Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Biologie Bachelor Information
Bachelor-Studium (Studienreglement 2020)
Obligatorische Fächer des Basisjahres
Basisprüfung
Basisprüfungsblock 1
Wird im HS angeboten
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
551-0126-00LGrundlagen der Biologie II: Zellen Information O6 KP5GK. Weis, F. Allain, Y. Barral, W.‑D. Hardt, U. Kutay, M. Peter, I. Zemp
KurzbeschreibungDie Vorlesung vermittelt eine Einführung in die Funktion und Regulation von Zellen.
LernzielEinführung in die Funktion und Regulation von Zellen
InhaltDie Lehrveranstaltung vermittelt ein grundlegendes Verständnis von der Struktur, Organisation, Funktion und Regulation der Zelle. Die Vorlesung ist in zwei Hauptteile gegliedert:
Teil 1: Zellbiologie der Prokaryonten, Evolution, Populationen
Dieser Abschnitt erläutert die generellen Prinzipien des Aufbaus und der Regulation von prokaryontischen Zellen, und erklärt die Genetik und Evolution von Bakterien.
Teil II: Vereinheitlichende Konzepte in Eukarya
Dieser Vorlesungsteil gibt eine breite Einführung in die generelle Struktur von eukaryontischer Zellen, und vermittelt wichtige Konzepte, die den intrazelluläre Aufbau und Transport und der Regulation der Genexpression in Eukaryonten betreffen.
SkriptDie neu konzipierte Vorlesung wird durch Skripte unterstützt.
LiteraturDie Vorlesung wird durch Skripte unterstützt. Ausserdem kann das Lehrbuch "Molecular Biology of the Cell", Alberts et al. 6th edition, Taylor und Francis, und "Brock Biology of Microorganisms", Madigan et al. 15th edition, Pearson, als Unterstützung für den Vortrag verwendet werden. "
402-0074-00LPhysik II Belegung eingeschränkt - Details anzeigen O3 KP2V + 1UT. M. Ihn
KurzbeschreibungGrundbegriffe der Thermodynamik und statistischen Mechanik, sowie Elemente des Elektromagnetismus
Lernziel1. Erlernen von grundlegenden physikalischen Konzepten, die für alle Naturwissenschaften relevant sind.
2. Erwerben der Fähigkeit, diese Konzepte auf Probleme der Physik, Chemie und Biologie anzuwenden
3. Erwerben der Fähigkeit geeignete mathematische Techniken einzusetzen
4. Relevante Aspekte eines Problems erkennen und ein Gefühl für die Grössenordnung relevanter Grössen entwickeln
Inhalt1. Grundbegriffe der Thermodynamik und statistischen Mechanik: Druck, Temperatur, chemisches Potential, Mikro- und Makrozustände, Entropie, innere Energie, Wärme, erster und zweiter Hauptsatz, Boltzmann Faktor, Maxwellsche Geschwindigkeitsverteilung.
2. Elemente des Elektromagnetismus: geometrische Optik, Linsen, Mikroskop, Licht als elektromagnetische Welle, Interferenz und Beugung, Plancksches Strahlungsgesetz, Wechselwirkung von Licht und Materie
401-0292-00LMathematik II Information Belegung eingeschränkt - Details anzeigen O5 KP3V + 2UE. W. Farkas
KurzbeschreibungMathematik I/II ist eine Einführung in die ein- und mehrdimensionale Analysis
und die Lineare Algebra unter besonderer Betonung von Anwendungen
in den Naturwissenschaften.
LernzielDie Studierenden

+ verstehen Mathematik als Sprache zur Modellbildung und als Werkzeug zur Lösung
angewandter Probleme in den Naturwissenschaften.
+ können Entwicklungsmodelle analysieren, Lösungen qualitativ beschreiben oder
allenfalls explizit berechnen: diskret/kontinuierlich in Zeit, Ebene und Raum.
+ können Beispiele und konkrete arithmetische und geometrische Situationen
der Anwendungen interpretieren und bearbeiten, auch mit Hilfe von
Computeralgebrasystemen.
Inhalt## Komplexe Zahlen ##
- Kartesische und Polar-Darstellung
- Rechnen mit komplexen Zahlen
- Lösungen algebraischer Gleichungen

## Lineare Algebra - Fortsetzung ##
- Komplexe Vektoren und Matrizen
- Weitere Arithmetische Aspekte
- LGS und Gauss-Verfahren

## Lineare DGL 2. Ordnung und Systeme 1. Ordnung ##
- Lösen mit Eigenwerten/-vektoren.
- Qualitative Lösungsverhalten
- Ebene und Räumliche (Lösungs-)Kurven

