Search result: Catalogue data in Autumn Semester 2016
MAS in Medical Physics | ||||||
Specialization: General Medical Physics and Biomedical Engineering | ||||||
Major in Radiation Therapy | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
402-0345-00L | Introduction to Medical Physics Does not take place this semester. | W | 4 credits | 2V | A. J. Lomax | |
Abstract | Medical physics is a fascinating and worthwhile scientific discipline, providing many professional opportunities to apply physics to the care of patients, either in the clinic or in industry. It is also an area allowing for exciting, interesting and fulfilling areas of research. | |||||
Learning objective | It is the aim of this course to give bachelor and master level students an insight into the wide spectrum of medical applications of physics, and to provide some insight into the work of the medical physicist in clinics, industry and research. | |||||
Content | The lecture series will begin with a short historical overview of medical physics and an overview of the lecture series (lecture 1). This will be followed by two lectures on the physics of medical imaging. Medical imaging is one of the most important areas of preventative medicine and diagnostics, and in these two lectures, we will summarise the physics aspects of all the most important medical imaging modalities (X-ray, nuclear medicine, CT, MRI, Ultrasound imaging etc.). With lectures 4 and 5, we will move onto one of the other major areas of physics applied to medicine, radiotherapy. As the name implies, this is a physics 'heavy' discipline, being dependent as it is on both accelerator and particle physics. However, what is less well known is that this is also the second most successfu l treatment of cancer after surgery and a great success story for the application of physics to medicine. In lectures 6 and 7 will then move on to a very different area, that of bio-photonics and bio-physics. Here we will look into the applications of lasers in medicine, from therapy to their use in particle acceleration for medical applications, as well as a variety of optical techniques for studying biological tissues, cells and structures. In the second half of the lecture series (lectures 8-13) the style changes somewhat, and we will concentrate on professional aspects of medical physics and the role of the medical physicist in various professional scenarios. As such, lectures 8-11 will cover the role of the clinical medical physicist in diagnostic radiology, MRI, nuclear medicine and radiotherapy, whilst the last two lectures will concentrate on their role in industry and research. For many of this second set of lectures, external experts in the various areas will be invited in order to give the student the best possible insight into the life of a professional medical physicist. | |||||
402-0341-00L | Medical Physics I | W | 6 credits | 2V + 1U | P. Manser | |
Abstract | Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations. | |||||
Learning objective | Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society. | |||||
Content | The lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications. | |||||
Lecture notes | A script will be provided. | |||||
227-0943-00L | Radiobiology | W | 2 credits | 2V | M. Pruschy | |
Abstract | The purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk. | |||||
Learning objective | By the end of this course the participants will be able to: a) interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer b) understand factors which underpin the differing radiosensitivities of different tumors c) follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents d) understand differences in the radiation response of normal tissue versus tumor tissue e) understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.). | |||||
Content | Einführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenwirkung auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlenzytogenetik: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenrisiko: Strahlensyndrome, Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung. | |||||
Lecture notes | Beilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben | |||||
Literature | Literaturliste wird abgegeben. Für NDS-Absolventen empfohlen: Hall EJ; Giacchia A: Radiobiology for the Radiologist, 7th Edition, 2011 | |||||
Prerequisites / Notice | The former number of this course unit is 465-0951-00L. | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0956-00L | Dosimetry Does not take place this semester. Only for MAS in Medical Physics | W | 4 credits | 6G | ||
Abstract | Dosimetry in radiotherapy. Planning and implementation of a percutaneous radiation exposure on an anthropomorphic phantom. Verification of the resulting dose distribution. | |||||
Learning objective | Praktische Umsetzung der Lerninhalte der Vorlesungen Medizinphysik I & II bezüglich Dosimetrie bei perkutanen Strahlenexpositinen | |||||
Content | Dosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen. | |||||
Lecture notes | Die Kursunterlagen werden im Blockkurs abgegeben. | |||||
Prerequisites / Notice | Voraussetzung: Besuch der Vorlesung Medizinische Physik I | |||||
465-0800-00L | Practical Work Only for MAS in Medical Physics | W | 4 credits | external organisers | ||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Electives | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 credits | 3G | M. Stampanoni, P. A. Kaestner | |
Abstract | The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics. | |||||
