Suchergebnis: Katalogdaten im Frühjahrssemester 2013
Biomedical Engineering Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0393-00L | Biosensors and Bioelectronics | W | 3 KP | 2G | J. Vörös, T. Zambelli | |
Kurzbeschreibung | This is an interdisciplinary course focused on sensing concepts that can be used to detect biomolecules for diagnostic and screening purposes, and on issues related to processes that take place at the interface between biological materials and electronics. The most interesting examples will be introduced and the underlying mechanism disentangled with the appropriate equations. | |||||
Lernziel | During this course the students will: - learn the motivations behind biosensing and bioelectronics - learn the basic concepts in biosensing and bioelectronics - be able to solve typical problems in biosensing and bioelectronics - learn to locate information fast | |||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Bioelectronics besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
151-0172-00L | Devices and Systems ![]() | W | 5 KP | 4G | C. Hierold, A. Hierlemann | |
Kurzbeschreibung | The students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS). They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products. | |||||
Lernziel | The students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS), basic electronic circuits for sensors, RF-MEMS, chemical microsystems, BioMEMS and microfluidics, magnetic sensors and optical devices, and in particular to the concepts of Nanosystems (focus on carbon nanotubes), based on the respective state-of-research in the field. They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products. | |||||
Inhalt | Introduction to semiconductors, MOSFET transistors Basic electronic circuits for sensors and microsystems Transducer Fundamentals Chemical sensors and biosensors, microfluidics and bioMEMS RF MEMS Magnetic Sensors, optical Devices Nanosystem concepts | |||||
Skript | handouts | |||||
151-0630-00L | Nanorobotics ![]() | W | 4 KP | 2V + 1U | B. Nelson, S. Pané Vidal | |
Kurzbeschreibung | Nanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. | |||||
Lernziel | The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine. Throughout the course, discussions and lab tours will be organized on selected topics. | |||||
151-0980-00L | Biofluiddynamics ![]() | W | 4 KP | 2V + 1U | D. Obrist, P. Jenny | |
Kurzbeschreibung | Introduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics). | |||||
Lernziel | A basic understanding of fluid dynamical processes of the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately. | |||||
Inhalt | This lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-vessel interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, respiratory fluiddynamics, fluiddynamics of the inner ear, blood rheology, microcirculation, and blood flow regulation. | |||||
Skript | A script is provided in pdf-form. | |||||
Literatur | A list of books on selected topics of biofluiddynamics can be found on the course web page. | |||||
376-1217-00L | Rehabilitation Engineering I: Motor Functions ![]() | W | 3 KP | 2V + 1U | R. Riener | |
Kurzbeschreibung | “Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits. | |||||
Lernziel | Provide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities. | |||||
Inhalt | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons). The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | |||||
Skript | Lecture notes will be distributed at the beginning of the lecture (1st session) | |||||
Literatur | Introductory Books Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000. Selected Journal Articles Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11 Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849 Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. | |||||
Voraussetzungen / Besonderes | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1308-00L | Grundlagen der Biokompatibilität medizinischer Implantate ![]() Es werden maximum 25-30 Teilnehmer zugelassen. Die Einschreibungen werden nach chronologischem Eingang berücksichtigt. | W | 3 KP | 2V + 1U | J. Mayer-Spetzler, S. Hofmann Boss, D. J. Webster | |
