Search result: Catalogue data in Spring Semester 2022

Electrical Engineering and Information Technology Bachelor Information
2nd Semester
First Year Examinations
First Year Examination Block A
Courses are offered in Autumn Semester.
First Year Examination Block B
NumberTitleTypeECTSHoursLecturers
401-0232-10LAnalysis 2 Information Restricted registration - show details O8 credits4V + 2UT. Rivière
AbstractIntroduction to differential calculus and integration in several variables.
ObjectiveEinführung in die Grundlagen der Analysis
ContentDifferentiation in several variables, maxima and minima,
the implicit function theorem, integration in several variables,
integration over submanifolds, the theorems of Gauss and Stokes.
Lecture notesChristian Blatter: Ingenieur-Analysis (Kapitel 4-6).
Konrad Koenigsberger, Analysis II.
252-0848-00LComputer Science I Information O4 credits2V + 2UM. Schwerhoff, R. Sasse
AbstractThe course covers the fundamental concepts of computer programming with a focus on systematic algorithmic problem solving. Taught language is C++. No programming experience is required.
ObjectivePrimary educational objective is to learn programming with C++. When successfully attended the course, students have a good command of the mechanisms to construct a program. They know the fundamental control and data structures and understand how an algorithmic problem is mapped to a computer program. They have an idea of what happens "behind the scenes" when a program is translated and executed.
Secondary goals are an algorithmic computational thinking, understanding the possibilities and limits of programming and to impart the way of thinking of a computer scientist.
ContentThe course covers fundamental data types, expressions and statements, (Limits of) computer arithmetic, control statements, functions, arrays, structural types and pointers. The part on object orientation deals with classes, inheritance and polymorphy, simple dynamic data types are introduced as examples.
In general, the concepts provided in the course are motivated and illustrated with algorithms and applications.
Lecture notesA script written in English will be provided during the semester. The script and slides will be made available for download on the course web page.
LiteratureBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata, C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.
401-0302-10LComplex Analysis Restricted registration - show details O4 credits3V + 1UA. Iozzi
AbstractBasics of complex analysis in theory and applications, in particular the global properties of analytic functions. Introduction to the integral transforms and description of some applications
ObjectiveErwerb von einigen grundlegenden Werkzeuge der komplexen Analysis.
ContentExamples of analytic functions, Cauchy‘s theorem, Taylor and Laurent series, singularities of analytic functions, residues. Fourier series and Fourier integral, Laplace transform.
LiteratureJ. Brown, R. Churchill: "Complex Analysis and Applications", McGraw-Hill 1995

T. Needham. Visual complex analysis. Clarendon Press, Oxford. 2004.

M. Ablowitz, A. Fokas: "Complex variables: introduction and applications", Cambridge Text in Applied Mathematics, Cambridge University Press 1997

E. Kreyszig: "Advanced Engineering Analysis", Wiley 1999

J. Marsden, M. Hoffman: "Basic complex analysis", W. H. Freeman 1999

P. P. G. Dyke: "An Introduction to Laplace Transforms and Fourier Series", Springer 2004

A. Oppenheim, A. Willsky: "Signals & Systems", Prentice Hall 1997

M. Spiegel: "Laplace Transforms", Schaum's Outlines, Mc Graw Hill
Prerequisites / NoticePrerequisites: Analysis I and II
227-0002-00LNetworks and Circuits II Information O8 credits4V + 2UJ. Biela
AbstractIntroduction to AC circuits analysis, Fourier analysis, frequency and time domain, step response of electric circuits, Fourier and Laplace transform, frequency response of electric networks, two-port systems, differential amplifier, operational amplifier, basic and advanced operational amplifier circuits
ObjectiveThe lecture is aiming to make students familiar with basis methods of AC circuits analysis, the Fourier analysis of non-sinusoidal periodic signals, i.e. the relations of frequency and time domain, the calculation of the step response and transfer function of linear networks using Fourier- and Laplace transform and the analysis and design operational amplifier circuits.
ContentIntroduction to AC circuits analysis, Fourier analysis, frequency and time domain, step response of electric circuits, Fourier and Laplace transform, frequency response of electric networks, two-port systems, differential amplifier, operational amplifier, basic and advanced operational amplifier circuits
Lecture notesLecture notes are available in Moodle. In addition, the listed literature could be used.
LiteratureElektrotechnik; Manfred Albach; 2. Auflage; 688 Seiten; Pearson Studium 2020; ISBN: 9783868943986

Grundlagen der Elektrotechnik – Netzwerke; 2. Auflage; 384 Sei- ten; Schmidt / Schaller / Martius; Pearson Studium 2014; ISBN: 978-3-8689-4239-2

Microelectronic Circuits; 7. Auflage; 1472 Seiten; Sedra / Smith; Oxford University Press 2015; ISBN: 9780199339143
402-0052-00LPhysics IO4 credits2V + 2UK. Ensslin
AbstractPhysics I is an introduction to continuum mechanics, wave phenomena, and fundamental concepts of thermodynamics.
ObjectiveAfter completing this course, students should be able to construct and apply simple models of dynamics in non-rigid materials. Students should also be able to identify and relate basic thermodynamic quantities in equilibrium systems given realistic constraints.
ContentThe lecture will discuss the following concepts:

Waves
- One dimensional wave equation
- Plane waves, spherical waves in 2 and 3 dimensions
- Elastic waves, sound velocity
- Stationary waves, resonances
- Propagation: interference and diffraction
- Doppler effect

Thermodynamics
- Kinetic theory of gases, perfect gases
- Conservation of energy, first principle
- Second principle, thermal cycles
- Entropy, thermodynamical and statistical interpretation
- Thermal radiation and heat transfer.
Lecture notesThe lecture notes will be distributed via the Moodle platform.
LiteratureP. A. Tipler and G. Mosca, "Physics for Scientists and Engineers" (6th edition) Chapters 14-20.
Prerequisites / NoticeTechnical Mechanics, Analysis
First Year Compulsory Laboratory Courses
NumberTitleTypeECTSHoursLecturers
227-0004-10LNetworks and Circuits Laboratory Information Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.
O1 credit1PJ. W. Kolar
AbstractConcepts from the lectures "Networks and Circuits I and II" explored through experiments, with inductive energy transmission systems (equivalent circuit parameters, transmission characteristics, resonance compensation, high-voltage generation) and photovoltaics (solar module characteristics, power flow adjustment with DC-DC converters, electro-mechanical energy conversion) used as examples.
ObjectiveThe core topics of the course "Networks and Circuits I and II" are reviewed in practice, through experiments, in a modern laboratory environment. Furthermore, through the illustrative experiments in the fields of inductive power transfer and photovoltaics, a methodical experimental approach, the use of modern measurement equipment, and proper documentation skills are all learned.
ContentThe "Networks and Circuits Laboratory" covers core topics presented in the lectures and exercises of the courses "Networks and Circuits I and II" through experiments. These topics are demonstrated in practice within the context of selected real-world industrial applications:

- Inductive power transfer (topics: parameters of equivalent circuits, transmission characteristics, resonance compensation, and high-voltage generation); and
- Photovoltaics (topics: characteristics and power performance of a solar module, power flow and/or operating point adjustment with power electronic converters, electro-mechanical energy conversion).

In each experiment, after measuring and observing components and subsystems of the above, the structuring and overall function of the system is discussed, in order to promote higher-level abstract reasoning and synthesis skills in addition to analysis skills. Further important goals of this Laboratory Course are familiarisation with modern measuring equipment, and highlighting the importance of planning, executing, and documenting experiments and measurements in a thorough and methodical fashion.
Lecture notesInstruction manual
LiteratureLecture documents Networks and Circuits I and II
4th Semester: Examination Blocks
Examination Block 2
NumberTitleTypeECTSHoursLecturers
227-0013-00LComputer Engineering Restricted registration - show details O4 credits2V + 1U + 1PK. Razavi
AbstractThe course provides knowledge on the inner working of computer systems by introducing basic concepts in the design of microprocessors and operating systems
ObjectiveBy the end of the course, the students should be able to analyze and think critically about the design and implementation of computer systems at the hardware and software boundary.
ContentOn the hardware side, the course will show how microprocessors implement control and data paths before introducing microarchitectural optimizations such as pipelining, speculation and caching. On the software side, the course will show how to program a microprocessor before introducing fundamental concepts in the design of operating systems such as on physical and virtual memory management, process management and scheduling.

The lectures are complemented by theoretical exercises and six practical assignments that cover the core concepts of the course and allow students to gain a deeper understanding of the topics.
Literature1) D.A. Patterson, J.L. Hennessy: Computer Organization and Design RISC-V Edition: The Hardware Software Interface (2nd Edition), ISBN-13:
978-0128203316

2) R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau: Operating Systems: Three Easy Pieces, https://pages.cs.wisc.edu/~remzi/OSTEP
Prerequisites / NoticeProgramming skills in systems languages such as C or C++, knowledge of digital design.
227-0046-10LSignals and Systems IIO4 credits2V + 2UJ. Lygeros
AbstractContinuous and discrete time linear system theory, state space methods, frequency domain methods, controllability, observability, stability.
ObjectiveIntroduction to basic concepts of system theory.
ContentModeling and classification of dynamical systems.

Modeling of linear, time invariant systems by state equations. Solution of state equations by time domain and Laplace methods. Stability, controllability and observability analysis. Frequency domain description, Bode and Nyquist plots. Sampled data and discrete time systems.

Advanced topics: Nonlinear systems, chaos, discrete event systems, hybrid systems.
Lecture notesCopy of transparencies
LiteratureRecommended:
K.J. Astrom and R. Murray, "Feedback Systems: An Introduction for Scientists and Engineers", Princeton University Press 2009

http://www.cds.caltech.edu/~murray/amwiki/
Examination Block 3
NumberTitleTypeECTSHoursLecturers
401-0654-00LNumerical Methods Information Restricted registration - show details O4 credits2V + 1UR. Käppeli
AbstractThe course introduces numerical methods according to the type of problem they tackle. The tutorials will include both theoretical exercises and practical tasks.
ObjectiveThis course intends to introduce students to fundamental numerical methods that form the foundation of numerical simulation in engineering. Students are to understand the principles of numerical methods, and will be taught how to assess, implement, and apply them. The focus of this class is on the numerical solution of ordinary differential equations. During the course they will become familiar with basic techniques and concepts of numerical analysis. They should be enabled to select and adapt suitable numerical methods for a particular problem.
ContentQuadrature, Newton method, initial value problems for ordinary differential equations: explicit one step methods, step length control, stability analysis and implicit methods, structure preserving methods
LiteratureM. Hanke Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, BG Teubner, Stuttgart, 2002.