## Integral- und Differentialrechnung (II) ##
- Hauptsatz der Differential/Integralrechnung
- Uneigentliche Integrale
- Anwendungen
- Gebiets- und Volumenintegral
- - - - - - - - - - - - - - - - - - - - -
- Partielle Funktionen und Ableitungen
- Extrema
- Tangentialebene
- Verallgemeinerte Kettenregel

## Vektoranalysis ##
- Potentialtheorie
- Formel von Green
- Divergenz und Ebener Satz von Gauss
- Oberflächenintegral, Fluss
- Satz von Gauss im Raum.
SkriptIn Ergänzung zu den Vorlesungskapiteln der Lehrveranstaltungen fassen wir
wichtige Sachverhalte, Formeln und weitere Ausführungen jeweils in einem
Vademecum zusammen.

Dabei gilt:

* Die Skripte ersetzen nicht die Vorlesung und/oder die Übungen!
* Ohne den Besuch der Lehrveranstaltungen verlieren die Ausführungen
ihren Mehrwert.
* Details entwickeln wir in den Vorlesungen und den Übungen, um die hier
bestehenden Lücken zu schliessen.
* Prüfungsrelevant ist, was wir in der Vorlesung und in den Übungen behandeln.
LiteraturSiehe auch Lernmaterial > Literatur

**Lothar Papula**
Mathematik für Ingenieure und Naturwissenschaftler, 3 Bände, Sirnger Verlag,

Link

**Th. Wihler**
Mathematik für Naturwissenschaften, 2 Bände:
Einführung in die Analysis, Einführung in die Lineare Algebra;
Haupt-Verlag Bern, UTB.

**H. H. Storrer**
Einführung in die mathematische Behandlung der Naturwissenschaften I; Birkhäuser.
Via ETHZ-Bibliothek:
<Link>

**Ch. Blatter**
Lineare Algebra; VDF
auch als [pdf]<Link>
Voraussetzungen / Besonderes## Voraussetzungen ##
Mathematik I <Link>

## Übungen und Prüfungen ##
+ Die Übungsaufgaben (inkl. Multiple-Choice) sind ein wichtiger Bestandteil
der Lehrveranstaltung.
+ Es wird erwartet, dass Sie mindestens 75 % der wöchentlichen Serien bearbeiten
und zur Korrektur einreichen.
+ Der Prüfungsstoff ist eine Auswahl von Themen aus Vorlesung und Übungen. Für
eine erfolgreiche Prüfung ist die konzentrierte Bearbeitung der Aufgaben
unerlässlich.

## Einschreibung in die Übungen ##
Die Einschreibung in die Übungsgruppen erfolgt online.

## Zugang Übungsserien ##
Erfolgt auch online.
529-1012-00LOrganische Chemie II (für Biol./Pharm.Wiss./HST)O5 KP5GC. Thilgen
KurzbeschreibungDer zentrale Zusammenhang zwischen Struktur und Reaktivität organischer Moleküle wird anhand grundlegender Reaktionstypen der organischen Chemie aufgezeigt. Damit einhergehend wird ein elementares Syntheserepertoire erarbeitet.
LernzielErwerben grundlegender Kenntnisse der organischen Stoff-, Struktur- und Reaktionslehre. Besonderer Wert wird auf das Verständnis der Reaktionsmechanismen und den Zusammenhang zwischen Struktur und Reaktivität gelegt. Auf diese Weise wird nach und nach ein elementares Syntheserepertoire für kleine organische Moleküle erarbeitet. Die in der Vorlesung besprochenen Konzepte werden anhand konkreter Beispiele in den Übungen angewandt und vertieft.
InhaltGrundlagen der Reaktionslehre. Fundamentale Reaktionstypen der organischen Chemie und die wichtigsten Verbindungsklassen, insbesondere Carbonylverbindungen.