Kurzbeschreibung | Grundprinzipien der Biokompatibilität; Stand der Technik sowie aktuelle Entwicklungen für Implantate in der Sportmedizin, der Traumatologie, der kardio-vaskulären Chirurgie sowie für Gelenkimplantate; Einführung in die Prinzipien des Tissue Engineering. Zusätzlich besteht die Möglichkeit eine orthopädische Operation live mitzuerleben. | |||||
Lernziel | Einführung in Methoden der Implantatentwicklung | |||||
Inhalt | Einführung in die Bionik; Designprinzipen auf der Basis der Baummechanik, Biokompatibilität als bionisches Prinzip für die Implantatentwicklung; Anforderungen an die Biofunktionalität von Implantatsystemen; Reaktionen des Körpers auf Implantate; Materialien und Prozesstechniken; Prüfverfahren und zulassungstechnische Anforderungen an die Implantatentwicklung; Diskussion des Standes der Technik sowie aktueller Entwicklungen im den Bereichen Sportmedizin, Traumatologie, Wirbelsäulen- und kardio-vaskuläre Chirurgie sowie bei Gelenkimplantaten; Einführung in die Prinzipien des Tissue Engineering als Verfahren zur Wiederherstellung von biologischen Geweben. Die Themen werden mit Operationsfilmen gezielt vertieft Übung: Gruppenseminar zu ausgewählten Themen der Implantatentwicklung, die Ergebnisse der Gruppenarbeiten werden im Plenum presentiert und diskutiert. Die Teilnahme am Gruppenseminar ist Voraussetzung für die Erteilung des Testates. Geplante Exkursionen (freiwillig, nicht Testatbedingung, beschränkte Teilnehmerzahl): 1. Teilnahme (als Zuschauer) an einer orthopädische Operation (Reise auf eigene Kosten) | |||||
Skript | Vorlesungsunterlagen (alle elektronisch verfügbar): - präsentierte Folien als Powerpoint - ausgewählte wissenschaftliche Publikationen zur Vertiefung | |||||
Literatur | Vorlesungsbegleitend wird folgendes Buch empfohlen (nicht Pflicht!): Medizintechnik: Life Science Engineering, Springer Verlag, 5. Auflage von E. Wintermantel und S.-W. Ha Auf weitereführende Literatur wird während der Vorlesung hingewiesen | |||||
Voraussetzungen / Besonderes | 1. Die Studierenden werden in Operationsfilmen mit Bildmaterial konfrontiert, das emotionale Reaktionen auslösen kann. Die Ansicht der Filme ist freiwillig und erfolgt auf eigene Verantwortung. 2. Die Teilnehmerzahl in der Vorlesung ist auf 25-30 Hörer begrenzt. | |||||
376-1397-00L | Orthopaedic Biomechanics ![]() | W | 4 KP | 3G | R. Müller, K. S. Stok, G. H. Van Lenthe | |
Kurzbeschreibung | This course is aimed at studying the mechanical and structural engineering of the musculoskeletal system alongside the analysis and design of orthopaedic solutions to musculoskeletal failure. | |||||
Lernziel | To apply engineering and design principles to orthopaedic biomechanics, to quantitatively assess the musculoskeletal system and model it, and to review rigid-body dynamics in an interesting context. | |||||
Inhalt | Engineering principles are very important in the development and application of quantitative approaches in biology and medicine. This course includes a general introduction to structure and function of the musculoskeletal system: anatomy and physiology of musculoskeletal tissues and joints; biomechanical methods to assess and quantify tissues and large joint systems. These methods will also be applied to musculoskeletal failure, joint replacement and reconstruction; implants; biomaterials and tissue engineering. | |||||
Skript | BOOK: Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems Authors: Donald L. Bartel, Dwight T. Davy, Tony M. Keaveny Publisher: Prentice Hall; Copyright: 2007 ISBN-10: 0130089095; ISBN-13: 9780130089090 | |||||
Voraussetzungen / Besonderes | Lectures will be given in English. | |||||
151-0622-00L | Measuring on the Nanometer Scale ![]() | W | 2 KP | 2G | A. Stemmer | |
Kurzbeschreibung | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Lernziel | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Inhalt | Conventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters. | |||||
Skript | Class notes and special papers will be distributed. | |||||
Voraussetzungen / Besonderes | This course is taught together with A. Rey and T. Wagner. | |||||
376-1984-00L | Laser in der Medizin Findet dieses Semester nicht statt. | W | 3 KP | 3G | ||