W. Dahmen, A. Reusken: Numerik für Ingenieure und Naturwissenschaftler, Springer, 2008.

Extensive study of the literature is not necessary for the understanding of the lectures.
Prerequisites / NoticePrerequisite is familiarity with basic calculus and linear algebra.
227-0052-10LElectromagnetic Fields and Waves Information O4 credits2V + 2UL. Novotny
AbstractThis course is focused on the generation and propagation of electromagnetic fields. Based on Maxwell's equations we will derive the wave equation and its solutions. Specifically, we will discuss fields and waves in free space, refraction and reflection at plane interfaces, dipole radiation and angular spectrum representation.
ObjectiveUnderstanding of electromagnetic fields
227-0056-00LSemiconductor Devices Information O4 credits2V + 2UC. Bolognesi
AbstractThe course covers the basic principles of semiconductor devices in micro-, opto-, and power electronics. It imparts knowledge both of the basic physics and on the operation principles of pn-junctions, diodes, contacts, bipolar transistors, MOS devices, solar cells, photodetectors, LEDs and laser diodes.
ObjectiveUnderstanding of the basic principles of semiconductor devices in micro-, opto-, and power electronics.
ContentBrief survey of the history of microelectronics. Basic physics: Crystal structure of solids, properties of silicon and other semiconductors, principles of quantum mechanics, band model, conductivity, dispersion relation, equilibrium statistics, transport equations, generation-recombination (G-R), Quasi-Fermi levels. Physical and electrical properties of the pn-junction. pn-diode: Characteristics, small-signal behaviour, G-R currents, ideality factor, junction breakdown. Contacts: Schottky contact, rectifying barrier, Ohmic contact, Heterojunctions. Bipolar transistor: Operation principles, modes of operation, characteristics, models, simulation. MOS devices: Band diagram, MOSFET operation, CV- and IV characteristics, frequency limitations and non-ideal behaviour. Optoelectronic devices: Optical absorption, solar cells, photodetector, LED, laser diode.
Lecture notesLecture slides.
LiteratureThe lecture course follows the book Neamen, Semiconductor Physics and Devices, ISBN 978-007-108902-9, Fr. 89.00
Prerequisites / NoticeQualifications: Physics I+II
401-0604-00LProbability Theory and Statistics Information Restricted registration - show details O4 credits2V + 1UB. Acciaio
AbstractProbability models and applications, introduction to statistical estimation and statistical tests.
ObjectiveAbility to understand the covered methods and models from probability theory and to apply them in other contexts. Ability to perform basic statistical tests and to interpret the results.
ContentThe concept of probability space and some classical models: the axioms of Kolmogorov, easy consequences, discrete models, densities, product spaces, relations between various models, distribution functions, transformations of probability distributions. Conditional probabilities, definition and examples, calculation of absolute probabilities from conditional probabilities, Bayes' formula, conditional distribution. Expectation of a random variable,application to coding, variance, covariance and correlation, linear estimator, law of large numbers, central limit theorem. Introduction to statistics: estimation of parameters and tests
Lecture notesyes
LiteratureTextbuch: P. Brémaud: 'An Introduction to Probabilistic Modeling', Springer, 1988.
6th Semester: Third Year Core Courses
Can be freely combined, a list of recommendations is available under www.ee.ethz.ch/bachelor-kernfaecher
NumberTitleTypeECTSHoursLecturers
227-0104-00LCommunication and Detection Theory Information W6 credits4GA. Lapidoth
AbstractThis course teaches the foundations of modern digital communications and detection theory. Topics include the geometry of the space of energy-limited signals; the baseband representation of passband signals, spectral efficiency and the Nyquist Criterion; the power and power spectral density of PAM and QAM; hypothesis testing; Gaussian stochastic processes; and detection in white Gaussian noise.
ObjectiveThis is an introductory class to the field of wired and wireless communication. It offers a glimpse at classical analog modulation (AM, FM), but mainly focuses on aspects of modern digital communication, including modulation schemes, spectral efficiency, power budget analysis, block and convolu- tional codes, receiver design, and multi- accessing schemes such as TDMA, FDMA and Spread Spectrum.
Content- Baseband representation of passband signals.
- Bandwidth and inner products in baseband and passband.
- The geometry of the space of energy-limited signals.
- The Sampling Theorem as an orthonormal expansion.
- Sampling passband signals.
- Pulse Amplitude Modulation (PAM): energy, power, and power spectral density.
- Nyquist Pulses.
- Quadrature Amplitude Modulation (QAM).
- Hypothesis testing.
- The Bhattacharyya Bound.
- The multivariate Gaussian distribution
- Gaussian stochastic processes.
- Detection in white Gaussian noise.
Lecture notesn/a
LiteratureA. Lapidoth, A Foundation in Digital Communication, Cambridge University Press, 2nd edition (2017)
227-0111-00LCommunication ElectronicsW6 credits2V + 2UT. Burger
AbstractElectronics for communications systems, with emphasis on realization. Low noise amplifiers, modulators and demodulators, transmit amplifiers and oscillators are discussed in the context of wireless communications. Wireless receiver, transmitter and frequency synthesizer will be described. Importance of and trade offs among sensitivity, linearity and selectivity are discussed extensively.
ObjectiveFoundation course for understanding modern electronic circuits for communication applications. We learn how theoretical communications principles are reduced to practice using transistors, switches, inductors, capacitors and resistors. The harsh environment such communication electronics will be exposed to and the resulting requirements on the sensitivity, linearity and selectivity help explain the design trade offs encountered in every circuit block found in a modern transceiver.
ContentAccounting for more than two trillion dollars per year, communications is one of the most important drivers for advanced economies of our time. Wired networks have been a key enabler to the internet age and the proliferation of search engines, social networks and electronic commerce, whereas wireless communications, cellular networks in particular, have liberated people and increased productivity in developed and developing nations alike. Integrated circuits that make such communications devices light weight and affordable have played a key role in the proliferation of communications.
This course introduces our students to the key components that realize the tangible products in electronic form. We begin with an introduction to wireless communications, and describe the harsh environment in which a transceiver has to work reliably. In this context we highlight the importance of sensitivity or low noise, linearity, selectivity, power consumption and cost, that are all vital to a competitive device in such applications.
We shall review bipolar and MOS devices from a designer's prospectives, before discussing basic amplifier structures - common emitter/source, common base/gate configurations, their noise performance and linearity, impedance matching, and many other things one needs to know about a low noise amplifier.
We will discuss modulation, and the mixer that enables its implementation. Noise and linearity form an inseparable part of the discussion of its design, but we also introduce the concept of quadrature demodulator, image rejection, and the effects of mismatch on performance.
When mixers are used as a modulator the signals they receive are usually large and the natural linearity of transistors becomes insufficient. The concept of feedback will be introduced and its function as an improver of linearity studied in detail.
Amplifiers in the transmit path are necessary to boost the power level before the signal leaves an integrated circuit to drive an even more powerful amplifier (PA) off chip. Linearized pre-amplifiers will be studied as part of the transmitter.
A crucial part of a mobile transceiver terminal is the generation of local oscillator signals at the desired frequencies that are required for modulation and demodulation. Oscillators will be studied, starting from stability criteria of an electronic system, then leading to criteria for controlled instability or oscillation. Oscillator design will be discussed in detail, including that of crystal controlled oscillators which provide accurate time base.
An introduction to phase-locked loops will be made, illustrating how it links a variable frequency oscillator to a very stable fixed frequency crystal oscillator, and how phase detector, charge pump and programmable dividers all serve to realize an agile frequency synthesizer that is very stable in each frequency synthesized.
Lecture notesScript is available online under https://iis-students.ee.ethz.ch/lectures/communication-electronics/
Prerequisites / NoticeThe course Analog Integrated Circuits is recommended as preparation for this course.
227-0112-00LHigh-Speed Signal Propagation Information W6 credits2V + 2UC. Bolognesi
AbstractUnderstanding of high-speed signal propagation in microwave cables and integrated circuits and printed circuit boards.

As clock frequencies rise in the GHz domain, there is a need grasp signal propagation to maintain good signal integrity in the face of symbol interference and cross-talk.

The course is of high value to all interested in high-speed analog (RF, microwave) or digital systems.
ObjectiveUnderstanding of high-speed signal propagation in interconnects, microwave cables and integrated transmission lines such as microwave integrated circuits and/or printed circuit boards.

As system clock frequencies continuously rise in the GHz domain, a need urgently develops to understand high-speed signal propagation in order to maintain good signal integrity in the face of phenomena such as inter-symbol interference (ISI) and cross-talk.

Concepts such as Scattering parameters (or S-parameters) are key to the characterization of networks over wide bandwidths. At high frequencies, all structures effectively become "transmission lines." Unless care is taken, it is highly probable that one ends-up with a bad transmission line that causes the designed system to malfunction.

Filters will also be considered because it turns out that some of the problems associated by lossy transmission channels (lines, cables, etc) can be corrected by adequate filtering in a process called "equalization."
ContentTransmission line equations of the lossless and lossy TEM-transmission line. Introduction of current and voltage waves. Representation of reflections in the time and frequency domain. Application of the Smith chart. Behavior of low-loss transmission lines. Attenuation and impulse distortion due to skin effect. Transmission line equivalent circuits. Group delay and signal dispersion. Coupled transmission lines. Scattering parameters.
Butterworth-, Chebychev- and Bessel filter approximations: filter synthesis from low-pass filter prototypes.
Lecture notesScript: Leitungen und Filter (In German).
Prerequisites / NoticeExercises will be held in English.
227-0117-10LExperimental Techniques Restricted registration - show details
Number of participants limited to 60.
W6 credits4GC. Franck, P. Simka
AbstractThis lecture is an introduction to experimental and measurement techniques. The course is designed with practical relevance in mind and comprises several laboratory modules where the students perform, evaluate and document experiments. The taught topics are of relevance for all electrical engineering disciplines, in this course they are taught with examples of high-voltage engineering.
ObjectiveAt the end of this lecture, the students will be able to:
- perform basic practical laboratory experiments and record data, in particular with an oscilloscope.
- take a meaningful Lab Notebook, write a clear measurement evaluation protocol, and can estimate the accuracy and precision of the evaluated data.
- can explain the main reasons for electromagnetic interference and propose measures to avoid or reduce these interferences.
- Explain and use different methods to generate and measure high voltages and calculate basic relevant relations.
Content- Messtechnik, Messunsicherheit, Messprotokolle
- Erzeugung und Messung hoher Spannungen
- Elektromagnetische Verträglichkeit
- Laborpraktika
Lecture notesVorlesungsunterlagen
LiteratureJ. Hoffmann, Taschenbuch der Messtechnik, Carl Hanser Verlag, 7. Auflage, 2015 (ISBN: 978-3446442719)
A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3662546994)
A. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag, 6. Auflage, 2010 (ISBN: 978-3642166099)
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
227-0120-00LCommunication Networks Information W6 credits4GL. Vanbever
AbstractAt the end of this course, you will understand the fundamental concepts behind communication networks and the Internet. Specifically, you will be able to:

- understand how the Internet works;
- build and operate Internet-like infrastructures;
- identify the right set of metrics to evaluate the performance of a network and propose ways to improve it.
ObjectiveAt the end of the course, the students will understand the fundamental concepts of communication networks and Internet-based communications. Specifically, students will be able to:

- understand how the Internet works;
- build and operate Internet-like network infrastructures;
- identify the right set of metrics to evaluate the performance or the adequacy of a network and propose ways to improve it (if any).

The course will introduce the relevant mechanisms used in today's networks both from an abstract perspective but also from a practical one by presenting many real-world examples and through multiple hands-on projects.

For more information about the lecture, please visit: https://comm-net.ethz.ch
Lecture notesLecture notes and material for the course will be available before each course on: https://comm-net.ethz.ch
LiteratureMost of course follows the textbook "Computer Networking: A Top-Down Approach (6th Edition)" by Kurose and Ross.
Prerequisites / NoticeNo prior networking background is needed. The course will include some programming assignments (in Python) for which the material covered in Technische Informatik 1 (227-0013-00L) will be useful.
227-0125-00LOptics and PhotonicsW6 credits2V + 2UJ. Leuthold
AbstractThis lecture covers both - the fundamentals of "Optics" such as e.g. "ray optics", "coherence", the "Planck law", the "reciprocity theorem" or the "Einstein relations" but also the fundamentals of "Photonics" on the generation (the laser), processing, transmission and detection of photons.
ObjectiveA sound base for work in the field of optics and photonics will be conveyed. Key principles of optics will the thaught. The lecture passes on the essentials for work with free-space optics or waveguide optics. In addition important optical devices will be discussed. Among them are e.g. optical filters, copulers (MMI-couplers,...), Holograms,... .
ContentChapter 1: Ray Optics
Chapter 2: Electromagnetic Optics
Chapter 3: Polarization
Chapter 4: Coherence and Interference
Chapter 5: Fourier Optics and Diffraction
Chapter 6: Guided Wave Optics
Chapter 7: Optical Fibers
Chapter 8: The Laser
Lecture notesLecture notes will be handed out.
Prerequisites / NoticeFundamentals of Electromagnetic Fields (Maxwell Equations) & Bachelor Lectures on Physics.
227-0156-00LPower SemiconductorsW6 credits4GU. Grossner
AbstractPower semiconductor devices are the core of today's energy efficient electronics. In this course, an understanding of the functionality of modern power devices is developed. Typical device concepts for power rectifiers and transistors are discussed. In addition to silicon-based devices, wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are considered.
ObjectiveThe goal of this course is to develop an understanding of modern power device concepts. After following the course, the student will be able to choose a power device for an application, know the basic functionality, and is able to describe the performance and reliability related building blocks of the device design. Furthermore, the student will have an understanding of current and future developments in power devices.
Content• Basic semiconductor physics concepts
• Device design/conceptual thinking
• Device simulation (TCAD)
• Device processing
• Diodes
• BJT and JFET
• Thyristor
• MOSFET and power MOSFET
• IGBT and HEMT
• Packaging and Applications
Lecture notesScript will be made available via Moodle, printouts of the slides will be distributed during the lectures.
LiteratureThe course follows a collection of different books; more details are being listed in the script.
Prerequisites / NoticeVorlesungen Halbleiterbauelemente, Leistungselektronik
227-0160-00LFundamentals of Physical Modeling and SimulationsW6 credits2V + 2U + 1PJ. Smajic
AbstractMathematical description of different physical phenomena and numerical methods for solving the obtained equations are discussed. The course presents the fundamentals of mathematical modeling including ordinary and partial differential equations along with boundary and initial conditions. Finite Difference Method and Finite Element Method for solving boundary value problems are shown in detail.
ObjectiveAfter completing this course a student will understand the main idea of representing physical phenomena with mathematical equations, will be able to apply an appropriate numerical method for solving the obtained equations, and will possess the knowledge to qualitatively evaluate the obtained results.
Contenta. Introduction to physical modeling and simulations
b. Numerical methods for solving boundary (initial) value problems
b.i. Finite difference method (FDM)
b.ii. Finite element method (FEM)
c. Boundary (initial) value problems of different physical phenomena
c.i. Static and dynamic electric current distribution in solid conductors
c.ii. Static und dynamic electric charge transport in semiconductors
c.iii. Induced eddy currents in low frequency range (with numerous examples from the area of electrical energy technology)
c.iv. Wave propagation in the RF-, microwave-, and optical frequency range (with numerous examples relevant for communication technology)
c.v. Static and dynamic temperature distribution in solid bodies (with numerous examples relevant for electrical energy technology)
c.vi. Static and dynamic mechanical structural analysis (with numerous examples from the area of MEMS technology)
Lecture notesLecture notes, Matlab programs, exercises and their solutions will be handed out.
LiteratureJ. Smajic, “How To Perform Electromagnetic Finite Element Analysis”, The International Association for the Engineering Modelling, Analysis & Simulation Community (NAFEMS), NAFEMS Ltd., Hamilton, UK, 2016.
Prerequisites / NoticeFundamentals of Electromagnetic Fields, and Bachelor Lectures on Physics.
227-0395-00LNeural SystemsW6 credits2V + 1U + 1AR. Hahnloser, M. F. Yanik, B. Grewe
AbstractThis course introduces principles of information processing in neural systems. It covers basic neuroscience for engineering students, experiment techniques used in animal research and methods for inferring neural mechanisms. Students learn about neural information processing and basic principles of natural intelligence and their impact on artificially intelligent systems.
ObjectiveThis course introduces
- Basic neurophysiology and mathematical descriptions of neurons
- Methods for dissecting animal behavior
- Neural recordings in intact nervous systems and information decoding principles
- Methods for manipulating the state and activity in selective neuron types
- Neuromodulatory systems and their computational roles
- Reward circuits and reinforcement learning
- Imaging methods for reconstructing the synaptic networks among neurons
- Birdsong and language
- Neurobiological principles for machine learning.
ContentFrom active membranes to propagation of action potentials. From synaptic physiology to synaptic learning rules. From receptive fields to neural population decoding. From fluorescence imaging to connectomics. Methods for reading and manipulation neural ensembles. From classical conditioning to reinforcement learning. From the visual system to deep convolutional networks. Brain architectures for learning and memory. From birdsong to computational linguistics.
Prerequisites / NoticeBefore taking this course, students are encouraged to complete "Bioelectronics and Biosensors" (227-0393-10L).