Learning objective | Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications | |||||
Content | Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples. The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments. The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications. | |||||
Lecture notes | Available online | |||||
Literature | Will be indicated during the lecture. | |||||
402-0674-00L | Physics in Medical Research: From Atoms to Cells | W | 6 credits | 2V + 1U | B. K. R. Müller | |
Abstract | Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells. | |||||
Learning objective | The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour. As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced. The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes. High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering. Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. 3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented. Visiting clinical research in a leading university hospital will show the usefulness of the lecture series. | |||||
Major in Biomechanics | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-0386-00L | Biomedical Engineering | W | 4 credits | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong | |
Abstract | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||
Learning objective | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | |||||
Content | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | |||||
Lecture notes | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://www1.ethz.ch/lbb/Education/BME | |||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 credits | 3G | M. Stampanoni, P. A. Kaestner | |
Abstract | The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics. | |||||
Learning objective | Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications | |||||
Content | Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples. The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments. The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications. | |||||
Lecture notes | Available online | |||||
Literature | Will be indicated during the lecture. | |||||
376-1651-00L | Clinical and Movement Biomechanics | W | 4 credits | 3G | S. Lorenzetti, R. List, N. Singh | |
Abstract | Measurement and modeling of the human movement during daily activities and in a clinical environment. | |||||
Learning objective | The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application. | |||||
Content | This course includes study design, measurement techniques, clinical testing, accessing movement data and anysis as well as modeling with regards to human movement. | |||||
376-1985-00L | Trauma Biomechanics | W | 4 credits | 2V + 1U | K.‑U. Schmitt, M. H. Muser | |
Abstract | Trauma biomechanics in an interdisciplinary research field investigating the biomechanics of injuries and related subjects such as prevention. The lecture provides an introduction to the basic principles of trauma biomechanics. | |||||
Learning objective | Introduction to the basic principles of trauma biomechanics. | |||||
Content | This lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations using multi-body and finite element modelling techniques, aspects of passive safety of vehicles (focusing on restraint systems and vehicle compatibility). Real world examples mainly from automobile safety are used to augment lecture material. | |||||
Lecture notes | Handouts will be made available. | |||||
Literature | Schmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics", Springer Verlag | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | external organisers | ||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Electives | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0255-00L | Energy Conversion and Transport in Biosystems | W | 4 credits | 2V + 1U | D. Poulikakos, A. Ferrari | |
Abstract | Theory and application of thermodynamics and energy conversion in biological systems with focus on the cellular level. | |||||
Learning objective | Theory and application of energy conversion at the cellular level. Understanding of the basic features governing solutes transport in the principal systems of the human cell. Connection of characteristics and patterns from other fields of engineering to biofluidics. Heat and mass transport processes in the cell, generation of forces, work and relation to biomedical technologies. | |||||
Content | Mass transfer models for the transport of chemical species in the human cell. Organization and function of the cell membrane and of the cell cytoskeleton. The role of molecular motors in cellular force generation and their function in cell migration. Description of the functionality of these systems and of analytical experimental and computational techniques for understanding of their operation. Introduction to cell metabolism, cellular energy transport and cellular thermodynamics. | |||||
Lecture notes | Material in the form of hand-outs will be distributed. | |||||
Literature | Lecture notes and references therein. | |||||
151-0524-00L | Continuum Mechanics I | W | 4 credits | 2V + 1U | E. Mazza | |
Abstract | The lecture deals with constitutive models that are relevant for design and calculation of structures. These include anisotropic linear elsticity, linear viscoelasticity, plasticity, viscoplasticity. Homogenization theories and laminate theory are presented. Theoretical models are complemented by examples of engineering applications and eperiments. | |||||