Kurzbeschreibung | Fragen wie "Was ist ein Laser, wie funktioniert er und was macht ihn so interessant für die Medizin?", aber auch "Wie breitet sich Licht im Gewebe aus und welche Wechselwirkungen treten dabei auf?" sollen beantwortet werden. Speziell wird auf therapeutische, diagnostische und bildgebende Anwendungen anhand von ausgewählten Beispielen eingegangen. | |||||
Lernziel | Einführung in die für medizinische Anwendungen relevanten Lasertechniken. Vermittlung der physikalischen Grundlagen der Laser-Gewebe-Wechselwirkung mit dem Ziel, den Einfluss der unterschiedlichen Bestrahlungsparameter auf den Gewebeeffekt zu verstehen. Grundlagen der diagnostischen Laseranwendungen und der Lasersicherheit. | |||||
Inhalt | Die Anwendung des Lasers in der Medizin gewinnt zunehmend dort an Bedeutung, wo seine speziellen Eigenschaften gezielt zur berührungslosen, selektiven und spezifischen Wirkung auf Weich- und Hartgewebe für minimal invasive Therapieformen oder zur Eröffnung neuer therapeutischer und diagnostischer Methoden eingesetzt werden können. Grundlegende Arbeiten zum Verständnis der Lichtausbreitung im Gewebe (Absorptions-, Reflexions- und Transmissionsvermögen) und die unterschiedlichen Formen der Wechselwirkung (photochemische, thermische, ablative und optomechanische Wirkung) werden eingehend behandelt. Speziell wird auf den Einfluss der Wellenlänge und der Bestrahlungszeit auf den Wechselwirkungsmechanismus eingegangen. Die unterschiedlichen medizinisch genutzten Lasertypen und Strahlführungssysteme werden hinsichtlich ihres Einsatzes im Bereich der Medizin anhand ausgesuchter Anwendungsbeispiele diskutiert. Neben den therapeutischen Wirkungen wird auf den Einsatz des Lasers in der medizinischen Diagnostik (z.B. Tumor-Fluoreszenzdiagnostik, Bildgebung) eingegangen. Die beim Einsatz des Lasers in der Medizin erforderlichen Schutzmassnahmen werden diskutiert. | |||||
Skript | wird im Internet bereitgestellt | |||||
Literatur | - M. Born, E. Wolf, "Principles of Optics", Pergamon Press - B.E.A. Saleh, M.C. Teich, "Fundamentals of Photonics", John Wiley and Sons, Inc. - A.E. Siegman, "Lasers", University Science Books - O. Svelto, "Principles of Lasers", Plenum Press - J. Eichler, T. Seiler, "Lasertechnik in der Medizin", Springer Verlag - M.H. Niemz, "Laser-Tissue Interaction", Springer Verlag - A.J. Welch, M.J.C. van Gemert, "Optical-thermal response of laser-irradiated tissue", Plenum Press | |||||
227-0390-00L | Elements of Microscopy | W | 4 KP | 3G | M. Stampanoni, G. Csúcs, R. A. Wepf | |
Kurzbeschreibung | Die Vorlesung fasst sich mit den Grundlagen der Mikroskopie (Wellen Fortpflanzung, Beugung sowie Aberrationen). Lichtmikroskopie in alle ihre Aspekten (Fluoreszenz, Konfokale und Multiphoton), 3D Elektronenmikroskopie sowie tomographische Röntgenmikroskopie werden präsentiert. | |||||
Lernziel | Solide Einführung in die Grundlagen der Mikroskopie, sei es mit sichtbaren Licht, Elektronen oder Röntgenstrahlen. | |||||
Inhalt | Wissenschaftliche Arbeit im Naturwissenschaftlichen Gebiet wäre ohne Mikroskopie kaum denkbar. Heutzutage stehen den Forscher extrem kräftige Werkzeuge zur Verfügung um Proben bis auf das atomare Niveau zu untersuchen. Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Mikroskopie, von der Wellenphysik bis zur Entstehung von Bildern. Sie liefert die physikalischen und technischen Grundkenntnisse über Lichtmikroskopie, Elektronenmikroskopie und Röntgenmikroskopie. Während ausgewählten Übungsstunden im Labor werden hochentwickelten Instrumenten gezeigt und ihre Funktion sowie ihren Potential dargestellt. | |||||
Literatur | Online verfügbar. | |||||
227-0468-00L | Analog Signal Processing and Filtering ![]() | W | 6 KP | 2V + 2U | H. Schmid | |
Kurzbeschreibung | This lecture provides a wide overview over analogue (mostly integrated) filters (continuous-time and discrete-time), amplifiers, and sigma-delta converters, by treating all these circuits using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups. | |||||
Lernziel | This lecture provides a wide overview over analogue (integreted) filters (continuous-time and discrete-time), amplifiers, and sigma-delta converters, by treating all these circuits using signal-flow considerations. The lecture is suitable for both analog and digital designers. The exam allows for the different interests of the two groups. The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to enable them to gain an understanding of further circuits and systems by themselves. | |||||
