschliesslich Vorzeichentest, t-Test, F-Test, Wilcoxon-Test), Vertrauensintervalle, Prognoseintervalle, Korrelation, einfache und multiple Regression. | |||||
Skript | Kurzes Skript zur Vorlesung ist erhältlich. | |||||
Literatur | Stahel, W.: Statistische Datenanalyse. Vieweg 1995, 3. Auflage 2000 (als ergänzende Lektüre) | |||||
Voraussetzungen / Besonderes | Die Übungen (ca. die Hälfte der Kontaktstunden; einschliesslich Computerübungen) sind ein wichtiger Bestandteil der Lehrveranstaltung. Voraussetzungen: Mathematik I, II | |||||
![]() ![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-0071-00L | Mathematik III: Systemanalyse | O | 4 KP | 2V + 1U | N. Gruber, M. Vogt | |
Kurzbeschreibung | In der Systemanalyse geht es darum, durch ausgesuchte praxisnahe Beispiele die in der Mathematik bereit gestellte Theorie zu vertiefen und zu veranschaulichen. Konkret behandelt werden: Dynamische lineare Boxmodelle mit einer und mehreren Variablen; Nichtlineare Boxmodelle mit einer oder mehreren Variablen; zeitdiskrete Modelle, und kontinuierliche Modelle in Raum und Zeit. | |||||
Lernziel | Erlernen und Anwendung von Konzepten (Modellen) und quantitativen Methoden zur Lösung von umweltrelevanten Problemen. Verstehen und Umsetzen des systemanalytischen Ansatzes, d.h. Erkennen des Kernes eines Problemes - Abstraktion - Quantitatives Erfassen - Vorhersage. | |||||
Inhalt | http://www.up.ethz.ch/education/systems-analysis.html | |||||
Skript | Folien werden über Ilias zur Verfügung gestellt. | |||||
Literatur | Imboden, D. and S. Koch (2003) Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag. | |||||
701-0023-00L | Atmosphäre ![]() | O | 3 KP | 2V | E. Fischer, T. Peter | |
Kurzbeschreibung | Grundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht. | |||||
Lernziel | Verständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre. | |||||
Inhalt | Grundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht. | |||||
Skript | Schriftliche Unterlagen werden abgegeben. | |||||
Literatur | - John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998. - Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974. | |||||
701-0501-00L | Pedosphäre | O | 3 KP | 2V | R. Kretzschmar | |
Kurzbeschreibung | Einführung in die Entstehung und Eigenschaften von Böden in Abhängigkeit von Ausgangsgestein, Relief, Klima und Bodenorganismen. Komplexe Zusammenhänge zwischen den bodenbildenden Prozessen, den physikalischen und chemischen Bodeneigenschaften, Bodenorganismen, und ökologischen Standortseigenschaften von Böden werden erläutert und an Hand von zahlreichen Beispielen illustriert. | |||||
Lernziel | Einführung in die Entstehung und Eigenschaften von Böden in Abhängigkeit von Ausgangsgestein, Relief, Klima und Bodenorganismen. Komplexe Zusammenhänge zwischen den bodenbildenden Prozessen, den physikalischen und chemischen Bodeneigenschaften, Bodenorganismen, und ökologischen Standortseigenschaften von Böden werden erläutert und an Hand von zahlreichen Beispielen illustriert. | |||||
Inhalt | Definition der Pedosphäre, Bodenfunktionen, Gesteine, Minerale und Verwitterung, Bodenorganismen, organische Bodensubstanz, physikalische Eigenschaften und Funktionen, chemische Eigenschaften und Funktionen, Bodenbildung und Bodenverbreitung, Grundzüge der Bodenklassifikation, Bodenzonen der Erde, Bodenfruchtbarkeit, Bodennutzung und Bodengefährdung. | |||||
Skript | Skript wird während der ersten Vorlesung verkauft (15.- SFr). | |||||
Literatur | - Scheffer F. Scheffer/Schachtschabel - Lehrbuch der Bodenkunde, 16. Auflage, Spektrum Akademischer Verlag, Heidelberg, 2010. - Brady N.C. and Weil, R.R. The Nature and Properties of Soils. 14th ed. Prentice Hall, 2007. | |||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundlagen in Chemie, Biologie und Geologie. | |||||
![]() ![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-0401-00L | Hydrosphäre Findet dieses Semester nicht statt. | O | 3 KP | 2V | R. Kipfer, C. Roques | |