As part of the exercises for this class, students are expected to complete a programming or literature review project to be defined at the beginning of the semester.
Laboratory Courses, Projects, Seminars
A minimum of 15 cp (under the 2018 regulations), respectively at least 18 cp (under the 2016 regulations) must be achieved in the category "Laboratory Courses, Projects, Seminars".
General Laboratory
NumberTitleTypeECTSHoursLecturers
227-0095-10LGeneral Laboratory I Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Enrolment via Online-Tool (EE-Website: Studies > Bachelor > Third Year > Laboratory Courses).
W2 credits2PProfessors
AbstractThe Laboratory courses in the 5th and 6th semesters enable the students to put the the contents of the courses from the four first semesters to the test and to consolidate the aquired knowledge. Furthermore students have the possibilty to gain specific knowledge in certain software packages as MATLAB.
ObjectiveImplementing the knowledge acquired during the basic studies.
Prerequisites / NoticeEnrollment through the Online-Tool, Link
227-0096-10LGeneral Laboratory II Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Enrolment via Online-Tool (EE-Website: Studies > Bachelor > Third Year > Laboratory Courses).
W4 credits4PProfessors
AbstractThe Laboratory courses in the 5th and 6th semesters enable the students to put the the contents of the courses from the four first semesters to the test and to consolidate the aquired knowledge. Furthermore students have the possibilty to gain specific knowledge in certain software packages as MATLAB.
ObjectiveImplementing the knowledge acquired during the basic studies.
Prerequisites / NoticeEnrollment through the Online-Tool, Link
Projects & Seminars
Enrolment is only possible for students in the BSc Electrical Engineering and Information Technology from Friday before the start of the semester.
Places are allocated using the P&S application tool (https://psapp.ee.ethz.ch/).
Please only enrol for P&S for which you apply via the tool.
NumberTitleTypeECTSHoursLecturers
227-0085-01LProjects & Seminars: Amateur Radio Course Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W1.5 credits1PJ. Leuthold
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Objective"Amateur radio" enables wireless communicate over long distances. However, an amateur radio station may not be operated without further ado of an official license. To operate an amateur radio one needs to pass the HB3 or HB9 examination offered by the federal office of communication (OFCOM).

In this course we will cover the most important topics of amateur radio. There willl also be a practical part. In this part you will have the opportunity to take the radio into your own hands. For example, you will be offered the opportunity during a “portable” excursion (not subject to testing) to set up and operate a mobile radio station in the field.

Although the course prepares for the OFCOM exam, the exam itself is not a prerequisite for obtaining the P&S credits. The HB9 exam by the OFCOM will be offered after the course, and it will only be offered to those that actively participate in the course. As part of the exam it will be e.g. necessary to successfully set up a radio connection to another station. Upon a successful exam one may use the AMIV radio shack on the roof of the ETZ or set up and operate the own system.

The learning material will be handed out in the first lesson of the course.
227-0085-02LProjects & Seminars: Game Development with Unity Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveGame Development is a big field and is constantly growing. A powerful tool to create cross-platform games is Unity. Unity is a cross-platform real-time game engine that uses C# as its programming language (very similar to Java). This P&S is a
great chance for gaining practical experience, creating something from scratch and establishing a supporting community. Therefore, if you are eager to improve your coding skills as well as bring them to life by applying them to game development, this is the right P&S for you!
227-0085-03LProjects & Seminars: COMSOL Design Tool – Design of Optical Components Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PJ. Leuthold
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveSimulation tools are becoming an essential accessory for scientists and engineers for the development of new devices and study of physical phenomena. More and more disciplines rely on accurate simulation tools to get insight and also to accurately design novel devices.

COMSOL is a powerful multiphysics simulation tool. It is used for a wide range of fields, including electromagnetics, semiconductors, thermodynamics and mechanics. In this P&S we will focus on the rapidly growing field of integrated photonics.

During hands-on exercises, you will learn how to accurately model and simulate various optical devices, which enables high-speed optical communication. At the end of the course, students will gain practical experience in simulating photonic components by picking a small project in which certain photonic devices will be optimized to achieve required specifications. These simulated devices find applications in Photonic Integrated Circuits (PICs) on chip-scale.

Course website: https://blogs.ethz.ch/ps_comsol
Prerequisites / NoticeNo previous knowledge of simulation tools is required. A basic understanding of electromagnetics is helpful but not mandatory.
The course will be taught in English.
227-0085-04LProjects & Seminars: Microcontrollers for Sensors and Internet of Things Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W4 credits4PM. Magno
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveUltra Low Power Microcontroller (MCU) – Firmware Programming and Sensors Interfacing using an Arm Cortex-M (STM32) Microcontroller

Microprocessors are used to execute big and generic applications, while microcontrollers are low cost and low power embedded chips with program memory and data memory built onto the system which are used to execute simple tasks within one specific application (i.e. sensor devices, wearable systems, and IoT devices). Microcontrollers demand very precise and resource-saving programming, therefore it is necessary to know the processor core, and particular importance has the investigation of the microcontroller's hardware components (ADC, clocks, serial communication, timers, interrupts, etc.).

The STM32 from STMicroelectronics has gained in popularity in recent years due to its low power and ease of use. The goal of this course is the development of understanding the internal processes in the microcontroller chip from TI. This will enable you to conduct high-level-firmware-programming of microcontrollers, to learn about the STM32 MCU features, benefits, and programming and how they can be connected with sensors, acquire the data, processing them and send the information to other devices. The course will also include an introductive lecture on machine learning and artificial intelligence on the embedded system and in particular microcontrollers. The C language will be used to program the microcontroller.

The course will be taught in English.
227-0085-05LProjects & Seminars: FPGA in Quantum Computing with Superconducting Qubits Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PM. Magno, A. Akin
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveFPGAs are used in wide range of applications including video processing, machine learning, cryptography and radar signal processing, thanks to their flexibility and massive parallel processing power. Recently FPGAs have become important in quantum signal processing where high amount of data should be analyzed in a short time to use quantum setups most efficiently. In addition, FPGAs are used for quantum state detection and feedback generation, which have to be performed in the scale of hundreds of nanoseconds. The goal of this course is to understand the FPGA based signal processing for superconducting circuits based quantum experiments. The course participants will learn the implementation techniques of the modules for fast quantum signal acquisition and processing, the electronics supporting quantum experiments, and FPGA programming. You will implement quantum signal processing and quantum state detection modules using Xilinx FPGA, Verilog HDL, and high speed ADC. The course will be taught in English. No prior knowledge in quantum physics or FPGA is required, still a good knowledge in any coding language (for example C or Java) is required.
227-0085-06LProjects & Seminars: Neural Network on Low Power FPGA: A Practical Approach Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveArtifical Intelligence and in particular neural networks are inspired by biological systems, such as the human brain. Through the combination of powerful computing resources and novel architectures for neurons, neural networks have achieved state-of-the-art results in many domains such as computer vision. FPGAs are one of the most powerful platform to implement neural networks as they can handle different algorithms in computing, logic, and memory resources in the same device. Faster performance comparing to competitive implementations as the user can hardcore operations into the hardware. This course will give to the student the basis of Machine Learning to understand how they work and how they can be trained and giving hand-on experiences with the training tools such as Keras. Moreover the course will focus in deploy algorithms in low power FPGA such as the Lattice sensAI platform to have energy efficient running algorithms. The course will provide to the students the tools and know-how to implement neural netwok on an FPGA, and the student will challenge theirself in a 5 weeks piratical project that they will present at the end of the course. Experience in FPGA programming is desirable but not mandatory.

The course will be taught in English.
227-0085-07LProjects & Seminars: Deep Learning for Smartphone Apps (DLSA) Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PL. Van Gool
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDeep Learning with Smartphone Sensors – Programming Android Phones – Neural Networks – Keras/TensorFlow -- Projects on Smartphones.

Latest smartphone generations are equipped with computational capabilities (CPU, GPU, NPU, DSP) matching common PCs from a decade ago. Moreover, smartphones have several sensors that can acquire many useful information beyond audio and visual data, for instance where we are, what we are doing, with whom we are together, what is our body constitution, what are our needs. Based on this information our smartphone offers us the appropriate computational power to process them in loco without sending the sensor data to the cloud. This course focuses on giving the bases of machine (deep) learning and embedded systems. Students will learn the tools to implement machine/deep learning algorithms in their Android phones to be smarter. The course will end with a 4 weeks project where the students can target a specific application scenario.

The course will be taught in English.
227-0085-08LProjects & Seminars: Bluetooth Low Energy Programming for IoT Sensing System Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveBluetooth Low Energy System on Chip – Firmware Programming and sensors Interfacing using an Arm Cortex-M (Nordic nrf52838) Microcontroller

With the introduction of the BLE 5.0 standard, Bluetooth has achieved high data bandwidth with low power consumption. This makes the technology an ideal match for many applications, i.e., IoT sensor application or audio streaming, by addressing two of the greatest bottlenecks of these devices. This course offers the chance for participants to do hands-on programming of microcontrollers. In particular, the focus will be laid on interfacing with sensors, acquisition of data, on-board event-driven data processing with ARM-Cortex-M4 processors and BLE or other wireless transmissions. The programming will be performed in C. Today’s microcontrollers offer a low power, efficient and cost-effective solution of tackling a nearly infinite number of task-specific applications. Ranging from IoT devices, wearable systems, sensor (mesh) devices, all the way to be integrated as submodules for the most complex system such as cars, planes, and rockets. Microcontrollers derive their advantages from the efficient use of resources and as such require very efficient and resource-saving programming. Therefore, it is mandatory to understand hardware components such as processor cores, ADC, clocks, serial communication, wireless communication, timers, interrupts, etc. The P&S includes five weeks project where the student will setup an IoT sensor node to monitor electric power transmission and distribution system.

The course will be taught in English by the ITET center for project based learning.
227-0085-09LProjects & Seminars: Spiking Neural Network on Neuromorphic Processors Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PG. Indiveri
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMachine Learning – Spiking Neural Network – DVS Cameras - Programming Neuromoripch processors – Intel Loihi - Final Project with a presentation.

Compared to the “traditional” artificial neural network, the spiking neural network (SNN) can provided both latency and energy efficiency. Moreover, SNN has demonstrated in previous works a better performance in processing physiological information of small sample size, and only the output layer of the spiking neural network needs to be trained, which results in a fast training rate. This couse focuses on giving the bases of spiking neural networks and neuromorphic processors. Students will learn the tools to implement SNN algorithm in both academic processors and Intel Loihi using data from Event-based Vision camera and biomedical sensors (i.e. ECG and EEG). The course will end with 4 weeks project
where the students can target a specif application scenario.

The course will be taught in English.
227-0085-11LProjects & Seminars: Deep Learning for Image Manipulation (DLIM) Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PL. Van Gool
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDeep Learning – Image Manipulation – Image Enhancement – Image Restoration – Style Transfer – Image to Image Translation – Generative Models – TensorFlow/PyTorch – Projects

With the advent of deep learning tremendous advances were achieved in numerous areas from computer vision, computer graphics, and image processing. Using these techniques, an image can be automatically manipulated in various ways with high-quality results, often fooling the human observer. Deep learning based image processing and manipulation are being applied in a vast number of emerging technologies, including image enhancement in smartphone cameras, automated image editing, image content creation, graphics, and autonomous driving. This course focuses on the fundamentals of deep learning and image manipulation. Students will learn the tools to implement and develop deep learning solutions for a variety of image manipulation tasks. The course will end with a 4 weeks project where the students can target a specific application scenario.

The course will be taught in English.
227-0085-12LProjects & Seminars: Electronic Circuits & Signals Exploration Laboratory Information Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits1PH.‑A. Loeliger
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveAs electronic circuits have transitioned into integrated circuits, they have become increasingly difficult to examine and tinker with. As a result, students become less exposed to basic analog electronic circuits and their fundamental operating principles. At university level, bachelor classes in analog circuits and electronics provide rigorous theoretical insights but are typically focused on linearised operating behaviour.

The goal of this lab course is for the students to enhance their understanding on how basic analog electronic circuits work, or perhaps don't work, and provide enough practical experience for the students to feel at ease using transistors, resistors, capacitances, diodes etc., to create working circuits.

For example, students create circuits that make physical quantities audible. Students are encourage to realise their own circuit ideas.
227-0085-13LProjects & Seminars: Assembling and Controlling a Tuning-Fork AFM Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3.5 credits3.5PT. Zambelli
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveInvented in the 1980s in Zurich and awarded with a Nobel price, the atomic force microscope (AFM) has enabled us to visualize surfaces at the single atom level, and to measure single molecule and cell-cell interactions, deepening our understanding of material science and biology. This is enabled by controlling micromechanical piezo actuators with nanometer precision and processing noisy signals in order to achieve meaningful data.

In order to introduce you to the capabilities of modern AFMs in biomedical sensing, you will build your own setups in groups of two. You will be introduced to an AFM’s functionality, control, and signal read-out using LabView. A tuning fork signal will be used as the feedback for the self-built AFM. In order to better understand the working principle of a tuning fork, you will also build your own frequency sweeper and analyze it with self-built low-pass filters.
After you have implemented your own setup, you will have the chance to characterize different biomedical samples on state-of-the-art setups. This data will then be analyzed using Matlab.
The focus of this P&S seminar is to enable you to transfer your theoretical knowledge into practice and at the same time get to know how electrical engineering can be used in biomedical research.

The course requires active participation during the practical sessions, a 10-15 min presentation and a short written report on the acquired results. The course will be given in English.

Dates:
05.10, 08.10, 12.10, 15.10, , 26.10, 29.10, 9.11, 12.11
227-0085-14LProjects & Seminars: Technical and Economic Aspects of Renewable Energy Supply Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PG. Hug
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMore and more sustainable and renewable energy technologies are used for electricity generation to cope with climate change. These distributed resources transform the electric power grid and impose major challenges.

In this seminar, students have the opportunity to glance at cutting-edge research in the field of power systems. Possible research questions might be:

- How to integrate distributed energy generation like PV plants and wind turbines into the electricity grid?
- What challenges does the increasing share of electric vehicles and batteries impose on the power grid?
- How to cope for the uncertain generation capacity of renewables and how to forecast it?
- How does the electricity market work and how do the new sources of flexibility transform it?

Students will prepare a presentation and a report on their individual research question, which is based on an assigned paper. The main objectives are to practice literature review, scientific writing and presenting. Students will learn to independently understand specific research results – a crucial skill for academic research including semester and master projects.