Inhalt | At the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters. ((A 1xDVD read channel filter is designed in a computer exercise using Cadence design tools. (*))) Theory and implementation of opamps, current conveyors, and inductor simulators follow. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to switched-capacitor filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping. These topics form the basis for the longest part of the lecture: the discussion of sigma-delta A/D and D/A converters, which are portrayed as mixed analog-digital (MAD) filters in this lecture. (*) This year the Cadence Exercise is omitted and replaced by a shorter Sigma-Delta Exercise. Reason: May 1 is a Wednesday, we have one day less. | |||||
Skript | The base for these lectures are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content. Details: http://people.ee.ethz.ch/~hps/asf_wiki/ Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture. | |||||
Voraussetzungen / Besonderes | Prerequisites: Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters. Knowledge of the Laplace Transform (transfer functions, poles and zeros, bode diagrams, stability criteria ...) and of the main properties of linear systems is necessary. | |||||
227-0684-00L | Control Methods in Systems Biology ![]() | W | 4 KP | 2V + 1U | H. Köppl | |
Kurzbeschreibung | Mathematical and control-theoretical methods are introduced and their application in computational systems biology discussed. For more information see http://www.bison.ethz.ch/education/csysbio_2012 | |||||
Lernziel | After successful completion of the course the student will be able to derive computational models from experimental facts; he will be acquainted with the basics of molecular cell biology; he will know what model formulation to chose that best fits the experimental situation. | |||||
Inhalt | 1. Basics of molecular cell biology. 2. Basics in probability theory. 3. Basics of nonlinear differential equations, and population models, Lyapunov stability, stoichiometric formulation, stoichiometry analysis. 4. Stochastic analysis: Markov process basics, Master equation, Omega expansions, Fokker-Planck equation, linear noise approximation, moment closures, Langevin, simulation algorithms, Gillespie, tau-leaping, SDE integration. 5. Spatial simulations: Smoluchowski diffusion model, Compartment models, spatial Gillespie, Greens functions reaction dynamics, mesh methods. 6. Parameter inference, system identification: ODE identification, Markov process inference, Markov Chain Monte Carlo methods, sequential Monte Carlo, optimal experimental design. 7. Computer science models: Petri nets, rule-based models, finite state automata, hybrid automata, boolean models. | |||||
Literatur | Darren Wilkinson (2011) Stochastic Modelling for Systems Biology, second edition, Chapman & Hall/CRC. | |||||
376-1103-00L | Frontiers in Nanotechnology | W | 4 KP | 4V | V. Vogel | |
Kurzbeschreibung | Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers. | |||||
Lernziel | Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies. The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries. Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations. | |||||
Inhalt | Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges. | |||||
Skript | All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics. | |||||
402-0673-00L | Physics in Medical Research: From Humans to Cells | W | 6 KP | 2V + 1U | B. K. R. Müller, A. J. Lomax | |
Kurzbeschreibung | The aim of this lecture series is to introduce the role of physics in state-of-the-art medical research and clinical practice. Topics to be covered range from applications of physics in medical implant technology and tissue engineering, through imaging technology, to its role in interventional and non-interventional therapies. | |||||
