Suchergebnis: Katalogdaten im Herbstsemester 2016
Physik Master | ||||||
Wahlfächer | ||||||
Physikalische und mathematische Wahlfächer | ||||||
Auswahl: Mathematik | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
401-3531-00L | Differentialgeometrie I Das Bachelor-Kernfach 401-3531-00L Differentialgeometrie I / Differential Geometry I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3531-00L Differentialgeometrie I / Differential Geometry I noch 401-3532-00L Differentialgeometrie II / Differential Geometry II für den Bachelor-Abschluss anrechnen liessen. Ausserdem ist höchstens eines der drei Fächer 401-3461-00L Funktionalanalysis I / Functional Analysis I 401-3531-00L Differentialgeometrie I / Differential Geometry I 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory im Master-Studiengang Mathematik anrechenbar. | W | 10 KP | 4V + 1U | U. Lang | |
Kurzbeschreibung | Kurven im R^n, innere Geometrie von Hyperflächen im R^n, Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet. Der hyperbolische Raum. Differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen, Satz von Sard, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes. | |||||
Lernziel | Einführung in die elementare Differentialgeometrie und Differentialtopologie. | |||||
Inhalt | - Differentialgeometrie im R^n: Kurventheorie, Untermannigfaltigkeiten und Immersionen, innere Geometrie von Hyperflächen, Gauss-Abbildung und -Krümmung, Theorema Egregium, spezielle Klassen von Flächen, Satz von Gauss-Bonnet, Indexsatz von Poincaré. - Der hyperbolische Raum. - Differentialtopologie: differenzierbare Mannigfaltigkeiten, Tangentialbündel, Immersionen und Einbettungen in den R^n, Satz von Sard, Transversalität, Abbildungsgrad und Schnittzahl, Vektorbündel, Vektorfelder und Flüsse, Differentialformen, Satz von Stokes. | |||||
Literatur | Differentialgeometrie im R^n: - Manfredo P. do Carmo: Differentialgeometrie von Kurven und Flächen - Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten - Christian Bär: Elementare Differentialgeometrie Differentialtopologie: - Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds - Victor Guillemin & Alan Pollack: Differential Topology - Morris W. Hirsch: Differential Topology | |||||
401-3461-00L | Funktionalanalysis I Das Bachelor-Kernfach 401-3461-00L Funktionalanalysis I / Functional Analysis I ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium weder 401-3461-00L Funktionalanalysis I / Functional Analysis I noch 401-3462-00L Funktionalanalysis II / Functional Analysis II für den Bachelor-Abschluss anrechnen liessen. Ausserdem ist höchstens eines der drei Fächer 401-3461-00L Funktionalanalysis I / Functional Analysis I 401-3531-00L Differentialgeometrie I / Differential Geometry I 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory im Master-Studiengang Mathematik anrechenbar. | W | 10 KP | 4V + 1U | M. Struwe | |
Kurzbeschreibung | Baire-Kategorie; Banach- and Hilberträume, stetige lineare Abbildungen; Prinzipien: Gleichmässige Beschränktheit, Sätze von der offenen Abbildung/vom abgeschlossenen Graphen; Hahn-Banach; Dualraum; Konvexität; schwache/schwach*-Topologie; Banach-Alaoglu; reflexive Räume; Operatoren mit abgeschlossenem Bild; kompakte Operatoren; Fredholmtheorie; Spektraltheorie selbst-adjungierter Operatoren. | |||||
Lernziel | ||||||
Skript | Skript zur "Funktionalanalysis I" von Michael Struwe | |||||
401-3601-00L | Probability Theory Das Bachelor-Kernfach 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory ist für Studierende mit einem ETH Zürich Bachelor-Abschluss in Mathematik für den Master-Studiengang Mathematik anrechenbar, falls sie im vorangegangenen Bachelor-Studium keine der drei Lerneinheiten 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory, 401-3642-00L Brownian Motion and Stochastic Calculus bzw. 401-3602-00L Applied Stochastic Processes für den Bachelor-Abschluss anrechnen liessen. Ausserdem ist höchstens eines der drei Fächer 401-3461-00L Funktionalanalysis I / Functional Analysis I 401-3531-00L Differentialgeometrie I / Differential Geometry I 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory im Master-Studiengang Mathematik anrechenbar. | W | 10 KP | 4V + 1U | A.‑S. Sznitman | |
Kurzbeschreibung | Basics of probability theory and the theory of stochastic processes in discrete time | |||||
Lernziel | This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains. | |||||
Inhalt | This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains. | |||||
Skript | available, will be sold in the course | |||||
Literatur | R. Durrett, Probability: Theory and examples, Duxbury Press 1996 H. Bauer, Probability Theory, de Gruyter 1996 J. Jacod and P. Protter, Probability essentials, Springer 2004 A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006 D. Williams, Probability with martingales, Cambridge University Press 1991 | |||||
401-3621-00L | Fundamentals of Mathematical Statistics | W | 10 KP | 4V + 1U | F. Balabdaoui | |
Kurzbeschreibung | The course covers the basics of inferential statistics. | |||||
Lernziel | ||||||
401-4767-66L | Partial Differential Equations (Hyperbolic PDEs) | W | 7 KP | 4V | D. Christodoulou | |
Kurzbeschreibung | The course begins with characteristics, the definition of hyperbolicity, causal structure and the domain of dependence theorem. The course then focuses on nonlinear systems of equations in two independent variables, in particular the Euler equations of compressible fluids with plane symmetry and the Einstein equations of general relativity with spherical symmetry. | |||||
Lernziel | The objective is to introduce students in mathematics and physics to an area of mathematical analysis involving differential geometry which is of fundamental importance for the development of classical macroscopic continuum physics. | |||||
Inhalt | The course shall begin with the basic structure associated to hyperbolic partial differential equations, characteristic hypersurfaces and bicharacteristics, causal structure, and the domain of dependence theorem. The course shall then focus on nonlinear systems of equations in two independent variables. The first topic shall be the Euler equations of compressible fluids under plane symmetry where we shall study the formation of shocks, and second topic shall be the Einstein equations of general relativity under spherical symmetry where we shall study the formation of black holes and spacetime singularities. | |||||
Voraussetzungen / Besonderes | Basic real analysis and differential geometry. |
- Seite 1 von 1