The language of instruction is English. Registrations for the seminar are binding.
227-0085-15LProjects & Seminars: Python for Engineers - Get Productive in the Classroom, in the Lab and at Home Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PM. Eppenberger, K. Keller
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectivePython is an interpreted high-level programming language which is becoming increasingly popular in the academic scientific community as well as in industry. The course will introduce the basics of the python programming language, and will cover some of the most useful Python modules, such as numpy, scipy and matplotlib. The classes will further cover simple GUIs, data analysis and linking with shared libraries or C code. They will further familiarize with the GIT version control system, with the linux shell and with the most common software licenses. Students are not required to have previous Python programming experience.
227-0085-16LProjects & Seminars: Machine Learning for Brain-Computer Interfaces Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PL. Benini
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveA brain-computer interface (BCI) provides a communication and control channel based on the recognition of subject’s intention from spatiotemporal activity of the brain. A typical method to acquire neural activity signals is electroencephalograhy (EEG), which is often used in BCI. In order to make these data usable and get useful information out of them, signal processing techniques play a crucial role. Moreover, feature extraction and machine learning methods are applied to obtain a highly accurate BCI.
The aim of the Project and Seminars course is to give insights of signal processing and machine learning applied to brain-computer interfaces to undergraduate students, by having hands-on experience in brain signal acquisition, data processing, feature extraction, and machine learning.
227-0085-17LProjects & Seminars: Building a Wireless Infrared Headphone Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2PM. Lerjen
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThis P&S is about the design and operation of an optical infrared audio transmission system. For this purpose, we familiarize ourselves with important laboratory and measurement equipment (oscilloscope, spectrum analyzer) and measurement methods (record frequency response, S/N ratio, nonlinear interference). The influence of modulation to suppress interference will be investigated in experiments.

Each student builds an infrared transmitter and receiver. During assembly, we gain hands-on experience with soldering conventional and SMD components. The finished circuits are tested and tuned and can be taken home afterwards.
227-0085-18LProjects & Seminars: Bits on Air Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2PM. Lerjen
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDigital communication is a part of our everyday lives, whether we are sending e-mails, watching TV, listening to the radio, or using a cell phone. In this P&S, we will familiarize ourselves with the basics of digital communication.

On conventional PCs, the students will implement their own software modems for data transmission. These modems, just like the digital communication systems used in real life, consist of a modulator, a demodulator and an algorithm to synchronize the carrier of the incoming message. Once implemented, these modems can be used to acoustically transmit any data (such as small text files) between PCs.

We use MATLAB but previous knowledge thereof is not assumed. Rather, the goal of the project is to practice programming with MATLAB in addition to learning basics of digital communication.
227-0085-19LProjects & Seminars: Software Defined Radio Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PM. Lerjen
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveWireless transmission of information is ubiquitous today. Depending on application and frequency range, different types of modulation are used, with digital methods having largely replaced the old analog methods. Software Defined Radio (SDR) tools make it possible to dive into this world and "surf the waves" with relatively little effort. More powerful computers allow for increasingly complex signal processing in transmitters and receivers. At the same time, the signal processing algorithms can be adapted and changed very quickly and flexibly.

In this P&S we will take a closer look at how SDR works. In the first part we will work on the basics of frequencies, spectra, modulation types, and signal processing.

In the second part we will work in groups on different projects with SDR tools. Students can also bring their own ideas. At the end, the projects will be presented in the class.
227-0085-21LProjects & Seminars: Quad-Rotors: Control and Estimation Information Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2PJ. Lygeros
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveIn the first half of the P&S, we will introduce the physical model for a quad-rotor and use this to apply the control and estimation techniques that are taught in the 5th semester in the Control Systems 1 (CS1) class. The students will then create their own control functions for a quad-rotor and test these in simulation. The second half of the course will involve the students implementing the control and estimation algorithms they design in the real-world on our fleet of nano-quad-rotors. Once stable flight is achieved, the students will have the freedom to perform tasks with the quad-rotor. By implementing the control and estimation algorithms on a real quad-rotor, the students will gain experience in how decisions in the modelling and design stage affect real-world performance.
The simulations will be coded in MATLAB, and the real-world implementation in C++.

Important Information:
Students must be in the 6th semester.
The first class will be on Wednesday, March 2 for all students.
Classes will then occur every second week. The students will be split into two groups and the classes for each group will occur on alternating weeks.
It is preferable to have taken the Control Systems 1 (CS1) course but not mandatory. Those students who did not take CS1 will need to complete some extra reading to understand some aspects of this P&S.
In case COVID-19 prevents in-person teaching, the course will be offered in an online setting with classes being held over Zoom. In this case, the students will be able to take a real-world quad-rotor to their homes in order to implement the control and estimation algorithms taught in the course.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesCreative Thinkingassessed
227-0085-22LProjects & Seminars: Programming of a Blackfin DSP Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W4 credits4PH.‑A. Loeliger
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDie Echtzeitverarbeitung von digitalen Signalen ist eine Herausforderung welche in der Praxis häufig auftritt (digitale Kommunikation, Audio- und Videovearbeitung, ...).

Es gibt eine Familie von Mikroprozessoren welche spezifisch für die Echtzeitverarbeitung von digitalen Signalen optimiert sind: Sogenannte "Digital Signal Processor" oder kurz DSP. In diesem Praktikum lernt ihr einige Grundlagen der digitalen Signalverarbeitung und deren Implementation auf einem DSP kennen.

In Zweiergruppen werdet ihr euch am Beispiel von akustischen Signalen Schritt für Schritt an die Theorie und die Programmierung in Assembler herantasten. In der zweiten Hälfte des Semesters könnt ihr ein kleines, selbst bestimmtes Audio-Projekt verwirklichen.

Für die Implementierung verwenden wir ein für dieses P&S entwickeltes Board mit Komponenten welche auch in der Industrie verwendet werden. Es ist bestückt mit Ein- und Ausgängen für analoge Audiosignale, einem Codec, welcher das analoge Signal in ein digitales und zurück umwandelt, einem DSP der Familie "Blackfin" von Analog Devices (BF532) und 32MB Arbeitsspeicher.
227-0085-24LProjects & Seminars: Vision and Control in RoboCup Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits1PJ. Lygeros, L. Van Gool, F. Yu
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveVision and Control in RoboCup is jointly offered by Prof. John Lygeros (IFA) and Prof. Luc Van Gool (CVL).

RoboCup is a tournament where teams of autonomous robots compete in soccer matches against each other. The ETH team NomadZ plays in the standard platform league with the humanoid NAO robot, where the focus lies on developing robust and efficient algorithms for vision, control and behavior. In this course, the basic challenges we encounter in RoboCup are presented and approached in practical exercises using MATLAB and Python. The topics cover visual localization, deep learning for object detection and reinforcement learning for control.

The course is offered to students of the 5th semester.
227-0085-25LProjects & Seminars: Magnetic Resonance: From Spectrum to Image Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W1 credit1PM. Weiger Senften
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThe phenomenon of nuclear magnetic resonance (NMR) and its application in spectroscopy and imaging will be learned. The course starts with a general introduction to NMR. Afterwards, measurements will be performed on a clinical MRI device. NMR experiments will be developed and programmed by the students themselves. Starting with simple spectroscopic experiments, the basics of imaging are developed step by step. In this way, sectional images of test objects can finally be created.

The course must be cancelled if attendance classes are prohibited.
The course can only be held with a minimum of 2 participants.
227-0085-26LProjects & Seminars: Biosignal Acquisition and Processing for IoT Wearable Devices Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveBiosignal acquisition and processing – Wearable sensor node design and analysis for bio-impedance sensor using an Arm Cortex-M (Nordic nrf52838) Microcontroller
Wearable smart sensor electronics has the potential to revolutionize the medical field. Various body conformal flexible sensors have been used to monitor motion and physiological electrical signals such as electrocardiography (ECG), electroencephalography (EEG) and body composition analysis via body bio-impedance measurements. Smart sensor nodes not only provide accurate and continuous data in time but also automate the process of maintaining medical records, thereby lowering the workload oft he health worker or clinician. This course offers an avenue for the students to understand the interdisciplinary principles that make it possible to interpret human physiology by utilizing discreet electronic components. Most importantly, participants will get a chance to do hands-on system design specific to electronically tracking a particular physiological phenomenon. In particular, the focus will be laid on programming of micro controllers, interfacing with sensors, acquisition of data and utilizing discreet analog elements for bio-signal processing. The programming will be performed in C.


The course will be taught in English and by the ITET center for project based learning.
227-0085-27LProjects & Seminars: Android Application Development (AAD) Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W4 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveAndroid Applications – Programming and development of Application - Android Studio – Smart Phone Sensors – GPS and Google Maps.

Although the App-Industry is dominated by the giant Apps right now, it is still crucial that one knows how those Apps function and how those Apps are communicating with their hardware. This course offers the opportunity for the participants to understand the development of application using Android Studio. Most importantly, participants will get a chance to do hands-on software design specific to Android smartphone and the data acquisition from sensors, GPS, google maps and other internal devices. The main goal of the course if providing the students with the basic principle and software programming for build up every android application. The course include 4-5 weeks project were the students alone or in group will build up a working demo of a target application. The course will conclude with the presentation of the students work. Previous experience in C/Java or other languages is preferable but not mandatory. The students will program their own Android Smartphone.

The course will be taught in English by the new Project-based learning centre.
227-0085-28LProjects & Seminars: iCEBreaker FPGA For IoT Sensing Systems Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PM. Magno, C. Vogt
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveUltra Low Lattice FPGA – High Level Programming – Peripehrals Interfacing using an Lattice FPGA

Field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing , so they are also "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). However more and more nowdays producers and open source community are providing higher level toolls to program them similary than processors. On the other side still it is important know the hardware architectures. This course will give to the students the opportunity to program FPGA in a high level way and use them to connect with external peripherals such as display, sensors, etc. In particular, the course will use the iCEBreaker FPGA boards that is specifically designed for students and engineers . They work out of the box with the latest open source FPGA development tools and next-generation open CPU architectures. The course will also iCEBreaker can be expandable through its Pmod connectors, so the students can make use of a large selection of third-party modules. The course will include a project where the students will learn how to build a full working system for the next generation of Internet of Things intelligent smart sensing.

The course will be taught in English by the new D-ITET center for Project-based learning.
227-0085-29LProjects & Seminars: Embedded Deep Learning with Huawei Atlas 200 AI Dev Kit Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDeep Learning Intro - Python - Accelerated Embedded Computing

Deep neural networks (DNNs) have become the leading method for a wide range of data analytics tasks, after a series of major victories at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). For ILSVRC, the task was to classify images into 1000 different classes, many of which are difficult to distinguish (e.g. many classes are different breeds of dogs). All that was given were 1.2 million labelled images. Meanwhile, this recipe for success has taken over many more areas, from image-based tasks like segmenting objects in images, detecting objects, enhancing images using super-resolution and compression artifact reduction, to robotics and reinforcement learning, and a wide range of industrial applications.
DNNs and their subtype convolutional neural networks (CNNs) have not been new in the 2013 when the wave of success has started, but they got this huge boost through the new availability of large-scale dataset and—at least as importantly—the availability of the necessary compute resources by using GPUs to perform the computations required during training.
While GPUs were then also used to stem the high computation effort of DNNs during inference (e.g. classifying images directly using a trained DNN rather than training the DNN itself). The high demand, the need for cost efficiency, and the goal of deploying DNNs not just in data centers but pervasively in everyday devices, wearables, and low-latency industrial or interactive applications, has triggered the development of various application-specific processors which are much faster, vastly more energy efficient, and cheaper at the same time—such as the Google TPU, Graphcore, …, and Huawei’s Ascend/Atlas platforms.

In this course, you will learn:
1) the basics of deep neural networks, how they work, and what challenges there are for inference,
2) how platforms with specialized hardware accelerators, specifically the Huawei Atlas 200, can be used for running DNN inference and getting a practical application running, and
3) work on your own project using DNNs and hardware accelerators based on your own ideas or on some of our proposals.

The course will be taught in English by the new D-ITET center for Project-Based Learning and a special guest lecturer from Huawei. Individual interactions/help can also be in (Swiss) German.
Most sessions will be around 1 hour of lecture and 2 hours of practical computer exercises. We will start an introduction and then you will have ca. 8 weeks to work on your project, which will concluded with a final presentation of your results.
227-0085-31LProjects & Seminars: Vision Goes Vegas Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2PL. Van Gool
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveComputer Vision beschäftigt sich unter anderem damit, Maschinen zu befähigen ihre Umwelt zu sehen und das wahrgenommene Bild zu verstehen. In unserem Projekt soll ein System entwickelt werden, das Spielkarten erkennen kann und, einer guten Strategie folgend, erfolgreich Black-Jack spielen kann. Die Teilnehmer des Projektes werden kleine Teams bilden und gemeinsam mit einem Assistenten die Aufgabe erarbeiten und eine Implementierung erstellen. Am Ende des Semesters sollen die Programme im öffentlichen Wettstreit gegeneinander antreten!

Ziel des Projektes ist es, aktuelle Methoden der Computer Vision kennen zu lernen. Spielkarten, die von einer Digitalkamera in beliebiger Orientierung aufgenommen werden, müssen registriert und erkannt werden. Ein Strategiemodul kontrolliert dann die Spieltaktik aufgrund allgemeiner Regeln und dem Wissen über schon gefallene Karten. Da sehr viele verschiedene Möglichkeiten bestehen, solch ein System zu realisieren, sind der Phantasie der Teilnehmer keine Grenzen gesetzt.

Als Voraussetzungen sollte Interesse an Computer Vision mitgebracht werden und die Bereitschaft, sich in einem Team von Mitstudierenden einzubringen. Kenntnisse in C++ sind notwendig.

Dieses P&S wird in englischer Sprache durchgeführt.
227-0085-32LProjects & Seminars: Magnetic Fields in Our Daily Life Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W2 credits2PJ. Leuthold
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMagnetic fields can be found everywhere but are rarely directly perceptible. This also leads to sometimes irrational fears, such as of electrosmog. The power supply with direct current, 16.67 Hz and 50 Hz alternating current is indispensable today. Wherever electricity flows, magnetic fields are generated. That is why magnetic fields are omnipresent. But where do particularly high fields occur? How high can these fields be before they cause damage to health? Many studies have already dealt with this question and country-specific guidelines have been defined on this basis. But are these actually adhered to? Where are the legal limits exceeded? What are the consequences? The P&S will deal with this topic and an invited guest will speak.

The participants of the P&S will pursue small research projects of their own. To do this, they will be equipped with mobile measuring devices that can be connected to a smartphone to search for and characterise various magnetic field sources. How strong are the magnetic fields in our environment really? Can they pose a danger? How can they be shielded? These questions will be systematically investigated.