Kurzbeschreibung | Qualitatives und quantitatives Verständnis für die Prozesse, welche den Wasserkreislauf der Erde, die Energieflüsse sowie die Mischungs- und Transportprozesse in aquatischen Systemen bestimmen. Inhaltliche und methodische Zusammenhänge zwischen Hydrospäre, Atmosphäre und Pedosphäre werden aufgezeigt. | |||||
Lernziel | Qualitatives und quantitatives Verständnis für die Prozesse, welche den Wasserkreislauf der Erde, die Energieflüsse sowie die Mischungs- und Transportprozesse in aquatischen Systemen bestimmen. Inhaltliche und methodische Zusammenhänge zwischen Hydrospäre, Atmosphäre und Pedosphäre werden aufgezeigt. | |||||
Inhalt | Themen der Vorlesung. Physikalische Eigenschaften des Wassers (Dichte und Zustandsgleichung) - Globale Wasserresourcen Prozesse an Grenzflächen - Energieflüsse (thermisch, kinetisch) - Verdunstung, Gasaustausch Stehende Oberflächengewässer (Meer, Seen) - Wärmebilanz - vertikale Schichtung und globale thermohaline Zirkulation / grossskalige Strömungen - Turbulenz und Mischung - Mischprozesse in Fliessgewässern Grundwasser und seine Dynamik. - Grundwasser als Teil des hydrologischen Kreislaufs - Einzugsgebiete, Wasserbilanzen - Grundwasserströmung: Darcy-Gesetz, Fliessnetze - hydraulische Eigenschaften Grundwasserleiter und ihre Eigenschaften - Hydrogeochemie: Grundwasser und seine Inhaltsstoffe, Tracer - Wassernutzung: Trinkwasser, Energiegewinnung, Bewässerung Fallbeispiele: 1. Wasser als Ressource, 2. Wasser und Klima | |||||
Skript | Ergänzend zu den empfohlenen Lehrmitteln werden Unterlagen abgegeben. | |||||
Literatur | Die Vorlesung stützt sich auf folgende Lehrmittel: a) Park, Ch., 2001, The Environment, Routledge, 2001 b) Price, M., 1996. Introducing groundwater. Chapman & Hall, London u.a. | |||||
Voraussetzungen / Besonderes | Die Fallbeispiele und die selbständig zu bearbeitende Uebungen sind ein obligatorischer Bestandteil der Lehrveranstaltung. | |||||
701-0245-00L | Introduction to Evolutionary Biology | O | 2 KP | 2V | G. Velicer, S. Wielgoss | |
Kurzbeschreibung | This course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. | |||||
Lernziel | This course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences. | |||||
Inhalt | Topics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection. | |||||
Literatur | Textbook: Evolutionary Analysis Scott Freeman and Jon Herron 5th Edition, English. | |||||
Voraussetzungen / Besonderes | The exam is based on lecture and textbook. | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-0033-00L | Praktikum Physik für Studierende in Umweltnaturwissenschaften ![]() | O | 2 KP | 4P | M. Münnich, A. Biland, N. Gruber | |
Kurzbeschreibung | Auseinandersetzung mit den grundlegenden Problemen des Experimentes. Durch selbstständige Durchführung physikalischer Versuche aus Teilbereichen der Elementarphysik wird der Einsatz von und der Umgang mit Messinstrumenten sowie die korrekte Auswertung und Beurteilung der Beobachtungen erlernt. Die Physik als persönliches Erlebnis spielt dabei eine wichtige Rolle. | |||||
Lernziel | Die Arbeit im Laboratorium bildet einen wichtigen Teil einer modernen naturwissenschaftlichen Ausbildung. Anhand einfacher, vorgegebenen Versuchsaufbauten soll das Praktikum folgendes vermitteln: - Den praktische Aufbau des Experimentes und die Kenntnis verschiedener Messmethoden, - den Einsatz und Umgang von Messinstrumenten, - die korrekte Durchführung, Auswertung und Beurteilung der Messungen. Ausserdem soll der Kurs die Kenntnisse in Elementarphysik vertiefen. Neben aus dem Anfängerpraktikum für Physiker ausgewählten Versuchen bezwecken speziell für den Bachelorstudiengang Umweltnaturwissenschaften entwickelte Versuchen die wechelseitigen Beziehungen zwischen physikalischer Prozesse zu chemischen und biologischen Phänomenen erleuchten | |||||