1 Reaktionslehre
1.1 Klassifizierung organisch-chemischer Reaktionen
1.2 Mittlere Bindungsenthalpien, Spannung
1.3 Einstufige Reaktionen (Synchron-Reaktionen)
1.4 Mehrstufige Reaktionen
1.5 Reaktive Zwischenstufen
1.6 Solvatation, Lösungsmittel, H-Brücken
1.7 Elemente der Konformationsanalyse
2 Alkane und Cycloalkane - Radikalische Halogenierung
2.1 Definitionen und physikalische Daten
2.2 Polarisierbarkeit, van-der-Waals-Kräfte, Ringspannung
2.3 Gewinnung und Verwendung von Alkanen
2.4 Radikalische Halogenierung von Alkanen
2.5 Verbrennung
3 Alkylhalogenide - Nukleophile Substitution
3.1 Physikalische Eigenschaften, Herstellungsmethoden
3.2 Nukleophile Substitution
3.3 Halogenhaltige Naturstoffe
4 Alkene - Eliminierung - Elektrophile Addition
4.1 Allgemeines
4.2 Herstellung von Alkenen - Eliminierungsreaktionen
4.3 Elektrophile Addition an Alkene
4.4 Diels-Alder-Reaktion
4.5 1,3-Dipolare Cycloadditionen
4.6 Alkene als Naturstoffe
5 Alkine, Cycloalkine
5.1 Physikalische Daten
5.2 Struktur und physikalische Eigenschaften
5.3 Herstellungsmethoden für Alkine
5.4 Reaktionen von Alkinen
5.5 Naturstoffe und Wirkstoffe mit Acetylen-Einheiten
6 Aromatische Verbindungen
6.1 Benzol und die Hückel-Regel
6.2 Weitere Aspekte der Aromatizität
6.3 Wichtige aromatische Carbo- und Heterocyclen
6.4 Einteilung der Aromaten nach ihrer Reaktivität bzgl. SEAr
6.5 Elektrophile aromatische Substitution (SEAr)
6.6 Beispiele elektrophiler aromatischer Substitutionen
6.7 Zweitsubstitution am Aromaten
6.8 Nitroverbindungen als vielseitige Synthesezwischenprodukte
7 Amine, Alkohole und Thiole
7.1 Allgemeines
7.2 Reduktion von Carbonylverbindungen mit Metallhydriden
7.3 Biochemische Reduktionen mit den Hydrid-Überträgern NADH und NADPH
7.4 Oxidation von Alkoholen mit Cr(VI)
7.6 Thiole und Sulfide
7.5 Naturstoffe
8 Aldehyde und Ketone - die Carbonylgruppe
8.1 Allgemeines
8.2 Umsetzung mit Wasser und Alkoholen - Hydrate und Acetale
8.3 Umsetzung mit Stickstoffverbindungen - Imine, Iminium-Ionen und Enamine
8.4 Nukleophile Addition von Grignard-Verbindungen und Organolithiumverbindungen an die Carbonylgruppe
9 Carbonsäuren und ihre Derivate
9.1 Allgemeines
9.2 Säurekatalysierte Veresterung von Carbonsäuren
9.3 Alternativmethoden für die Veresterung
9.4 Basenvermittelte Verseifung von Carbonsäurederivaten
9.5 Carbonsäureanhydride
9.6 Carbonsäurechloride
9.7 Konzept der Gruppenübertragungspotentiale von Carbonsäurederivaten
9.8 Zur Herstellung von Carbonsäureamiden
9.9 Derivate der Kohlensäure
10 Enolate von Carbonylverbindungen als Nukleophile - Aldolreaktion und verwandte Umsetzungen
10.1 Allgemeines
10.2 Darstellung von Enolaten und Enolat-Analoga
10.3 Regioselektivität bei der Deprotonierung von Ketonen
10.4 1,3-Dicarbonylverbindungen
10.5 Aldolkondensation und verwandte Reaktionen
10.6 Reaktionen zwischen Carbonsäurederivaten
10.7 Michael-Addition
10.8 Robinson-Anellierung
10.9 Wittig-Reaktion: Umsetzung von Aldehyden und Ketonen mit Phosphor-Yliden
SkriptEin gedrucktes oder elektronisches Skript ist erhältlich. Zu den Übungen werden Musterlösungen ausgegeben. Zusätzliche Unterlagen werden im Rahmen des aktuellen Moodle-Kurses "Organische Chemie II" online zur Verfügung gestellt (Link).
Literatur• Basisbuch Organische Chemie. Carsten Schmuck, Pearson Studium, 2018. (Kompaktes Lehrbuch für die ersten beiden Semester; 412 S.).
• Organische Chemie. K. Peter C. Vollhardt, Neil E. Schore, Übers. hrsg. von Holger Butenschön, 5. Aufl., Wiley-VCH, 2011.
• Organic Chemistry: Structure and Function. K. Peter C. Vollhardt, Neil E. Schore, 7th ed., W. H. Freeman & Company, 2014.
• Organic Chemistry. T. W. Graham Solomons, Craig B. Fryhle, Scott A. Snyder, 11th ed., internat. stud. vers., Wiley, Hoboken, N. J., 2014.
• Organische Chemie. J. Clayden, N. Greeves, S. Warren, 2. Aufl., Springer Spektrum, 2013.
• Organic Chemistry. J. Clayden, N. Greeves, S. Warren, 2nd ed., Oxford University Press, 2012.
• Organische Chemie. Paula Y. Bruice, 5. akt. Aufl., Pearson.
• Organic Chemistry (Global Edition). Paula Y. Bruice, 8th ed., Pearson.
• Essential Organic Chemistry (Global Edition). Paula Y. Bruice, 3rd ed., Pearson. (Designed for a one-term course)
• Organic Synthesis: The Disconnection Approach. Stuart Warren, Paul Wyatt; John Wiley & Sons Ltd.; Chichester; 2008.
• Workbook for Organic Synthesis: The Disconnection Approach. Stuart Warren; John Wiley & Sons Ltd.; Chichester; 2009.
Voraussetzungen / BesonderesBesuch der Vorlesung 529-1011-00 "Organische Chemie I für Biol./Pharm.Wiss./HST".
401-0643-00LStatistik I Information Belegung eingeschränkt - Details anzeigen O3 KP2V + 1UM. Kalisch
KurzbeschreibungEinführung in einfache Methoden und grundlegende Begriffe von Statistik und Wahrscheinlichkeitsrechnung für Nichtmathematiker. Die Konzepte werden anhand einiger anschaulicher Beispiele eingeführt.
LernzielGrundverständnis für die Gesetze des Zufalls und des Denkens in Wahrscheinlichkeiten. Kenntnis von Methoden zur Darstellung von Daten und zu ihrer quantitativen Interpretation unter Berücksichtigung der statistischen Unsicherheit.
InhaltModelle und Statistik für Zähldaten: Diskrete Wahrscheinlichkeitsmodelle, Binomial-Verteilung, Tests und Vertrauensintervalle für eine Wahrscheinlichkeit, Poisson-Verteilung und deren Statistik, weitere Verteilungen.
Modelle und Statistik für Messdaten: Beschreibende Statistik, Zufallsvariablen mit Dichten, t-Test und Wilcoxon-Test und zugehörige Vertrauensintervalle.
Regression: Das Modell der linearen Regression, Tests und Vertrauensintervalle, Residuenanalyse.
SkriptEs steht ein kurzes Skript zur Verfügung.
Literatur- W. A. Stahel, Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler, 5. Aufl., Vieweg, Braunschweig/Wiesbaden, 2007
Voraussetzungen / BesonderesVoraussetzungen: Grundlegende Mathematik-Kenntnisse wie sie im ersten Semester erworben werden.
Praktika des Basisjahres
NummerTitelTypECTSUmfangDozierende
551-0128-00LGrundlagen der Biologie I Information Belegung eingeschränkt - Details anzeigen
Belegungen über myStudies bis spätestens 29.1.2021. Spätere Belegungen werden nicht berücksichtigt.