At the end of the P&S, the individual groups present the findings
227-0085-33LProjects & Seminars: Accelerating Genome Analysis with FPGAs, GPUs, and New Execution Paradigms Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PM. H. K. Alser, J. Gómez Luna
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveA genome encodes a set of instructions for performing some functions within our cells. Analyzing our genomes helps, for example, to determine differences in these instructions (known as genetic variations) from human to human that may cause diseases or different traits. One benefit of knowing the genetic variations is better understanding and diagnosis of diseases and the development of efficient drugs.

Computers are widely used to perform genome analysis using dedicated algorithms and data structures. However, timely analysis of genomic data remains a daunting challenge, due to the complex algorithms and large datasets used for the analysis. Increasing the number of processing cores used for genome analysis decreases the overall analysis time, but significantly escalates the cost of building, maintaining, and cooling such a computing cluster, as well as the power/energy consumed by the cluster. This is a critical shortcoming with respect to both energy production and environmental friendliness. Cloud computing platforms can be used as an alternative to distribute the workload, but transferring the data between the clinic and the cloud poses new privacy and legal concerns.

In this course, we will cover the basics of genome analysis to understand the computational steps of the entire pipeline and find the computational bottlenecks. Students will learn about the existing efforts for accelerating one or more of these steps and will have the chance to carry out a hands-on project to improve these efforts.

Prerequisites of the course:
- No prior knowledge in bioinformatics or genome analysis is required.
- Digital Design and Computer Architecture (or equivalent course)
- A good knowledge in C programming language is required.
- Experience in at least one of the following is highly desirable:
FPGA implementation and GPU programming.
- Interest in making things efficient and solving problems

The course is conducted in English.

Course website: https://safari.ethz.ch/projects_and_seminars/doku.php?id=bioinformatics

Learning Materials
===============
1. A survey on accelerating genome analysis: https://arxiv.org/pdf/2008.00961
2. A detailed survey on the state-of-the-art algorithms for sequencing data: https://arxiv.org/pdf/2003.00110
3. An example of how to accelerate genomic sequence matching by two orders of magnitude with the help of FPGAs or GPUs: https://arxiv.org/abs/1910.09020
4. An example of how to accelerate read mapping step by an order of magnitude and without using hardware acceleration: https://arxiv.org/pdf/1912.08735
5. An example of using a different computing paradigm for accelerating read mapping step and improving its energy consumption: https://arxiv.org/pdf/1708.04329
6. Two examples on using software/hardware co-design to accelerate genomic sequence matching by two orders of magnitude: https://arxiv.org/abs/1604.01789 https://arxiv.org/abs/1809.07858
227-0085-34LProjects & Seminars: Exploring Future Memory Systems with RAMulator Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PH. Hassan
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDRAM is predominantly used to build the main memory systems of modern computing devices. Simulation-based experimental studies are key for understanding the complex interactions between DRAM and modern applications.

Ramulator is an extensible DRAM simulator providing cycle-accurate performance models for a variety of commercial DRAM standards (e.g., DDR3/4, LPDDR3/4, GDDR5, HBM) and academic proposals. Ramulator has a modular design that enables easy integration of additional DRAM standards and mechanisms. Ramulator is written in C++11 and can be easily integrated to full-system simulators such as gem5.

In this P&S, you will design new DRAM and memory controller mechanisms for improving overall system performance, energy consumption, and reliability. You will extend Ramulator with these new designs and evaluate their performance, energy consumption, and reliability using modern applications. This will be the right P&S for you if you would like to learn about the state-of-the-art memory controller and DRAM designs and their interaction with modern applications. This P&S will also enable you to hands-on simulate and understand the memory system behavior of modern workloads such as machine learning, graph analytics, genome analysis.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course)
- A good knowledge in C/C++ programming language.
- Interest in making things efficient and solving problems.
- Interest in understanding software development and hardware design, and their interactions.

The course is conducted in English.

Course website: https://safari.ethz.ch/projects_and_seminars/doku.php?id=ramulator
227-0085-35LProjects & Seminars: Enabling Secure, Reliable and Fast Memory with Hands-On FPGA Experiments Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PH. Hassan
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveDRAM is predominantly used to build the main memory systems of modern computing devices. To improve the performance, reliability, and security of DRAM, it is critical to perform experimental characterization and analysis of existing cutting-edge DRAM chips.

SoftMC is an FPGA-based DRAM testing infrastructure that enables the programmer to perform all low-level DRAM operations (i.e., DDR commands) in a cycle-accurate manner. SoftMC provides a simple and intuitive high-level programming interface (in C++) that completely hides the low-level details of the FPGA from programmers. Programmers implement test routines in C++, and the test routines automatically get translated into the low-level SoftMC memory controller operations in the FPGA. SoftMC developers write low-level hardware description language code to enable new and faster studies.

In this P&S, you will have the chance to learn how DRAM is organized and operates in a low-level and gain practical experience in using SoftMC while developing SoftMC programs for new DRAM characterization studies related to performance, reliability and security. You may also improve the SoftMC infrastructure itself to enable new studies. And, who knows, you might discover new security vulnerabilities like RowHammer.

This will be the right P&S for you if you are interested in DRAM technology and would like to learn more about it as well as FPGA technology and how it can be used for practical purposes such as understanding and mitigating RowHammer attacks, generating true random numbers, reducing memory latency, fingerprinting and identifying devices, and improving reliability.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course)
- Familiarity with FPGA programming
- Interest in low-level hacking and memory
- Interest in discovering why things do or do not work and solving problems

The course is conducted in English.

Course website: https://safari.ethz.ch/projects_and_seminars/doku.php?id=softmc
227-0085-36LProjects & Seminars: Genome Sequencing on Mobile Devices Information Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PM. H. K. Alser, J. Gómez Luna
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveGenome analysis is the foundation of many scientific and medical discoveries, and serves as a key enabler of personalized medicine. This analysis is currently limited by the inability of existing technologies to read an organism’s complete genome. Instead, a dedicated machine (called sequencer) extracts a large number of shorter random fragments of an organism’s DNA sequence, known as reads. Small, handheld sequencers such as ONT MinION and Flongle make it possible to sequence bacterial and viral genomes in the field, thus facilitating disease outbreak analyses such as COVID-19, Ebola, and Zika. However, large, capable computers are still needed to perform genome assembly, which tries to reassemble read fragments back into an entire genome sequence. This limits the benefits of mobile sequencing and may pose problems in rapid diagnosis of infectious diseases, tracking outbreaks, and near-patient testing. The problem is exacerbated in developing countries and during crises where access to the internet network, cloud services, or data centers is even more limited.

In this course, we will cover the basics of genome analysis to understand the speed-accuracy tradeoff in using computationally-lightweight heuristics versus accurate computationally-expensive algorithms. Such heuristic algorithms typically operate on a smaller dataset that can fit in the memory of today’s mobile device. Students will experimentally evaluate different heuristic algorithms and observe their effect on the end results. This evaluation will give the students the chance to carry out a hands-on project to implement one or more of these heuristic algorithms in their smartphones and help the society by enabling on-site analysis of genomic data.

Prerequisites of the course:
- No prior knowledge in bioinformatics or genome analysis is required.
- A good knowledge in C programming language and programming is required.
- Interest in making things efficient and solving problems

The course is conducted in English.
Literature1. A survey on accelerating genome analysis: https://arxiv.org/pdf/2008.00961

2. A detailed survey on the state-of-the-art algorithms for sequencing data: https://arxiv.org/pdf/2003.00110

3. An example of how to accelerate genomic sequence matching by two orders of magnitude with the help of FPGAs or GPUs: https://arxiv.org/abs/1910.09020

4. An example of how to accelerate read mapping step by an order of magnitude and without using hardware acceleration: https://arxiv.org/pdf/1912.08735

5. An example of using a different computing paradigm for accelerating read mapping step and improving its energy consumption: https://arxiv.org/pdf/1708.04329

6. Two examples on using software/hardware co-design to accelerate genomic sequence matching by two orders of magnitude: https://arxiv.org/abs/1604.01789 https://arxiv.org/abs/1809.07858

7. An example of a purely software method for fast genome sequence analysis: http://www.biomedcentral.com/content/pdf/1471-2164-14-S1-S13.pdf
227-0085-37LProjects & Seminars: Exploring the Processing-in-Memory Paradigm for Future Computing Systems Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
W3 credits3PJ. Gómez Luna
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveData movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck. From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy consumption. For example, data movement between the main memory and the processing cores accounts for 62% of the total system energy in consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the compute units, to a more data-centric design where processing elements are placed closer to or inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course).
- Familiarity with C/C++ programming.
- Interest in future computer architectures and computing paradigms.
- Interest in discovering why things do or do not work and solving problems
- Interest in making systems efficient and usable

The course is conducted in English.
The course has two main parts:
1. Weekly lectures on processing-in-memory.
2. Hands-on project: Each student develops his/her own project.
227-0085-38LProjects & Seminars: Controlling Biological Neuronal Networks Using Machine Learning Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W4 credits2PJ. Vörös
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThe way memory and learning is achieved in the brain is an unsolved problem. Due to its relative
simplicity, in-vitro neuroscience can help us discover the fundamentals of information processing in
the brain. For this we can simulate a small number of biological neurons on top of an array of
microelectrodes. Such an approach allows us to simulate the electrical activity of the neurons when
they get stimulated.

Following this approach, we can investigate biological neural networks, that have about 5-50
neurons and a controlled network architecture. Still, their behavior remains highly unpredictable.
Therefore, it is not yet clear how such networks need to be stimulated electrically in order to control
their behavior. However, we can use machine learning to find a mapping between a stimulus and a
desired response. More specifically, we can use reinforcement learning, since finding the right
stimulation pattern is an instance of the so called multi-armed bandit problem.

This P&S consists of two parts. In the first part we will introduce you to the way neurons can be
cultured in vitro. You will learn how to seed and grow the culture of neurons on a multi-electrode
arraz (MEA). Next you will stimulate given networks and record data. The second part will be
about machine learning. We will discuss the basics of both artificial neural networks (ANN) and
reinforcement learning (RL). As homework exercises you will implement a reward function for a
provided reinforcement learner, which will control your biological networks. In addition you will
implement an ANN, that replaces unsatisfactorily performing stimulation patterns with new
patterns, that this network evaluates to perform better.

This P&S will be given in English. In total, the P&S takes 8 afternoons and about 40 hours of
homework (ANN implementation).
227-0085-39LProjects & Seminars: Python for Science & Machine Learning Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3PM. Magno
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThis beginner course to programming with Python - with a focus on applications in science and technology - is an ideal starting point for later courses. We will start with an introduction to the dev environment and tools for effective development to get you started. Then we will learn the basics of Python with exercises, and discover popular modules for data processing and visualisation that will be useful for your later studies and career. We conclude with an introduction to popular machine learning techniques and some time for you to implement your own small free-style projects.

By the end of the semester, you will
- be familiar with your PC’s command-line interface and know how to use available dev environments effectively.
- have learned the basics of Python and be able to write basic programs that do what you want (most of the time) with the help of modules.
- be able to process, visualize and analyze numerical data, e.g. lab measurements, images, etc.
- have first experience with machine learning techniques
- maintain your first git repository and know how to collaborate with others on coding projects.

Language: English / German (if necessary)
227-0085-41LProjects & Seminars: Memory Design: From Architecture down to Basic Cells Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3PM. Luisier
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMemories are important components in all modern electronic devices, e.g. computers, smartphones, or tablets. Depending on their specialization, engineers look at memories from a different perspective. This P&S will give you an overview of these different perspectives, which do not only exist for memories, but in general for all integrated circuits. In particular, during this P&S you will get familiar with state-of-the-art computer-aided design tools. Among them are highly sophisticated programs used by engineers active in the research and development units of large semiconductor companies.

The P&S "Basic Memory Design" consists of three parts of approximately equal length, each of them corresponding to a different perspective on memories:

1. System design: In this part you will get to know different memory types from a system developer's point of view. What are they capable of? How are they incorporated into circuits to create a storage system that can provide the right size and speed with an acceptable power consumption? A simple cache simulator will be used to study the influence of various design parameters on the memory hierarchy. Participants will study specific memory types in small groups and discuss them with the P&S partners during a presentation.

2. Circuit design: In this part the emphasis will be on how memories can be realized as electronic circuits. How should transistors be connected to each other to write, store, and read data? How should these transistors be sized to achieve the desired speed or power efficiency? With simulations you will experience how engineers design and optimize such circuits.

3 Physical Design: This part will go one step further. Millions of transistors on a small silicon die are at the core of modern memory chips. How are the memory cells on the chip manufactured? How does a memory cell look like? How is the memory cell optimized? You will learn about the design process with the help of modern simulation tools that are nowadays used in industry. You will also learn about the methods and technologies to produce modern integrated circuits.

This P&S will only take place if 12 students register. Course participation is mandatory after registration.
227-0085-42LProjects & Seminars: Constructing a Receive Coil for Magnetic Resonance Imaging Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W1.5 credits1.5PK. P. Prüssmann
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThe subject of this practical course is signal detection in magnetic resonance imaging, a medical imaging procedure. The procedure is based on the magnetic resonance (MR) of atomic nuclei with frequencies in the radiofrequency range. Tuned RF coils with a preamplifier stage are used for MR detection. Such an elementary MR detector is designed, built and tested during the practical course. Successful teams can test their detector on a 7-tesla tomograph at the end of the practical and generate sectional images of a biological object (e.g. an orange or kiwi). Basic knowledge of circuit design must be applied to solve the task. Previous knowledge in the field of high-frequency engineering is advantageous
227-0085-43LProjekte & Seminare: Clean Room Technology – Fabrication and Characterization of Photonic Materials Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveIn der Nanophotonik wird die Wechselwirkung von Licht mit nanometergroßen Strukturen untersucht. So entstehen beispielsweise winzige und zugleich ultraschnelle optische Schaltkreise für eine neue Generation von Supercomputern.

Im P&S „Clean Room Technology“ erhalten die Teilnehmer einen ersten Einblick in das BRNC Hightech-Forschungslabor der ETH und IBM Zürich („Binnig and Rohrer Nanotechnology Center“). Nach einer allgemeinen Einführung in die Nanotechnologie und das Arbeiten im Reinraum, werden verschiedene nanophotonische Materialien abgeschieden. Im Anschluss werden mit Hilfe der sogenannte Ellipsometrie die optischen Eigenschaften der Materialien gemessen und anhand von Modellen am Computer analysiert. Abschluss des P&S ist eine Präsentation der Resultate und eine kurze schriftliche Zusammenfassung.