Lernziel | The lecture series is focused on the application of physics in diagnosis, planning, and therapy close to clinical practice and fundamental medical research. Beside a general overview the lectures give a deep insight into selected techniques, which will help the students to apply the knowledge to related techniques. In particular, the lectures should give the physics behind the imaging techniques currently used in clinical environment, i.e. ultrasound, magnet resonance imaging, computed tomography. Micro computed tomography (µCT) is selected to elaborate the scientific basics, namely the detailed interactions of X-rays with condensed matter, the data acquisition, the reconstruction algorithms, the quantitative data evaluation, the segmentation of the features, the visualization of the structures, staining and labeling etc. The potential of the imaging is uncovered exemplary extracting the temperature from MRI-measurements. For the therapy, several techniques are known, which are non- or minimally invasive. In order to deliberately destroy cancerous tissue, heat can be supplied or extracted in different manner: cryotherapy (heat conductivity in anisotropic, viscoelastic environment), radiofrequency treatment (single and multi-probe), laser application, and proton therapy. Using proton therapy, the lectures give the fundamental interactions of protons with human tissue, which can be simulated to realize effective planning procedures. The technique is compared with similar therapeutic approaches such as photon therapy. Medical implants play a more and more important role to take over well-defined tasks within the human body. Although biocompatibility is here of crucial importance, the term is insufficiently understood. The aim of the lectures is the understanding of biocompatibility performing well-defined experiments in vitro and in vivo. Dealing with different classes of materials (metals, ceramics, polymers) the influence of surface modifications (morphology and surface coatings) are key issues for implant developments. In the case of degradable implants, the degradation kinetics is of prime importance. The impact of the degradation products on the surrounding tissue will be comparatively analyzed. Mechanical stimuli can drastically influence soft and hard tissue behavior. The students should realize that a physiological window exists, where a positive tissue responds is expected and how the related parameter including strain, frequency, and resting periods can be selected and optimized for selected tissue such as bone. The muscles, responsible for several tasks within the human body, can be damaged. A typical example is the urinary sphincter after radical prostatectomy. The available implants, however, do not satisfactory work. Therefore, new active or “intelligent” implants have to be developed. The students should have a critical look at promising alternatives and learn to select potential solutions such as electrically activated polymer structures and to realize the time-consuming and complex way to clinical practice. Although the surgical instruments have significantly changed during the last century, mechanically driven instruments dominates surgical interventions. More sophisticated techniques, which are based on laser systems, does not yet play any role in the clinical practice although the advantages are rather obvious. The lecture should summarize, on the one hand, the advantages of the laser application and on the other side the problems to be solved. Many physicists in different medical fields are working on modeling and simulation. Based on examples, including the vascularization and tissue growth, the typical approaches in computational physics are presented to demonstrate the possible conclusions. | |||||
Inhalt | This lecture series will cover the following topics: 1. Introduction to physics in medical research (1 lecture) 2. Proton therapy – Rationale, proton interactions with tissues, production and delivery, dosimetry, and clinical applications and challenges (2 lectures) 3. Microtomography – Interactions of x-rays with matter, reconstruction algorithms, data evaluation, structure visualization, applications of Microtomography (2 lectures) 4. Biocompatibility research – Metallic and ceramic implants for bones, surface morphology and coatings, degradation kinetics (2 lectures) 5. Artificial tissue design – Developments of artificial muscles, modeling vascularization and tissue growth (2 lectures) 6. Smart instruments – laser based surgical procedures and methods (1 lecture) 7. Image guided and minimally invasive interventions – Image guided surgery, virtual surgery simulations, endoscopy based treatments (2 lectures) 8. Alternative cancer treatments – Hyperthermia, RF methods, laser ablations (1 lecture) 9. Visit to PSI – Proton therapy facility, Synchrotron light source (1 lecture) | |||||