Allgemeine Sicherheitsbestimmungen:
-Wo immer möglich müssen die Distanzregeln eingehalten werden.
-Alle Studierende müssen während des gesamten Kurses Masken tragen. Bitte Reserve-Masken bereithalten. Zugelassen sind Hygienemasken (IIR) oder Schutzmasken (FFP2) ohne Ventil. Community Masken (Stoffmasken) sind nicht erlaubt.
-Die Installation und Aktivierung der Schweizer Covid-App ist sehr zu empfehlen.
-Alle zusätzlichen Regeln für einzelne Kurse müssen eingehalten werden
-Studierende, die COVID-19-Symptome aufweisen, dürfen die ETH-Gebäude nicht betreten und müssen den verantwortlichen Kursleiter informieren.
O8 KP8PM. Gstaiger, A. Cléry, E. Dultz, C. H. Giese, R. Kroschewski, M. Künzler
KurzbeschreibungDieses einführende Praktikum gibt den Studenten einen Einblick in die Grundlagen des experimentellen Arbeitens in den klassischen und modernen Biowissenschaften. Im ersten Jahr (Praktikum GL BioI) absolviert jeder Student 12 Kurstage in denen die grundlegenden Konzepte und Methoden der Mikrobiologie, Biochemie und Molekularbiologie vermittelt werden.
LernzielEinführung in die Biologie und Erfahrung mit experimentellem Arbeiten.