Das P&S wird für drei Gruppen à drei Teilnehmer an zehn Nachmittagen verteilt über das Semester angeboten.
Wir empfehlen das P&S für Studenten im dritten Studienjahr. MATLAB Vorkenntnisse sind vorteilhaft, aber keine Voraussetzung.
Das P&S findet teilweise in englischer Sprache statt.
227-0085-44LProjects & Seminars: Understanding and Designing Modern Solid-State Drives (SSDs) Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3PJ. Park
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveNAND flash memory is the de facto standard in architecting a storage device in modern computing systems. As modern computing systems process a large amount of data at an unprecedented scale, a storage device needs to meet high requirements on storage capacity and I/O performance. A NAND flash-based SSD can provide an order(s) of magnitude higher I/O performance compared to traditional hard-disk drives (HDDs), with a much lower cost-per-bit value over any other SSDs based on emerging non-volatile memory (NVM) technologies.

NAND flash memory has several unique characteristics, such as the erase-before write property (i.e., a flash cell needs to be first erased before programming it), limited lifetime (i.e., a cell can reliably store data for a certain number of program/erase cycles), and large operation units (e.g., a NAND flash chip reads/writes data in a page (e.g., 16 KiB) granularity). To achieve high performance and large capacity of the storage system while hiding the unique characteristics of NAND flash memory, it is critical to design efficient SSD firmware, commonly called Flash-Translation Layer (FTL). An FTL is responsible for many critical management tasks, such as address translation, garbage collection, wear-leveling, and I/O scheduling, that significantly affect the performance, reliability, and lifetime of the SSD.

In this P&S, we will cover how a modern NAND flash-based SSD is organized and operates, from the basics of underlying NAND flash devices and various SSD-management tasks at the FTL-level. You will build a practical SSD simulator by refactoring MQSim, a state-of-the-art simulator for high-end SSDs, to support advanced features of modern NAND flash chips and essential SSD-management tasks. This will allow you to have the chance to obtain a comprehensive background of modern storage systems and research experience on system optimization with rigorous evaluation.

Prerequisites of the course:
• No prior knowledge in NAND flash-based storage systems is required.
• Digital Design and Computer Architecture (or equivalent course)
• Good knowledge in C/C++ programming language is required.
• Interest in system optimizations

The course is conducted in English.
227-0085-45LProjects & Seminars: Robotic Maze Solving with a TI-RSLK Robot (RMaze) Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMicrocontroller programming (C) – Peripherals Interfacing using a MSP433 MCU – Control of a Robot in a maze

The course will focus on teaching how to build and program a Texas Instrument robotic system learning kit (TI-RSLK). It is a robot kit, which includes a 2 wheeled robot, a line sensor to determine lines on the floor as well as sensors to recognize walls. The robot is driven by a MSP432 state of the art ARM Cortex M4 processor.

This course will give the students the opportunity to learn how to program the microcontroller of this robot to navigate in a small maze. For this, the students will learn how to control the motors and, consequently the movement of the robot with the peripherals of the microcontroller. Next to the movement, also the control and readout of the attached sensors will be part of the P&S course.

Once the students are able to read sensor values and control the motors of the robot, this course will conclude with a 4-week project. Within this project the students will design their own algorithm, such that the robot can navigate autonomously within a maze. A small competition at the end of the P&S will find the fastest robot of the group.

The course will be taught in English by the new D-ITET center for Project-based learning, the programming toolchain will be installed on the student’s own laptop. Experience with microcontroller programming (C) is an advantage, however not required. A short introduction will be given during the course.

This course will be taught in English or in German if necessary.
227-0085-46LProjects & Seminars: Embedded Systems With Drones Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W4 credits4PM. Magno, T. Polonelli
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMicrocontrollers - Programming in C – Drones – Autonomous Drones – Embedded System – Sensors.


Drones can be fun to use but understanding the hardware and software and building and programming them to be intelligent and autonomous is even better. This course gives the basis of the embedded systems having the drones as the primary target. The course will introduce embedded systems and, in particular, the microcontroller ARM Cortex-M, focusing on all the crucial blocks such as Interrupts, GPIO, ADC's, Timers, and Serial communication protocols. Apart from the core topics, real-time and power-efficient algorithms for attitude and motor control are also discussed, making the drone efficient. Finally, exciting drone exercises are supported in the course to experiment with the development kit. The course will end with a 4-5 weeks project where the students will make the drone fly with some specific goal. It is not required any previous knowledge except C language.
The course will be taught in English and organized by the Center for Project-Based Learning.
227-0085-47LProjects & Seminars: Machine Learning on Smart Phone Restricted registration - show details
Does not take place this semester.
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3P
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveMachine Learning with Smart Phone Sensors –Programming Android Phones – Neural Networks – Keras/Tensor Flow- Projects and App on smartphones

Smartphones have several sensors that can acquire much useful information, for instance where we are, what we are doing, with whom we are together, what is our constitution, what are our needs. Based on this information our 'smartphone' offers us the appropriate computational power to process them in loco without sending the sensor data to the cloud. This course focus on giving the bases of machine learning and embedded systems. The student will learn the tools to implement a machine learning algorithm, such as Tensor Flow and others in their android phones to have an advanced smartphone. The course will end with 4 weeks project where the students can target a specific application scenario. It is not required any previous experience In machine learning. Phyton is a plus but the basis of phyton will be given in the course to be able to complete the project.
The course will be taught in English and organized by the new Project-based Learning center.
227-0085-48LProjects & Seminars: Introduction to Program Nao Robots for Robocup Competition Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W4 credits3PM. Magno, S. Heo
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveProgramming Robots – Sensors- Humanoid Robot.

NAO robots from Softbank are the leading humanoid robot being used in research and education worldwide. Robotics is the fastest growing and most advanced technology used in education and research. The main goal of this course is to introduce and allowing the students to learn how to program an NAO humanoid robot to make him walk, talking, watching objects understanding the human, and reacting to external input. The Nao Robots used in this course are equipped with many sensors: Tactile Sensors, Ultrasonic sensors, A Gyro, An Accelerometer, Force Sensors, Infrared sensors, 2 HD Cameras, 4 Microphones, and high accuracy digital encoders on each joint. It has two processors on board: an Intel Atom 1.6Ghz (The main computer includes SSD drive, WiFi, Bluetooth, and wired network) and an additional ARM-9 processor in its chest.
The course will introduce the software package and the full SDK and API. The students will learn how to program ( mainly in C and Phyton) the robot to access the full functionality. To improve the hands-on skills of students the course will end with a 5 weeks project where the students in the group will compete in a small soccer game where the robots will play the game following and kicking a red ball. It is not requested any previous knowledge but programming skills are a plus.
The course will be taught in English and organized by the new Project-based Learning center.
227-0085-49LProjects & Seminars: Smart Patch Projects Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W4 credits4PM. Magno
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveWearable devices, PCB Design, Firmware developing, multi-sensors, Communication.

The Smart Patch project will design autonomous, low power and mesh enabled multi-sensor wearable smart patches. They will be based on the always-on smart sensing paradigm to continuously acquire process and stream physiological data in real-time. They can be trained to autonomously detect illness symptoms or other physical conditions, such as stress. The students will work in a team to design a sub-block of the smart patch. According to the students' background, they will be associated swith designing the hardware or the firmware. Together in a team, they will learn how to structure problems and identify solutions, system analysis, and simulation, as well as presentation and documentation techniques. They will get access to D-ITET labs and state-of-the-art engineering tools (Matlab, Simulink, Firmware development IDE, PCB Design, etc.) The course will be done in coollaboartion with DZ Center at D-ITET.

The projects will be done under the Smart Patches: a flagship project for D-ITET students. (pbl.ee.ethz.ch)
227-0085-51LProjects & Seminars: Hands-on Acceleration on Heterogeneous Computing Systems Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3PO. Mutlu, J. Gómez Luna
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThe increasing difficulty of scaling the performance and efficiency of CPUs every year has created the need for turning computers into heterogeneous systems, i.e., systems composed of multiple types of processors that can suit better different types of workloads or parts of them. More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make
their outstanding processing capabilities available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine Learning and Artificial Intelligence, which took
unrealistic training times before the use of GPUs. Field-Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute capabilities near or inside memory/storage).
Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:
- Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from important fields such as bioinformatics, machine learning, graph processing, medical imaging, personalized medicine, robotics, virtual reality, etc.
- Scheduling techniques for heterogeneous systems with different general-purpose processors and accelerators, e.g., kernel offloading, memory scheduling, etc.
- Workload characterization and programming tools that enable easier and more efficient use of heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose algorithmic changes to important applications to better leverage the compute power of heterogeneous systems, understand different workloads and identify the most suitable device for their execution, design optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance reported for a given important application.
Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course).
- Familiarity with C/C++ programming and strong coding skills.
- Interest in future computer architectures and computing paradigms.
- Interest in discovering why things do or do not work and solving problems
- Interest in making systems efficient and usable

The course is conducted in English.

The course has two main parts:
1. Weekly lectures on GPU and heterogeneous programming.
2. Hands-on project: Each student develops his/her own project.
227-0085-54LProjects & Seminars: Optics and Spectroscopy Lab Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits4PJ. Leuthold
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveThe goal of this P&S is to learn the basics of working with optics and how to assemble optical systems. It is intended to show the practical side to the many optics lectures that are offered at D-ITET.
The course will give a very brief introduction on laser safety, basic building blocks for optics and information on how to handle such elements. The following classes allow the students to test very basics properties of lenses and lasers and how the corresponding optomechanics can be used to arrange a simple setup. After this, the different student groups rotate through four different experiments where they get the chance to build and align different optical setups and perform various measurements. No prior knowledge is required.
227-0085-55LProjekte & Seminare: Our Daily Exposure to Electromagnetic Radiation Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W2 credits2PJ. Leuthold
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveHow strong is the electromagnetic radiation generated by base stations, mobile phones and TV towers? What can you do in order to minimize your daily exposure to electromagnetic fields? In this project you will learn the basic know-how required to deal and work with radio frequency electromagnetic fields. You will see our microwave laboratory and get familiar with the RF and microwave measurement equipment. Using ExpoM-RF, a personal exposure meter originally developed at the Institute of Electromagnetic Fields, you will be able to perform outdoor measurements and track your daily exposure to electromagnetic fields in the frequency range from 87.5 MHz to 5.8 GHz.

The complete project description can be found on: <a target="_blank" href="http://people.ee.ethz.ch/~mzahner/PPS-EMrad/">http://people.ee.ethz.ch/~mzahner/PPS-EMrad/</a>
227-0085-56LProjekte & Seminare: Intelligent Architectures via Hardware/Software Cooperation Restricted registration - show details
Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.
W3 credits3PO. Mutlu
AbstractThe category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
ObjectiveModern general-purpose processors are agnostic to an application’s high-level semantic information. Hence, they employ prediction-based techniques to enable computational and memory optimizations, such as prefetching, cache management policies, memory data placement, instruction scheduling, and many others. As such, the potential of such optimizations is limited due to the limited information the underlying hardware can discover on its own and such optimizations come with large area, power and complexity overheads required by the hardware for prediction purposes. Purely-hardware optimizations cannot achieve their performance potential and waste power, complexity and hardware area, since they are not aware of the application characteristics. On the other hand, purely-software optimizations are fundamentally tied up and limited by the underlying hardware.

A promising way to increase the performance of modern applications is to co-design software and hardware. Hence, lately both industry and academia are making serious attempts to improve performance, energy and security using hardware/software cooperative schemes such as application-specific hardware accelerators (e.g., Google’s Tensor Processing Unit) and application-specific extensions in general-purpose processors (e.g., Media Engine in Apple M1).

In this course, we will explore several different topics around hardware/software co-design such as: (i) new hardware/software interfaces (e.g., virtual memory, instruction set architecture) to enhance performance, energy and security, (ii) hardware/software co-design schemes to improve the performance of the memory subsystem in killer memory-intensive applications (e.g., sparse and irregular workloads), (iii) hardware/software cooperative machine-learning-based techniques for different microarchitectural components such as prefetchers, caches and branch predictors, which would continuously learn from the vast amount of memory accesses seen by a processor and adapt to the varying workload and system conditions.

If you are enthusiastic about working hands-on to design both software and hardware, this is your P&S. You will have the opportunity to study modern applications, propose software changes to better match the underlying hardware components, design new hardware components that better match the overlying software and come up with new machine-learning techniques to design efficient microarchitectural components. You will also learn how to program industry-supported microarchitectural simulators and study the performance of modern workloads after your hardware/software modifications.

Prerequisites of the course:
- Digital Design and Computer Architecture (or equivalent course).
- Familiarity with C/C++ programming and strong coding skills.
- Interest in future computer architectures and computing paradigms.
- Interest in discovering why things do or do not work and solving problems
- Interest in making systems efficient and usable

Preferable:
- Hands-on experience with Machine Learning frameworks (depends on the topic you choose)

The course is conducted in English.
Group Projects
NumberTitleTypeECTSHoursLecturers
227-0091-10LGroup Project IW6 credits5ALecturers
AbstractStudents must work in groups in supervised projects for 150 to 180 hours minimum. The topics of the group work are open and can be technical of specific nature or more general in the context of engineering.
Objectivesee above
227-0092-10LGroup Project IIW6 credits5ALecturers
AbstractStudents must work in groups in supervised projects for 150 to 180 hours minimum. The topics of the group work are open and can be technical of specific nature or more general in the context of engineering.
Objectivesee above
Internship in industry
The internship in industry can only be enrolled for during bachelor's studies according to the 2016 regulations. According to the 2018 regulations, an internship in industry can be taken at master's level.

Please note the conditions for internships in industry as set forward by the "Guidelines for the "Laboratory Courses - Projects - Seminars ", see Link (German only).
NumberTitleTypeECTSHoursLecturers
227-0093-10LInternship in Industry Restricted registration - show details
Only for students in the Bachelor's Programme Electrical Engineering and Information Technology, Regulations 2012/2016.
For students enrolled in the 2018 Programme Regulations, see "227-1550-10L Internship in Industry" at Master's level.
W6 creditsexternal organisers
AbstractThe main objective of the 12-week internship is to expose bachelor's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution.
Objectivesee above
Prerequisites / NoticePlease note the conditions for Internships in industry as set forward by the "Guidelines for the "Laboratory Courses - Projects - Seminars ", see Link (German only).
Additional Subjects
NumberTitleTypeECTSHoursLecturers
227-0651-00LApplied Circuit and PCB-Design Information Restricted registration - show details
Number of participants limited to 24.