Learning objective | Basic theories for solving continuum mechanics problems of engineering applications, with particular attention to material models. | |||||
Content | Anisotrope Elastizität, Linearelastisches und linearviskoses Stoffverhalten, Viskoelastizität, mikro-makro Modellierung, Laminattheorie, Plastizität, Viscoplastizität, Beispiele aus der Ingenieuranwendung, Vergleich mit Experimenten. | |||||
Lecture notes | yes | |||||
151-0604-00L | Microrobotics Does not take place this semester. | W | 4 credits | 3G | B. Nelson | |
Abstract | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination. | |||||
Learning objective | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||
Content | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||
Lecture notes | The powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically. | |||||
Prerequisites / Notice | The lecture will be taught in English. | |||||
263-5001-00L | Introduction to Finite Elements and Sparse Linear System Solving | W | 4 credits | 2V + 1U | P. Arbenz | |
Abstract | The finite element (FE) method is the method of choice for (approximately) solving partial differential equations on complicated domains. In the first third of the lecture, we give an introduction to the method. The rest of the lecture will be devoted to methods for solving the large sparse linear systems of equation that a typical for the FE method. We will consider direct and iterative methods. | |||||
Learning objective | Students will know the most important direct and iterative solvers for sparse linear systems. They will be able to determine which solver to choose in particular situations. | |||||
Content | I. THE FINITE ELEMENT METHOD (1) Introduction, model problems. (2) 1D problems. Piecewise polynomials in 1D. (3) 2D problems. Triangulations. Piecewise polynomials in 2D. (4) Variational formulations. Galerkin finite element method. (5) Implementation aspects. II. DIRECT SOLUTION METHODS (6) LU and Cholesky decomposition. (7) Sparse matrices. (8) Fill-reducing orderings. III. ITERATIVE SOLUTION METHODS (9) Stationary iterative methods, preconditioning. (10) Preconditioned conjugate gradient method (PCG). (11) Incomplete factorization preconditioning. (12) Multigrid preconditioning. (13) Nonsymmetric problems (GMRES, BiCGstab). (14) Indefinite problems (SYMMLQ, MINRES). | |||||
Literature | [1] M. G. Larson, F. Bengzon: The Finite Element Method: Theory, Implementation, and Applications. Springer, Heidelberg, 2013. [2] H. Elman, D. Sylvester, A. Wathen: Finite elements and fast iterative solvers. OUP, Oxford, 2005. [3] Y. Saad: Iterative methods for sparse linear systems (2nd ed.). SIAM, Philadelphia, 2003. [4] T. Davis: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006. [5] H.R. Schwarz: Die Methode der finiten Elemente (3rd ed.). Teubner, Stuttgart, 1991. | |||||
Prerequisites / Notice | Prerequisites: Linear Algebra, Analysis, Computational Science. The exercises are made with Matlab. | |||||
376-2017-00L | Biomechanics of Sports Injuries and Rehabilitation | W | 3 credits | 2V | K.‑U. Schmitt, J. Goldhahn | |
Abstract | This lectures introduces the basic principles of injury mechanics and rehabilitation focussing on sports injuries. | |||||
Learning objective | Within the scope of this lecture you will learn the basic principles of trauma biomechanics. Based on examples from sports, you will get to know different mechanisms that can possibly result in injury. Investigating the background and cause of injury should allow you to assess the injury risk for sports activities. Furthermore you should be able to develop measures to prevent such injury. | |||||
Content | This lecture deals with the basic principles of injury mechanics and rehabilitation. Mechanisms that can result in injury are presented. Furthermore possibilities to prevent injuries are discussed. Thereby the lecture focuses on sports injuries. | |||||
Lecture notes | Handouts will be made available. | |||||
Literature | Schmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - Accidental Injury in traffic and sports", Springer Verlag | |||||
Prerequisites / Notice | A course work is required. The mark of this course work contributes to the final credits for this lecture. Details will be given during the first lecture. | |||||
Major in Bioimaging | ||||||
Core Courses | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-0386-00L | Biomedical Engineering | W | 4 credits | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong | |
Abstract | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||
Learning objective | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | |||||
Content | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | |||||
Lecture notes | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://www1.ethz.ch/lbb/Education/BME | |||||
227-0447-00L | Image Analysis and Computer Vision | W | 6 credits | 3V + 1U | L. Van Gool, O. Göksel, E. Konukoglu | |
Abstract | Light and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. | |||||
Learning objective | Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises. | |||||
Content | The first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. | |||||
Lecture notes | Course material Script, computer demonstrations, exercises and problem solutions | |||||
Prerequisites / Notice | Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C. The course language is English. | |||||
Practical Work | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | external organisers | ||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. |
- Page 1 of 4 All