Generelle Praktikumsinformation und Kursmaterialien findet mann unter Moodle

Generelle Praktikum Informationen werden auch über E-mail direkt an die Studenten verteilt (Assignment list, Instructions and Schedule & Performance Sheet).
InhaltDieses Praktikum gibt eine Einführung in grundlegende und essentielle Techniken der klassischen und modernen Biologie. Studenten nehmen an allen 12 ganztägigen Kurstagen teil.

Das Praktikum wird aufgrund notwendiger Sicherheitsmassnahmen wegen Covid-19 im FS21 am Donnerstag und am Freitag in zwei Schichten (1. Schicht 8:00-13:00 und 2. Schicht 13:30-18:30) durchgeführt.

Tag 1: Isolation und Kultivierung von Mikroorganismen
Tag 2: Morphologische, biochemische und genetische Charakterisierung von Mikroorganismen
Tag 3: Evolution von Mikroorganismen und deren abiotischen und biotischen Interaktionen
Tag 4: Lebensstil der Pilze als eukaryontische Vertreter der Mikroorganismen
Tag 5: DNA Extraktion, Tranformation (E.coli, yeast)
Tag 6: RNA Extraktion, Lebenszyklus der eukaryontischen Zelle
Tag 7: Ionenaustausch-basierte Reinigung der TAQ polymerase aus E coli
Tag 8: Charakterisierung der Fraktionen der TAQ polymerase-Reinigung (SDS-PAGE, WB)
Tag 9: mRNA splicing in der Hefe mittels RT-PCR und gereinigter TAQ polymerase
Tag 10: Affinitätschromatographie, Proteinkristallisation und -struktur
Tag 11: Proteinfaltung, Proteinstabilität und Enzymkinetik
Tag 12: Proteinfaltung, Proteinstabilität und Enzymkinetik
SkriptVersuchsanleitungen können von der Moodle Seite geladen werden.
Voraussetzungen / BesonderesBITTE BEACHTEN SIE AUCH DIE FOLGENDEN REGELN

Ihre Anwesenheit ist an allen 12 Praktikumstagen obligatorisch. Abwesenheiten werden nur bei Vorliegen eines ärztlichen Attests akzeptiert. Arztzeugnisse (Original) müssen spätestens fünf Tage nach Absenz bei Dr. M. Gstaiger (HPM F43) abgegeben werden.

Über Ausnahmen in besonders dringenden Fällen entscheidet der Studiendelegierte des D-BIOL.

SEHR WICHTIG!!

1. Aufgrund der sehr hohen Studierendenzahlen müssen Sie das Praktikum in myStudies bis 29.1.2021 belegen.

2. Spätere Anmeldungen sind NICHT mehr möglich und können NICHT berücksichtigt werden!

3. Die Semestereinschreibung für FS 2021 wird vom Rektorat voraussichtlich Ende Herbstsemester 2020 freigeben. Sie bekommen ein E-Mail von Rektorat sobald Einschreibung (myStudies) freigegeben worden ist.


Die 12 Kurstage des Praktikum Grundlagen Biologie I finden jeweils am Donnerstag oder Freitag während des Frühlingssemesters 2021 statt. Stellen Sie deshalb bereits jetzt sicher, dass Sie keine weiteren Verpflichtungen an diesen Tagen haben. Die genaue Kurseinteilung wird vor Beginn des Semesters mitgeteilt.
Aenderungen des Kursprogramms aufgrund notwendiger COVID-19 Sicherheitsmassnahmen sind möglich und werden rechtzeitig mitgeteilt.

PRAKTIKUMSTAGE FS21 (Donnertags):

25.02.; 04.03.; 11.03.; 18.03.; 25.03.; 15.04.; 22.04.; 29.04.; 06.05.; 20.05.; 27.05.; 03.06.

PRAKTIKUMSTAGE FS21 (Freitag):

26.02.; 05.03.; 12.03.; 19.03.; 26.03.; 16.04.; 23.04.; 30.04.; 07.05.; 21.05.; 28.05.; 04.06.