Although not strictly mandatory, attendance is of high importance and will be considered as part of the evaluation criteria. Students not willing to attend regularly to the lectures are not encouraged to register to it.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the course, will fail to get the credits.

Formerly (until HS 2021) named "Schaltungs- und Leiterplattenentwicklung in der Praxis".
W2 credits4GA. Blanco Fontao
AbstractParticipants learn how to design a predefined electronic circuit and how to lay out the pertaining circuit board. CAE and CAD activities for design and simulation are carried out with the aid of Altium Designer.
ObjectiveThe goal is to become acquainted with all those practical aspects of electronic circuit and PCB design by working through a modest but complete application example. This involves analysis of specifications, the evaluation of electronic parts, efficient testing and failure search, electromagnetic compatibility (EMC), the usage of industrial CAE/CAD tools for circuit simulation and PCB layout, generating production data for the board manufacturer, board mounting, testing and start up.
ContentContent:
- Development - from the idea to the final product
- Analysis of given circuit specifications

- Searching the Internet for electronics parts
- Choosing electronic parts: avoiding mistakes

- Setting up the Altium Designer environment

- Structure of component libraries
- Preparing schematic symbols for CAE
- Preparing footprints for CAD
- Linking component libraries and databases

- Introduction to Altium Vault and Supply Chain Management

- Structure of schematic diagrams and circuits
- Assigning schematic functions to physical parts
- Capturing a predefined circuit
- Hints for improved testing and failure analysis

- Checking schematic data
- Simulation of mixed-signal circuits using Spice

- Introduction to PCB manufacturing
- Turning circuit schematics into a workable layout using Altium Designer

- Component placement on the PCB
- Manual and automatic interconnect routing
- Design for EMC and High-Speed

- Preparation of production data for the board manufacturer
- Documentation for manufacturing and assembly
- PCB assembly (component mounting and soldering)
- Final circuit testing and start-up.
LiteratureAll necessary documents will be available as electronic documents (PDF)
Prerequisites / Notice- The course is recommended to all students who plan to design an electronic circuit or a PCB in an upcoming term project or as part of their master thesis. Attending this course during the term before will ensure they are optimally prepared and will allow them to fully focus on their project.

- The number of participants is limited.

- For their own students and staff, the Department of Information Technology and Electrical Engineering provides electronic components and consumables free of charge. All other participants have to bear a 200 CHF fee for those items.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Social CompetenciesCooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingfostered
351-1138-00LPRISMA Capstone - Rethinking Sustainable Cities and Communities
Bachelor students get preferential access to this course. All interested students must apply through a separate application process at: https://mtecethz.qualtrics.com/jfe/form/SV_cx4ZghhYhQAY3nT

Participation is subject to successful selection through this sign-up process.

Not for students belonging to D-MTEC!
W4 credits4VA. Cabello Llamas
AbstractThe goal of this intense one-week course is to bring students from different backgrounds together to make connections between disciplines and to build bridges to society. Supported by student coaches and experts, our student teams will use hands-on Design Thinking methods to address relevant challenges based on the UN sustainable development goals.
ObjectiveIn this intense 7-day block course students will be able to acquire and practice essential cross-disciplinary competencies as well as gaining an understanding of a human-centered innovation process. More specifically students will learn to:
- Work and think in a problem-based way.
- Put their own field into a broader context.
- Engage in collaborative ideation with a multidisciplinary team.
- Identify challenges related to relevant societal issues.
- Develop, prototype and plan innovative solutions for a range of different contexts.
- Innovate in a human-centered way by observing and interacting with key stakeholders.

The acquired methods and skills are based on the ETH competence framework and can be applied to tackle a broad range of problems in academia and society. Moving beyond traditional teaching approaches, this course allows students to engage creatively in a process of rethinking and redesigning aspects and elements of current and future urban areas, actively contributing towards fulfilling the UN SDG 11.
ContentThe course is divided in to three stages:

Warm-up and framing: The goal of this first stage is to get familiar with current problems faced by cities and communities as well as with the Design Thinking process and mindset. The students will learn about the working process, the teaching spaces and resources, as well as their fellow students and the lecturers.

Identifying challenges: The objective is to get to know additional methods and tools to identify a specific challenge relevant for urban areas through fieldwork and direct engagement with relevant stakeholders, resulting in the definition of an actionable problem statement that will form the starting point for the development of innovative solutions.

Solving challenges within current and future context: During this phase, students will apply the learned methods and tools to solve the identified challenge in a multi-disciplinary group by creating, developing and testing high-potential ideas. The ideas are presented to relevant academic, industry and societal stakeholders on the last day of the week.

To facilitate the fast-paced innovation journey, the multidisciplinary teams are supported throughout the week by experienced student coaches.

This course is a capstone for the student-lead initiative PRISMA. (https://www.prisma.ethz.ch/).
Prerequisites / NoticeBachelor students get preferential access to this course. All interested students must apply through a separate application process at: https://mtecethz.qualtrics.com/jfe/form/SV_cx4ZghhYhQAY3nT

Participation is subject to successful selection through this sign-up process.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesDecision-makingfostered
Problem-solvingassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkassessed
Customer Orientationassessed
Sensitivity to Diversityassessed
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Electives
This is only a short selection. Other courses from the ETH course catalogue may be chosen. Please consult the "Richtlinien zu Projekten, Praktika, Seminare" (German only), published on our website (http://www.ee.ethz.ch/pps-richtlinien).
Economics, Law and Management Electives
These subjects are particularly suitable for students planning to apply to the Master's Degree Program in Energy Science and Technology (MSc EST) or Management, Technology and Economics (MSc MTEC).
Engineering Electives
NumberTitleTypeECTSHoursLecturers
» Additional third year core courses may be credited as electives.
101-0531-00LDigitalization for Circular Construction (D4C^2) Restricted registration - show details
All students who register go onto a waiting list and 25 of them will be selected by the lecturer
W4 credits9PC. De Wolf
AbstractStudents will learn about digital innovations for circular construction (e.g. reuse of materials) through hands-on learning: they will be accompanied on demolition sites to recover and reclaim building materials, they will learn how to use computational tools to design structures with an available stock of materials, and they will use digital fabrication techniques to build a dome on campus.
ObjectiveThe project has several goals:
•Teach students about the challenges of reuse in the built environment and how to overcome them in order to transition the construction sector from a linear to a circular economy – this can only be done through the proposed industry collaboration and hands-on, on-site learning.
•Show students how to design and built from A to Z: many engineering and architecture students end up acquiring amazing design skills, but have never been on a demolition site to disassemble the structure themselves – this course will offer this experience to them.
•Demonstrate how we can bring together two worlds that are often too distinct: low-impact construction and digital innovation – this course will explore which digital tools already used in other sectors could be beneficial for reuse and low-carbon construction.
ContentThis is a workshop-based course on circular construction on-site. During the first workshop, students will use photogrammetry from drone imagery and LiDAR scanning to capture data on building materials; Scan-to-BIM techniques for geometric reconstruction based on point-clouds; and computer-vision techniques for identifying material geometries, types, and conditions in order to make an inventory of available materials. During the second workshop, my industry partners (e.g., Baubüro in situ, Materiuum, Rotor) and I will work with the students on the disassembly of the building in a non-destructive way. During the third workshop, students will learn to use computational design tools to structurally optimize their structure’s shape with the available stock of materials. Finally, during the fourth workshop, students will build a dome structure with the reclaimed materials on the ETH campus. This class will enable students to explore all digital tools available (assessment, disassembly, design, and reassembly) for circular construction on a real-world case study.
Lecture notesWorkshop-based course & hands-on learning.
LiteratureSustainability – Circular Economy in the Digital Age special issue
Çetin, S., De Wolf, C., Bocken, N. “Circular Digital Built Environment: An Emerging Framework.” 13, 6348, DOI: 10.3390/su13116348
Prerequisites / NoticeInterest in Digitalisation and Construction.
MIBS students: 3rd semester on higher are eligible to apply.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationassessed
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityassessed
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
227-0123-00LMechatronicsW6 credits4GT. M. Gempp
AbstractIntroduction into mechatronics. Sensors and actors. Electronic and hydraulic power amplifiers. Data processing and basics of real-time programming, multitasking, and multiprocessing. Modeling of mechatronical systems. Geometric, kinematical, and dynamic elements. Fundamentals of the systems theory. Examples from industrial applications.
ObjectiveIntroduction into the basics and technology of mechatronical devices. Theoretical and practical know-how of the basic elements of a mechatronical system.
ContentIntroduction into mechatronics. Sensors and actors. Electronic and hydraulic power amplifiers. Data processing and basics of real-time programming, multitasking, and multiprocessing. Modeling of mechatronical systems. Geometric, kinematical, and dynamic elements. Fundamentals of the systems theory. Examples from industrial applications.
Lecture notesRecommendation of textbook. Additional documentation to the individual topics. Documentation from industrial companies.
Prerequisites / NoticeBasic knowledge in electrical engineering and mechanics
227-0147-00LVLSI 2: From Netlist to Complete System on Chip Information W6 credits5GF. K. Gürkaynak, L. Benini
AbstractThis second course in our VLSI series is concerned with how to turn digital circuit netlists into safe, testable and manufacturable mask layout, taking into account various parasitic effects. Low-power circuit design is another important topic. Economic aspects and management issues of VLSI projects round off the course.
ObjectiveKnow how to design digital VLSI circuits that are safe, testable, durable, and make economic sense.
ContentThe second course begins with a thorough discussion of various technical aspects at the circuit and layout level before moving on to economic issues of VLSI. Topics include:
- The difficulties of finding fabrication defects in large VLSI chips.
- How to make integrated circuit testable (design for test).
- Synchronous clocking disciplines compared, clock skew, clock distribution, input/output timing.
- Synchronization and metastability.
- CMOS transistor-level circuits of gates, flip-flops and random access memories.
- Sinks of energy in CMOS circuits.
- Power estimation and low-power design.
- Current research in low-energy computing.
- Layout parasitics, interconnect delay, static timing analysis.
- Switching currents, ground bounce, IR-drop, power distribution.
- Floorplanning, chip assembly, packaging.
- Layout design at the mask level, physical design verification.
- Electromigration, electrostatic discharge, and latch-up.
- Models of industrial cooperation in microelectronics.
- The caveats of virtual components.
- The cost structures of ASIC development and manufacturing.
- Market requirements, decision criteria, and case studies.
- Yield models.
- Avenues to low-volume fabrication.
- Marketing considerations and case studies.
- Management of VLSI projects.

Exercises are concerned with back-end design (floorplanning, placement, routing, clock and power distribution, layout verification). Industrial CAD tools are being used.
Lecture notesH. Kaeslin: "Top-Down Digital VLSI Design, from Gate-Level Circuits to CMOS Fabrication", Lecture Notes Vol.2 , 2015.

All written documents in English.
LiteratureH. Kaeslin: "Top-Down Digital VLSI Design, from Architectures to Gate-Level Circuits and FPGAs", Elsevier, 2014, ISBN 9780128007303.
Prerequisites / NoticeHighlight:
Students are offered the opportunity to design a circuit of their own which then gets actually fabricated as a microchip! Students who elect to participate in this program register for a term project at the Integrated Systems Laboratory in parallel to attending the VLSI II course.

Prerequisites:
"VLSI I: from Architectures to Very Large Scale Integration Circuits and FPGAs" or equivalent knowledge.

Further details:
https://vlsi2.ethz.ch
227-0216-00LControl Systems II Information W6 credits4GR. Smith
AbstractIntroduction to basic and advanced concepts of modern feedback control.
ObjectiveIntroduction to basic and advanced concepts of modern feedback control.
ContentThis course is designed as a direct continuation of the course "Regelsysteme" (Control Systems). The primary goal is to further familiarize students with various dynamic phenomena and their implications for the analysis and design of feedback controllers. Simplifying assumptions on the underlying plant that were made in the course "Regelsysteme" are relaxed, and advanced concepts and techniques that allow the treatment of typical industrial control problems are presented. Topics include control of systems with multiple inputs and outputs, control of uncertain systems (robustness issues), limits of achievable performance, and controller implementation issues.
Lecture notesThe slides of the lecture are available to download.
LiteratureSkogestad, Postlethwaite: Multivariable Feedback Control - Analysis and Design. Second Edition. John Wiley, 2005.
Prerequisites / NoticePrerequisites:
Control Systems or equivalent
227-0518-10LDesign and Control of Electric MachinesW6 credits4GD. Bortis
AbstractThis course covers modeling and control concepts of modern drive systems and provides a deeper understanding of the dynamic operation of electric machines. Different aspects arising in the design of electric drive systems are investigated. The exercises are used to consolidate the concepts discussed.
ObjectiveThe objective of this course is to convey knowledge on control strategies of different types of electric machines and on design principles of variable speed drive systems. A dynamic modeling of the electromechanical system is investigated, enabling the proper design of cascaded speed, torque/current controllers. Further objectives are the identification of machine parameters and a short insight into basic inverter circuits applied in advanced motor drive systems. Exercises are used to consolidate the presented theoretical concepts.
Content1. Introduction to variable speed motor drive systems consisting of:
- Electromechanical system
- Power electronic system
- Control system
- Measurement system

2. Control structures and strategies of DC Machine/Synchronous machine/Asynchronous machine/Brushless DC machine.
- Cascaded control
- U/f Control
- Slip Control
- Field-oriented control

3. Dynamic Operation of electric machines
- Dynamic modeling of electromechanical system
- Controller types and design
- Current/torque control
- Speed control (Voltage control / Flux weakening)

4. Power electronic inverter circuits in variable speed drive systems
- Voltage and current source inverter systems
- Basic operation and pulse width modulation