Inhalt | Die Studierenden wählen sich 5 der 15 angebotenen Versuchen aus, die sie durchführen möchten. Nach der Durchführung dieser Versuche analysieren die Studierenden ihre Messungen, schätzen den Fehler ihrer Resultate ab und vergleichen diese mit der physikalischen Theorie. | |||||
Skript | Versuchsanleitungen werden auf den Moodle Kursseiten zur Verfügung gestellt. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
701-0707-00L | Methoden des Argumentierens in Wissenschaft und Ethik ![]() ![]() Maximale Teilnehmerzahl: 160 Diese Lerneinheit wurde bis FS17 unter den Titel "Methoden der Textanalyse" angeboten. Studierende, die dieses Fach bereits abgeschlossen haben, können das Fach im HS nicht nochmals anrechnen lassen. | O | 2 KP | 2G | C. J. Baumberger, G. Hirsch Hadorn | |
Kurzbeschreibung | Probleme der Umwelt und der nachhaltigen Entwicklung sind aus wissenschaftlicher und aus ethischer Sicht komplex. Sie erfordern entsprechende Kenntnisse im Argumentieren. Die Lehrveranstaltung behandelt Grundlagenwissen und Methoden für die Rekonstruktion, Analyse und Beurteilung von Argumentationen. Diese Fähigkeiten werden an Beispielen aus Wissenschaft, Ethik und politischen Debatten geübt. | |||||
Lernziel | Die Studierenden verfügen über Grundlagenwissen und Methoden der Argumentationsanalyse. Sie können diese Methoden auf komplexe Argumente im Zusammenhang mit wissenschaftlichen und ethischen Fragen zur Umwelt und zur nachhaltigen Entwicklung anwenden sowie selbst Argumente entwickeln und zieleführend einsetzen. Zudem sind sie in der Lage, den Beitrag von Argumenten in kontroversen Debatten anhand von Regeln zu beurteilen und so auf eine konstruktive Auseinandersetzung hinzuwirken. Sie erwerben damit eine grundlegende Fähigkeit für Critical Thinking, das auf verantwortungsbewusstes Argumentieren, Kommunizieren und Handeln abzielt. | |||||
Inhalt | Innerhalb der Wissenschaft ebenso wie im Kontakt mit der Öffentlichkeit und im praktischen Leben versuchen wir, in strittigen Angelegenheiten mit Argumenten zu überzeugen und Zustimmung zu erzielen. Aber wann sind Aussagen klar und Argumente überzeugend? Wie werden Argumente in Debatten zielführend eingesetzt? Wann liegen Argumentationsfehler vor? Die Lehrveranstaltung behandelt Grundlagenwissen der Begriffsanalyse und der Argumentationstheorie sowie Methoden für die Identifizierung, Rekonstruktion und Beurteilung von Behauptungen und Argumentationen. Im Zentrum steht die systematische Beantwortung der folgenden beiden Fragen: Was wird behauptet? Wie wird die Behauptung begründet? Die erste Frage zielt auf ein besseres Verständnis der Behauptung, die zweite auf eine Einschätzung der Gründe, welche die Behauptung stützen oder unterminieren. Die Methoden zur Beantwortung dieser Fragen werden an Textbeispielen zu wissenschaftlichen und ethischen Fragen zur Umwelt und zur nachhaltigen Entwicklung geübt. Der Kurs vermittelt damit grundlegende Fähigkeiten für Critical Thinking, das auf verantwortungsbewusstes Argumentieren, Kommunizieren und Handeln abzielt. | |||||
Skript | Wir arbeiten mit einem Lehrbuch und Handouts der Präsentationen. | |||||
Literatur | Brun, Georg; Gertrude Hirsch Hadorn. 2014. Textanalyse in den Wissenschaften. Inhalte und Argumente analysieren und verstehen. Zürich: vdf/UTB 3139 (2. Auflage) Bowell, Tracy; Kemp, Gary. 2014. Critical Thinking. A Concise Guide. New York. Routledge. (4. Auflage) Eemeren, Frans van; Grootendorst, Rob; Henkemans, Francisca Snoeck. 2010. Argumentation. Analysis, Evaluation, Presentation. New York: Routledge. Pfister, Jonas. 2013. Werkzeuge des Philosophierens. Stuttgart: Reclam. Sinnott-Armstrong, Walter; Fogelin; Robert. 2015. Understanding Arguments. An Introduction to Informal Logic. Concise. Stanford: Cenage Learning. (9. Auflage) | |||||
Voraussetzungen / Besonderes | Die Lehrveranstaltung ist Teil der Pflichtfächer in Sozial- und Geisteswissenschaften im zweiten Studienjahr des Bachelor UMNW. Für 2 ECTS-credits müssen alle schriftlichen Hausaufgaben gelöst werden, welche die Vorlesung begleiten und im Verlauf des Semesters ausgegeben werden. |