227-1038-00L | Neurophysics | W | 6 KP | 2V + 1U | R. Hahnloser | |
Kurzbeschreibung | The focus of this class is the neural code and its relation to behavior. We study the neural encoding and decoding problems and develop and apply algorithms on spike data recorded in behaving zebra finches (songbirds). | |||||
Lernziel | This class is an introduction to systems neuroscience research for students with a background in quantitative sciences such as physics, mathematics, and engineering sciences. Students who take this course learn about neurophysiology and state-of-art algorithms for analysis of high-resolution brain activity. Programming will be performed in Matlab (Mathworks Inc.). We investigate how stimulus information is encoded in the spike trains of nerve cells by creating models that predict neural responses to sensory stimuli (encoding problem, sensory systems), as well as models that infer stimulus properties or behavioral features from neural data (decoding problem, motor systems). | |||||
Inhalt | The detailed class content varies from year-to-year. Typically we we work with one large data set acquired in a recent series of experiments. We apply diverse algorithms to advance our understanding of these experiments. The detailed course content will be made available on http://www.ini.uzh.ch/~rich/course/neurophysics2013/index.htm. Content covered: -Introduction to sensory (auditory) and motor coding in single neurons - probability and estimation theory - generative and advanced statistical models of brain function (principal component analysis, Hidden Markov Models) - correlation and spectral analysis - forward and inverse models (control theory) - Hebbian learning and reinforcement learning | |||||
Skript | Original research articles will be distributed, and some lecture notes will be made available. | |||||
Literatur | - Theoretical Neuroscience by Peter Dayan and Larry Abbott. - Biophysics of Computation by Chritoph Koch. - Spikes: Exploring the neural code by Fred Rieke and David Warland et al. - Spiking Neuron Models by Wulfram Gerstner and Werner Kistler. - Original research articles, to be selected. | |||||
Voraussetzungen / Besonderes | Knowledge of standard methods in analysis, algebra and probability theory are highly desirable but not necessary. Students should have programming experience. Former course title: "Theoretical Neuroscience" | |||||
465-0952-00L | Medizinische Optik | W | 3 KP | 2V | M. Frenz, M. Mrochen | |
Kurzbeschreibung | Erzeugung, Ausbreitung und Detektion von Licht, sowie dessen Anwendung in medizinischer Therapie und Diagnostik. | |||||
Lernziel | Vermitteln von Kenntnissen über Strahlquellen und optischer Strahlführung, medizinische Bildgebung, optische Messtechnik und deren spezifischen Anwendung in der Biomedizinischen Technik. Unterschiedliche optische Systeme werden Anhand praktischer Anwendungen in Diagnostik und Therapie diskutiert und die Vor- und Nachteile unterschiedlicher Anwendungsverfahren besprochen. | |||||
Inhalt | Der Lehre der Optik war schon immer stark mit dem Beobachten und Erklären von physiologischen Phänomenen verbunden. So wurden grundlegende Erkenntnisse in der Optik dadurch gewonnen, dass man versuchte die Funktionsweise des menschlichen Auges zu verstehen und zu erklären. Heute ist die medizinische Optik ein eigenständiger Forschungsbereich der Optik, das sich nicht mehr nur auf die Beobachtung von physiologischen Vorgängen beschränkt, sondern vor allem diagnostische Konzepte und therapeutische Lösungsansätze beinhaltet. Grundvoraussetzung für optische Anwendungen am Menschen sind die physikalischen Eigenschaften des Lichts und dessen Wechselwirkung mit biologischen Gewebe zu kennen. Im Rahmen der Vorlesung werden physikalische Grundlagen des Lichts, seine Erzeugung und dessen Ausbreitung in optischen Systemen sowie in Gewebestrukturen vermittelt. Die Wechselwirkung des Lichts mit biologischen Materialien bildet die Basis für die Auslegung von optischen Systemen bei unterschiedlichen Anwendungen. Von der Haut, über das Ohr bis zum Auge werden sowohl bildgebende Verfahren (z.B. optische Kohärenztomographie, optoakustische Bildgebung), also auch therapeutische Massnahmen (z.B. Laserkorrekturen am Auge, photodynamische Therapie) vorgestellt. | |||||