Kein Praktikum während der Osterferien: 2.04.-9.04
Bachelor-Studium (Studienreglement 2013)
2. Studienjahr, 4. Semester
Kernfächer
NummerTitelTypECTSUmfangDozierende
529-1024-00LPhysikalische Chemie II (für Biol./Pharm.Wiss.) Information O4 KP2V + 1UR. Riek
KurzbeschreibungKinetik biologischer und biochemischer Reaktionen, insbesonder auch katysierter Reaktionen. Oberflächen- und Transportphänomene. Beschreibung offener Systeme.
LernzielVerständnis der Grundlagen zur Beschreibung von zeitabhängigen Prozessen in chemischen und biologischen Systemen.
InhaltGrundbegriffe: Stofftransport, Transport in kontinuierlichen Systemen, Wärmeleitung, Viskosität von Gasen, Laminare Strömung durch Rohre, Ionenleitfähigkeit, Elektrisch geladene Grenzflächen, Elektrophorese, Sedimentation im Zentrifugalfeld, Eigenschaften der Plasmamembran, Transport durch Membranen, Membranpotentiale Reaktionsgeschwindigkeitsgesetze, Elementarreaktionen und zusammengesetzte Reaktionen, Molekularität, Reaktionsordnung, Experimentelle Methoden der Reaktionskinetik. Einfache Theorie chemischer Reaktionen: Temperaturabhängigkeit der Gleichgewichtskonstante und Arrheniusgleichung, Stosstheorie, Reaktionsquerschnitte, Theorie des Übergangszustandes. Zusammengesetzte Reaktionen: Reaktionsmechanismen und komplexe kinetische Systeme, Näherungsverfahren. Enzymkinetik. Kinetik geladener Teilchen. Diffusion und diffusionskontrollierte Reaktionen.
SkriptHandouts werden in der Vorlesung verteilt
LiteraturAdam, G., Läuger, P., Stark, G., 2003: Physikalische Chemie und Biophysik, 4. Aufl., Springer Verlag, Berlin.
Voraussetzungen / BesonderesVoraussetzungen: Physikalische Chemie I
551-0104-00LGrundlagen der Biologie II Information Belegung eingeschränkt - Details anzeigen
Belegungen über myStudies bis spätestens 29.1.2021. Spätere Belegungen werden nicht berücksichtigt.

Allgemeine Sicherheitsbestimmungen:
-Wo immer möglich müssen die Distanzregeln eingehalten werden.
-Alle Studierende müssen während des gesamten Kurses Masken tragen. Bitte Reserve-Masken bereithalten. Zugelassen sind Hygienemasken (IIR) oder Schutzmasken (FFP2) ohne Ventil. Community Masken (Stoffmasken) sind nicht erlaubt.
-Die Installation und Aktivierung der Schweizer Covid-App ist sehr zu empfehlen.
-Alle zusätzlichen Regeln für einzelne Kurse müssen eingehalten werden
-Studierende, die COVID-19-Symptome aufweisen, dürfen die ETH-Gebäude nicht betreten und müssen den verantwortlichen Kursleiter informieren.
O8 KP8PM. Gstaiger, E. Dultz, W. Kovacs, H. Stocker, S. Sunagawa, U. Suter, S. Werner
KurzbeschreibungDieses einführende Praktikum gibt den Studenten einen Einblick in den gesamten Bereich der klassischen und modernen Biowissenschaften. Im zweiten Jahr (Praktikum GL Bio II) führt jeder Student drei Kurstage in:
- Bioinformatics
- Zellbiologie II
- Genetik und
- Pflanzenphysiologie durch.

(Total 12 Experimente)

Jeder Versuch dauert einen ganzen Tag.
LernzielEinführung in die Biologie und Erfahrung mit experimentellem Arbeiten.

Generelle Praktikumsinformation und Kursmaterialien findet man unter: Moodle

Generelle Praktikum Informationen werden auch über E-mail direkt an die Studenten verteilt (Assignment list, Instructions and Schedule & Performance Sheet).
InhaltEs werden vier Blöcke angeboten: Zellbiologie II, Bioinformatik, Genetik und Pflanzenphysiologie. Jeder diese Blöcke dauert 3 Wochen

ZELLBIOLOGIE II:
- Zellen: Zelltypen, Zellfärbung, Zellfusion & Zellmotilität
- Gewebe und Entwicklung: Histologie an Mausembryonen & Embryogenese
- Reparatur: DNA Repair & Wundheilung

GENETIK:
- Genetisches Modell Hefe
- Genetisches Modell Drosophila
- Humangenetik

BIOINFORMATIK:
- the command line interface (UNIX/LINUX)
- reinforce programming skills in R
- programmatic, analytical and statistical principles

PFLANZENPHYSIOLOGIE:
- Phytohormone und weitere Wachstumsfaktoren
- Molekularbiologie des systemischen Gensilencing
- Pflanzen und Licht
- Literaturarbeit & Präsentationen

Die Studenten werden im Rahmen des Programms auch Kurzvorträge (10 min.) zu ausgewählten Themen halten.
SkriptVersuchsanleitungen