5. Identification of machine parameters

6. Design principles of variable speed motor drives systems
Lecture notesLecture notes and associated exercises including correct answers
Prerequisites / NoticePrerequisites: Fundamentals of Electric Machines
376-0022-00LImaging and Computing in Medicine Information Restricted registration - show details W6 credits4GR. Müller, C. J. Collins
AbstractImaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine.
ObjectiveThe learning objectives include 1. Understanding and practical implementation of biosignal processes methods for imaging; 2. Understanding of imaging techniques including radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging; 3. Knowledge of computing, programming, modelling and simulation fundamentals; 4. Computational and systems thinking as well as scripting and programming skills; 5. Understanding and practical implementation of emerging computational methods and their application in medicine including artificial intelligence, deep learning, big data, and complexity; 6. Understanding of the emerging concept of personalised and in silico medicine; 7. Encouragement of critical thinking and creating an environment for independent and self-directed studying.
ContentImaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamentals as well as modern techniques and methods of imaging and computing in medicine. For the imaging portion of the course, biosignal processing, radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging are covered. For the computing portion of the course, computing, programming, and modelling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning; complexity and systems medicine; big data and personalised medicine; and computational physiology and in silico medicine.
The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped classroom setup. In the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short, interactive video lectures on the online learning platform Moodle. Students are able to post questions at the end of each video lecture or the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. For the flipped classroom, the lecturers may prepare additional teaching material to answer the posted questions (Q&A). Following the Q&A, the students will form small groups to acquire additional knowledge using online, python-based activities via JupyterHub or additionally distributed material and discuss their findings in teams. Learning outcomes will be reinforced with weekly Moodle assignments to be completed during the flipped classroom portion.
Lecture notesStored on Moodle.
Prerequisites / NoticeLectures will be given in English.
252-0220-00LIntroduction to Machine Learning Information Restricted registration - show details
Limited number of participants. Preference is given to students in programmes in which the course is being offered. All other students will be waitlisted. Please do not contact Prof. Krause for any questions in this regard. If necessary, please contact studiensekretariat@inf.ethz.ch
W8 credits4V + 2U + 1AA. Krause, F. Yang
AbstractThe course introduces the foundations of learning and making predictions based on data.
ObjectiveThe course will introduce the foundations of learning and making predictions from data. We will study basic concepts such as trading goodness of fit and model complexitiy. We will discuss important machine learning algorithms used in practice, and provide hands-on experience in a course project.
Content- Linear regression (overfitting, cross-validation/bootstrap, model selection, regularization, [stochastic] gradient descent)
- Linear classification: Logistic regression (feature selection, sparsity, multi-class)
- Kernels and the kernel trick (Properties of kernels; applications to linear and logistic regression); k-nearest neighbor
- Neural networks (backpropagation, regularization, convolutional neural networks)
- Unsupervised learning (k-means, PCA, neural network autoencoders)
- The statistical perspective (regularization as prior; loss as likelihood; learning as MAP inference)
- Statistical decision theory (decision making based on statistical models and utility functions)
- Discriminative vs. generative modeling (benefits and challenges in modeling joint vy. conditional distributions)
- Bayes' classifiers (Naive Bayes, Gaussian Bayes; MLE)
- Bayesian approaches to unsupervised learning (Gaussian mixtures, EM)
LiteratureTextbook: Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press
Prerequisites / NoticeDesigned to provide a basis for following courses:
- Advanced Machine Learning
- Deep Learning
- Probabilistic Artificial Intelligence
- Seminar "Advanced Topics in Machine Learning"
252-3800-00LAdvanced Topics in Mixed Reality Information Restricted registration - show details
Number of participants limited to 24.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 credits2SC. Holz
AbstractIn the recent years, there have been major technological advances in commercial virtual and augmented reality systems. Those advancements lead to many open challenges in terms of perception and interaction as well as technical challenges. In this course, students present and discuss papers from relevant top-tier research venues to extract techniques and insights from MR research.
ObjectiveThe objective of the seminar is for participants to collectively learn about the state-of-the-art research in Mixed Reality (primarily augmented and virtual reality) and closely related areas.
This includes the ability to concisely present results of pioneering as well as state-of-the-art research.
Another objective is to collectively discuss open issues in the field and developing a feeling for what constitutes research questions and outcomes in the field of technical Human-Computer Interaction.
ContentThe seminar format is as follows: attendees individually read one full-paper publication, working through its content in detail and possibly covering some of the background if necessary, and present the approach, methodology, research question and implementation as well as the evaluation and discussion in a 20–25 min talk in front of the others. Each presenter will then lead a short discussion about the paper, which is also guided by questions posed to the audience.
Literature24 papers will be provided by the lecturer and distributed in the first seminar on a first-come, first-served basis according to participants' preferences. The lecturer will also give a brief run-down across all 24 papers in a fast-forward style, covering each paper in a single-minute presentation, and outline the difficulties of each project. The schedule is fixed throughout the term with easier papers being presented earlier and more comprehensive papers presented later in the term.
Prerequisites / NoticeAll students (including students on waiting list) are welcome in the first seminar to see the overview over the papers we will discuss. After assigning papers, the seminar will be limited to 24 attendees, i.e., only enrolled students can participate in the presentations and discussions.
227-0669-00LChemistry of Devices and Technologies Restricted registration - show details
Limited to 30 participants.
W4 credits1V + 2UM. Yarema
AbstractThe course covers basics of chemistry and material science, relevant for modern devices and technologies. The course consists of interactive classroom activities (lectures, workshops, laboratory sessions) and individual component. For the latter, students accomplish individual projects to study, evaluate, and present a chosen technology from a viewpoint of chemistry and materials science.
ObjectiveThe course brings relevant chemistry knowledge, tailored to the needs of electrical engineering students. Students will gain understanding of the basic concepts of chemistry and materials science, acquire technology-related practical and analytic skills through the small group activities, laboratory experiments, workshops, and conference sessions as well as guidance through individual projects that require interdisciplinary and critical thinking.
Students will learn which materials, reactions, and device fabrication processes are important for nowadays technologies and products. They will gain important knowledge of state-of-the-art technologies from materials and fabrication viewpoints.
Finally, students will choose selected technologies or devices and study them in details in order to establish and understand the link between the structure, properties, and performance of functional materials. By doing this, students will also improve important soft skills, such as academic text writing, presenting, and active learning.
ContentStudents will spend 3h per week in the interactive classroom activities (lectures, workshops, laboratory and conference sessions) and additional 4-6h per week working on individual projects.
The goal of the individual student's project is to understand the chemistry related to the manufacture and operation of a specific device or technology and how the structure and properties of materials relate to the performance of devices/technologies (students will be able to choose which technology they want to study).
To ensure project-based continued learning throughout the semester, students will receive a matching information during the classroom activities. Individual projects will be evaluated by three interim project reports and by a final presentation.
LiteratureLecture notes will be made available on the website.
227-2211-00LSeminar in Computer Architecture Information Restricted registration - show details
Number of participants limited to 22.

The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
W2 credits2SO. Mutlu, M. H. K. Alser, J. Gómez Luna
AbstractThis seminar course covers fundamental and cutting-edge research papers in computer architecture. It has multiple components that are aimed at improving students' (1) technical skills in computer architecture, (2) critical thinking and analysis abilities on computer architecture concepts, as well as (3) technical presentation of concepts and papers in both spoken and written forms.
ObjectiveThe main objective is to learn how to rigorously analyze and present papers and ideas on computer architecture. We will have rigorous presentation and discussion of selected papers during lectures and a written report delivered by each student at the end of the semester.

This course is for those interested in computer architecture. Registered students are expected to attend every meeting, participate in the discussion, and create a synthesis report at the end of the course.
ContentTopics will center around computer architecture. We will, for example, discuss papers on hardware security; accelerators for key applications like machine learning, graph processing and bioinformatics; memory systems; interconnects; processing in memory; various fundamental and emerging paradigms in computer architecture; hardware/software co-design and cooperation; fault tolerance; energy efficiency; heterogeneous and parallel systems; new execution models; predictable computing, etc.
Lecture notesAll materials will be posted on the course website: https://safari.ethz.ch/architecture_seminar/
Past course materials, including the synthesis report assignment, can be found in the Fall 2020 website for the course: https://safari.ethz.ch/architecture_seminar/fall2020/doku.php
LiteratureKey papers and articles, on both fundamentals and cutting-edge topics in computer architecture will be provided and discussed. These will be posted on the course website.
Prerequisites / NoticeDesign of Digital Circuits.
Students should (1) have done very well in Design of Digital Circuits and (2) show a genuine interest in Computer Architecture.
Man-Technology-Environment Electives ("MTU")
NumberTitleTypeECTSHoursLecturers
227-0803-00LEnergy, Resources, Environment: Risks and ProspectsW6 credits4GO. Zenklusen, T. Flüeler
AbstractMultidisciplinary, interactive course focusing on the complexity of environmental and energy problems. Concepts of risk theory, decision science, long-term governance and environmental economics are applied to case studies related to energy transition and climate change. The course is designed for a multidisciplinary audience and as a training ground for critical thinking.
ObjectiveDevelop capacities for addressing environmental problems, scrutinising proposed solutions and contributing to debates across disciplines. Analyse complex issues from different perspectives. Understand interactions between the environment, science and technology, society and economy. Develop skills in critical thinking, scientific writing and presenting.
ContentFollowing a multidisciplinary outline of current issues in environmental and energy policy as well as the concept of "messy problems”, the course introduces theoretical and analytical approaches including risk, sustainability, as well as elements of institutional design and environmental economics. Large parts of the course are dedicated to case studies and contributions from participants. These serve for applying concepts to concrete challenges and as starting points for debates. Topics include: energy transition, innovation, the potential of renewable energy, carbon markets, the future of nuclear energy, climate change and development policy, long-term issues in various fields, disaster risk, the use of non-renewable resources, as well as visions such as 2000-watt society.
Lecture notesPresentations and reader provided in electronic formats.
LiteratureReader provided in electronic formats.
Prerequisites / Notice-
151-0228-00LManagement of Air Transport (Aviation II)W4 credits3GP. Wild
AbstractProviding an overview in management, planning, processes and operations in air transport, the lecture shall enable students to operate and lead a unit within that industry. In addition, the modules provide a good understanding for other transport modes and are a sort of "Mini MBA" (topics see below). Ideally, students complete first "Basics of Air Transport" yet there is no requirement for it.
ObjectiveAfter completion of the course, they shall be familiar with tasks, processes and interactions and have the ability to understand implications of developments in the airlines industry and its environment. This shall enable them to work within the air transport industry.
ContentOverall concept: This lecture builds on the content of lecture "Basics of Air Transport" (151-0227-00L) and provides deeper insights into the airline industry and managment practises. The lecture is taught by svereal different experts from Lufthansa, SWISS, and Federal Office of Civil Aviation.

Weekly: 1h independent preparation; 2h lectures and 1 h exercises with an expert in the respective field

Content: Strategy, Alliances & Joint Ventures, Negotiations with Stakeholder, Environmental Protection, Safety & Risk Management, Airline Economics, Network Management, Revenue Management & Pricing, Sales & Distribution, Airline Marketing, Scheduling & Slot Management, Fleet Management & Leasing, Continuing Airworthiness Management, Supply Chain Management, Operational Steering.

Excursion: Depending on COVID 19, we plan an excursion to the freight terminals at Zurich Airport and visits at SWISS Dispatch, Network Operations Control and Dispo.
Lecture notesNo offical lecture notes. Lecturers' slides will be made available
LiteratureLiterature will be provided by the lecturers respective there will be additional Information upon registration
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationassessed
Leadership and Responsibilityassessed
Sensitivity to Diversityfostered
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
Science in Perspective
Science in Perspective
» see Science in Perspective: Type A: Enhancement of Reflection Capability
» Recommended Science in Perspective (Type B) for D-ITET
Language Courses
» see Science in Perspective: Language Courses ETH/UZH
Bachelor's Project
The Bachelor's Thesis is the final part of the bachelor's program and should therefore only be taken in the semester in which the bachelor's diploma is acquired.

The minimum requirement for enrollment is the successful completion of:
- basic examination (examination blocks A+B) and
- subjects of the second year (examination blocks 1-3)
NumberTitleTypeECTSHoursLecturers
227-0100-00LBachelor's Thesis Restricted registration - show details
A 14 week long Bachelor's Thesis is the final part of the bachelor's program and shall therefore be taken during the semester in which the bachelor's diploma is acquired.

The minimum requirement for enrollment is the successful completion of:
- basic examination (examination blocks A+B)
- subjects of the second year (examination blocks 1-3)

Supervisor must be a professor at D-ITET or associated, see a link to the lists of those at https://ee.ethz.ch/studies/bachelor/third-year/bachelor-project.html
O12 credits26DSupervisors
AbstractDuring the Bachelor's Thesis, students will gain initial experience in the independent solution of a technical-scientific problem by applying the acquired specialist and social skills.
A Bachelor's Thesis should take about half of a student's time during one semester, i.e., about 300-400 hours. The thesis includes an oral presentation and a written report, and it is graded.
Objectivesee above
Prerequisites / NoticeA 14 week long Bachelor's Thesis is the final part of the bachelor's program and shall therefore be taken during the semester in which the bachelor's diploma is acquired.

The minimum requirement for enrollment is the successful completion of:
- basic examination (examination blocks A+B)
- subjects of the second year (examination blocks 1-3)

Supervisor must be a professor at D-ITET or associated, see a link to the lists of those at https://ee.ethz.ch/studies/bachelor/third-year/bachelor-project.html
227-1101-00LHow to Write Scientific Texts
Strongly recommended prerequisite for Semester Projects, Bachelor's, and Master Theses at D-ITET (MSc BME, BSc/MSc EEIT, MSc EST and MSc QE).
E-0 creditsU. Koch
AbstractThe four hour lecture covers the basics of writing and presenting of scientific work. The focus is on the structure and the main elements of a scientific text rather than the language. Citation rules, good practice of scientific writing and an overview on software tools are part of the training.
Objective- Knowledge on structure and content of scientific texts and presentations
- Stimulation of a discussion on how to write a scientific text versus an interesting novel
- Discussion of the practice of proper citing and critical reflection on plagiarism
Content* Topic 1: Structure of Scientific Texts (title, author list, abstract, state-of-the-art, "in this paper" paragraph, scientific part, summary, equations, figures)

* Topic 2: Structure of Scientific Presentations

* Topic 3: Citation Rules and Citation Software

* Topic 4: Guidelines for Research Integrity

The lecture will be given in two parts on two afternoons. Some exercises will be built into the lecture.
LiteratureETH "Citation Etiquette", see https://ethz.ch/students/en/studies/performance-assessments/plagiarism.html

ETH "Guidelines for Research Integrity", see Link
Prerequisites / NoticeStudents should be writing either a bachelor/semester/master thesis or a scientific publication in the immediate future.