Skript | wird im Internet bereitgestellt | |||||
Literatur | - M. Born, E. Wolf, "Principles of Optics", Pergamon Press - B.E.A. Saleh, M.C. Teich, "Fundamentals of Photonics", John Wiley and Sons, Inc. - O. Svelto, "Principles of Lasers", Plenum Press - J. Eichler, T. Seiler, "Lasertechnik in der Medizin", Springer Verlag - M.H. Niemz, "Laser-Tissue Interaction", Springer Verlag - A.J. Welch, M.J.C. van Gemert, "Optical-thermal response of laser-irradiated tissue", Plenum Press | |||||
Voraussetzungen / Besonderes | Lehrsprache Deutsch oder Englisch nach Absprache | |||||
227-1046-00L | Computer Simulations of Sensory Systems | W | 3 KP | 2V + 1U | T. Haslwanter | |
Kurzbeschreibung | Die Lehrveranstaltung behandelt Computersimulationen vom menschlichen Gehör, Auge, und Gleichgewichtssystem. In der Vorlesung werden die biologisch/mechanischen Grundlagen dieser sensorischen Systeme behandelt. In den Übungen werden diese Simulationen mit Python (oder Matlab) so umgesetzt, dass der Output der Programme für die Kontrolle echter neuro-sensorischer Prothesen verwendet werden könnte. | |||||
Lernziel | Unsere sensorischen Systeme liefern uns die nötigen Informationen darüber, was „um uns herum“ gerade geschieht. Dazu werden einlaufende mechanische, elektromagnetische, und chemische Signale in die Sprache unseres zentralen Nervensystems, in „Aktionspotentiale“, umgewandelt. Das Ziel dieser Vorlesung ist die Beschreibung dieser Transformationen, und wie sie mit programmiertechnischen Methoden reproduziert werden können. So führt unser Gehör zum Beispiel eine „Fourier Transformation“ der einlaufenden Schallwellen durch; das visuelle System ist spezialisiert auf das Auffinden von Kanten in den Bildern, welche von unserer Umgebung auf die Retina projiziert werden; und bei unserem Gleichgewichtssystem kann unter Verwendung von „Steuerungssystemen“ die Umwandlung von linearen und rotatorischen Beschleunigungen in Nervenimpulse elegant beschrieben werden. In den begleitenden Übungen sollen die Funktionsweise von Augen, Ohren, und vom Gleichgewichtssystem so reproduziert werden, dass der Output der Programme als Input für neuro-sensorische Prothesen verwendet werden kann. Solche Prothesen sind im Bereich des auditorischen Systems bereits Routine; beim visuellen System und beim Gleichgewichtssystem sind sie noch in Entwicklung. Für die Übungen ist ist eine wenigstens rudimentäre Programmiererfahrung-Erfahrung Voraussetzung. | |||||
Inhalt | Die folgenden Themen werden in der Vorlesung behandelt: • Einführung in die Funktionsweise von Nervenzellen. • Einführung in Python. •Vereinfachte Simulation von Nervenzellen (Hodgkins-Huxley Modell). • Beschreibung des menschlichen Gehörs, sowie eine Einführung in die Anwendung von Fourier-Transformationen auf aufgezeichnete Sprachbeispiele. • Beschreibung des visuellen Systems, wobei sowohl die Funktionsweise der Retina erklärt wird, als auch die Informationsverarbeitung im visuellen Cortex. Die entsprechenden Übungen werden eine Einführung in die Anwendung von digitaler Bildverarbeitung liefern. • Beschreibung der Funktionsweise unseres Gleichgewichtssystems, und der „Steuerungstheorie“, mit der dieses System elegant beschrieben werden kann. (Dies umfasst die Anwendung von Laplace Transformationen und Steuerungstheorie.) | |||||
Skript | Für jedes Modul werden Unterlagen auf der E-learning Plattform"moodle" zur Verfügung gestellt. Zusaetzlich sind die Hauptinhalte der Lehrveranstaltung als Wikibook zugaenglich, unter http://en.wikibooks.org/wiki/Sensory_Systems | |||||