GENETIK:
- Die Unterlagen findet man unter: Moodle

BIOINFORMATIK:
- Die Unterlagen findet man unter: Moodle

PFLANZENPHYSIOLOGIE:
- Die Unterlagen findet man unter: Moodle

ZELLBIOLOGIE II:
- Die Unterlagen findet man unter: Moodle
Voraussetzungen / BesonderesBITTE BEACHTEN SIE AUCH DIE FOLGENDEN REGELN:

Ihre Anwesenheit ist an allen 12 Praktikumstagen obligatorisch. Abwesenheiten werden nur bei Vorliegen eines ärztlichen Attests akzeptiert. Arztzeugnisse (Original) müssen spätestens fünf Tage nach Absenz bei Dr. M. Gstaiger (HPM F43) abgegeben werden.

Über Ausnahmen in besonders dringenden Fällen entscheidet der Studiendelegierte des D-BIOL.

SEHR WICHTIG!!

1. Aufgrund der sehr hohen Studierendenzahlen müssen Sie das Praktikum in myStudies bis 29.1.2021 belegen.

2. Spätere Anmeldungen sind NICHT mehr möglich und können NICHT berücksichtigt werden!

3. Die Semestereinschreibung für FS21 wird vom Rektorat voraussichtlich Ende Herbstsemester 2020 freigeben. Sie bekommen ein E-Mail von Rektorat sobald Einschreibung (myStudies) freigegeben worden ist.

Über myStudies können die Studierenden sich in eine Übungsgruppe eintragen. Sobald die Lerneinheit in myStudies belegt wird, erscheint eine Textbox mit dem Hinweis, dass eine Gruppe ausgewählt werden kann. Entsprechend können die Studierenden im nächsten Schritt eine Gruppe auswählen. Falls sich mehr als 180 Studierende anmelden werden die Überzähligen auf eine Warteliste gesetzt und danach vom Praktikumsleiter eingeteilt.


Das Praktikum GL BioII findet an folgenden Tagen während des Frühlingssemesters 2021 statt. Stellen Sie deshalb bereits jetzt sicher, dass Sie keine weiteren Verpflichtungen an diesen Tagen haben:

PRAKTIKUMSTAGE FS21 (Freitags):

26.02.; 05.03.; 12.03.; 19.03.; 26.03.; 16.04.; 23.04.; 30.04.; 07.05.; 21.05.; 28.05.; 04.06.

In den Osterferien findet kein Praktikum statt: 02.04-09.04.
551-1298-00LGenetik, Genomik, Bioinformatik Information O4 KP2V + 2UE. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz
KurzbeschreibungDie Lerneinheit vermittelt die Grundlagen der modernen Genetik, Genomik und Bioinformatik mit Schwergewicht auf deren Anwendungen zum Verständnis biologischer Prozesse in Bakterien, Modellorganismen und dem Menschen. Die Einheit basiert auf dem Prinzip des "blended learning" und besteht aus Selbststudium auf Moodle, Übungen und Input Lectures von Experten aus dem Departement Biologie.
LernzielAm Ende dieser Lerneinheit kennen Sie die wichtigsten genetischen Methoden in verschiedenen Organismen und können die häufigsten bioinformatischen Analysen mit Hilfe von Online-Services anwenden. Sie kennen die Vor- und Nachteile verschiedener Modellsysteme für die genetische Untersuchung von biologischen Prozessen. Sie wissen welche Mutagenesemethoden es gibt und was die jeweiligen Vor- und Nachteile sind. Sie kennen die Schwierigkeiten bei der Auswahl des Phänotyps für die Selektion in einem Mutageneseexperiment. Sie kennen die Unterschiede zwischen dem Einzelgen-Ansatz und genomweiten Assoziationsstudien. Schliesslich sind Sie in der Lage zu beschreiben, wie Sie einen bestimmten biologischen Prozess mit Hilfe von welchen genetischen bzw. genomischen Methoden in welchem Organismus untersuchen würden.
InhaltDie Erscheinung und die Funktion (Phänotyp) eines Organismus wird durch das Zusammenspiel von Genom (Genotyp) und Umwelt bestimmt. Es gilt: Genotyp + Umwelt = Phänotyp. Das Verstehen dieser Zusammenhänge bis hin zur Voraussage des Phänotyps aufgrund der Kenntnis des Genotyps und der Umweltfaktoren ist eine der zentralen Herausforderungen der modernen Biologie.

In der Lerneinheit zu den Grundlagen der Biologie haben Sie den Aufbau und die Funktion des Genoms und dessen Vererbung gelernt. Ziel dieser Lerneinheit ist es nun, dass Sie lernen, wie genetische, genomische und bioinformatische Methoden angewendet werden, um biologische Prozesse - den Zusammenhang zwischen Genotyp und Phänotyp - zu verstehen.