Literatur | Frei zugänglich ist das Wikibook http://en.wikibooks.org/wiki/Sensory_Systems Folgende Bücher sind sehr empfehlenswert: • L. R. Squire, D. Berg, F. E. Bloom, Lac S. du, A. Ghosh, and N. C. Spitzer. Fundamental Neuroscience, Academic Press - Elsevier, 2008 [ISBN: 978-0-12-374019-9]. Dieses Buch bietet einen ausgezeichneten Gesamtüberblick, von der Funktionsweise von Ionenkanälen bis hin zur neurowissenschaftlichen Beschreibung von Bewusstsein. Zwar wird die Informatik-Seite nicht behandelt; aber das Buch bietet einen sehr guten Überblick über die Funktionsweise unserer sensorischen Systeme. • Principles of Neural Science (5th Ed, 2012), by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, A.J. Hudspeth ISBN 0071390111 / 9780071390118 DAS Standard Textbuch fuer Neurowissenschaften. • P Wallisch, M Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey, and N. G. Hatsopoulos. MATLAB for Neuroscientists, Academic Press, 2009. Kompakt geschrieben; eine kurze Einführung, und ein sehr guter Gesamtüberblick über MATLAB, mit Schwerpunkt auf Anwendungen im Bereich der Neurowissenschaften. • G. Mather. Foundations of Perception, Psychology Press, 2006 [ISBN: 0-86377-834-8 (hardcover), oder 0-86377-835-6 (paperback)] Eine gute, allgemeine Einführung in die physiologischen und theoretischen Grundlagen sensorischer Wahrnehmungen. | |||||
Voraussetzungen / Besonderes | Da ich zur Veranstaltung dieser Vorlesung/Übungen jeweils aus Linz (Österreich) anreisen muss, plane ich die Veranstaltung im Rahmen der vorhandenen Möglichkeiten geblockt (ca. jede 2. Woche) durchzuführen. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0946-00L | Molecular Imaging - Basic Principles and Biomedical Applications | W | 2 KP | 2V | M. Rudin | |
Kurzbeschreibung | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
Lernziel | Molecular Imaging is a rapidly emerging discipline that translates concepts developed in molecular biology and cellular imaging to in vivo imaging in animals and ultimatly in humans. Molecular imaging techniques allow the study of molecular events in the full biological context of an intact organism and will therefore become an indispensable tool for biomedical research. | |||||
Inhalt | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
227-0948-00L | Magnetic Resonance Imaging in Medicine | W | 4 KP | 3G | S. Kozerke | |
Kurzbeschreibung | Introduction to magnetic resonance imaging and spectroscopy, encoding and contrast mechanisms and their application in medicine. | |||||
Lernziel | Understand the basic principles of signal generation, image encoding and decoding, contrast manipulation and the application thereof to assess anatomical and functional information in-vivo. | |||||
Inhalt | Introduction to magnetic resonance imaging including basic phenomena of nuclear magnetic resonance; 2- and 3-dimensional imaging procedures; fast and parallel imaging techniques; image reconstruction; pulse sequences and image contrast manipulation; equipment; advanced techniques for identifying activated brain areas; perfusion and flow; diffusion tensor imaging and fiber tracking; contrast agents; localized magnetic resonance spectroscopy and spectroscopic imaging; diagnostic applications and applications in research. | |||||
Skript | D. Meier, P. Boesiger, S. Kozerke Magnetic Resonance Imaging and Spectroscopy (2012) | |||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Bioimaging besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0967-00L | Computational Neuroimaging Clinic ![]() | W | 3 KP | 2V | K. Stephan | |
Kurzbeschreibung | This seminar teaches problem solving skills for computational modeling of neuroimaging data (fMRI, EEG). It deals with a wide variety of real-life problems (from the neuroimaging community at Zurich.) Examples may include mass-univariate/multivariate analyses of fMRI data, dynamic causal modeling, or computational analyses of neuroimaging data based on Bayesian models of cognition. | |||||
Lernziel | 1. Consolidation of theoretical knowledge (obtained in the course Methods & models for fMRI data analysis) in a practical, setting with real-world problems from ongoing research. 2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data. | |||||
Inhalt | This seminar teaches problem solving skills for computational modeling of neuroimaging data (fMRI, EEG). It deals with a wide variety of real-life problems (from the neuroimaging community at Zurich.) Examples may include mass-univariate/multivariate analyses of fMRI data, dynamic causal modeling, or computational analyses of neuroimaging data based on Bayesian models of cognition. | |||||
Voraussetzungen / Besonderes | 1. Basic knowledge of neuroimaging procedures (e.g., fMRI, EEG), knowledge of statistics and neuroimaging data analysis procedures. 2. Successful attendance and completion of the course 'Methods and models for fMRI data analysis'. |
Seite 1 von 4
Alle