Der Kurs beginnt mit einer Auffrischung und Vertiefung Ihres Grundlagenwissen anhand von interaktiven Lerneinheiten auf Moodle. Es folgt eine Einführung in die wichtigsten Methoden der Bioinformatik und der genomischen Analyse.

Nachdem Sie über die nötigen Grundlagen verfügen, lernen Sie, wie man entweder mit dem gezielten Ausschalten einzelner Genfunktionen oder aber dem Einführen zufälliger Mutationen im Genom biologische Prozesse untersuchen kann. Sie werden verschiedene Modellsysteme (Bakterien, Hefe, Drosophila) und genetische Ansätze im Menschen kennenlernen.

Zum Abschluss dieses ersten Kursabschnitts werden Sie gemeinsam mit einer Gruppe Ihrer Mitstudierenden eine eigenen genetische Studie zu einem vorgegebenen Thema entwerfen.

Herkömmliche genetische Methoden beruhen auf dem Ausschalten einzelner Gene und dem Beobachten des Effekts auf den Organismus (Phänotyp). Aufgrund des beobachteten Phänotyps schliesst man dann auf die normale Funktion des Gens. Dies ist eine starke Vereinfachung, denn Phänotypen basieren praktisch nie auf der Funktion eines einzelnen Gens auch wenn Umweltfaktoren konstant gehalten werden. Daher ist es wichtig, den Einfluss des gesamten Genoms im Zusammenspiel mit Umweltfaktoren auf einen Phänotyp - zum Beispiel die Entstehung einer Krankheit - zu verstehen. Der Schwerpunkt des zweiten Teils der Lerneinheit liegt auf den sich rapide entwickelnden Methoden der Genomik. Sie lernen, wie in der Genomik der Einfluss des gesamten Genoms auf einen Phänotyp erfasst werden kann und welche neuen Herausforderungen dies mit sich bringt. Wir betrachten diese Methoden in Modellorganismen und dem Menschen. Sie lernen wie sich das Genom von Krebszellen unter der Selektion des Überlebens dieser Zellen verändert und wie die Analyse der Krebsgenome neue Diagnosen und Therapien ermöglicht.

In dieser Lerneinheit setzen wir auf Active Learning. Jede Woche besteht aus einer eigenständigen Lerneinheit mit klar definierten Lernzielen. In den ersten zwei Stunden erarbeiten Sie die Grundlagen anhand von Texten, Videos und Fragebogen auf der Moodle Plattform. In der 3. Stunde (jeweils dienstags) hält ein Experte auf diesem Gebiet (z.B. Genetische Untersuchungen in der Hefe) ein Input-Referat, welches auf dem von Ihnen Gelernten aufbaut. In der 4. Stunde werden Sie zusammen mit dem Referenten den Stoff der Woche und die Übungen diskutieren. Während der gesamten Lerneinheit stehen Ihnen Assistierende und Dozierende via Online-Forum auf Moodle zur Verfügung.
SkriptDie Lerninhalte und die Folien der Input Lecture werden auf Moodle zusammengestellt. Dort finden Sie auch weiterführende Information (Artikel, Links, Videos) zum Thema. Sie können die Inhalte von Moodle ausdrucken.
LiteraturAlle Referenzen finden Sie auf Moodle. Um die neuesten Entwicklungen auf diesem Gebiet zu verfolgen, folgen Sie auf Twitter folgenden Experten:
@dgmacarthur
@EricTopol
und/oder @ehafen
Voraussetzungen / BesonderesDiese Lerneinheit baut auf der Bio IA Lerneinheit zu Genetik und Genomik auf und basiert auf Self-Learning Einheiten auf Moodle, einer Inputvorlesung durch Fachexperten aus dem D-BIOL und Übungen.
551-0108-00LGrundlagen der Biologie II: PflanzenbiologieO2 KP2VO. Voinnet, W. Gruissem, S. C. Zeeman
KurzbeschreibungWasserhaushalt, Assimilations- u.Transportvorgänge in Pflanzen; Entwicklungsbiologie, Stressphysiologie.
LernzielWasserhaushalt, Assimilations- u.Transportvorgänge in Pflanzen; Entwicklungsbiologie, Stressphysiologie.
SkriptDie Powerpoint-Präsentation wird als Handout verteilt. Zudem ist sie via Passwort-geschütztem Web-Link einsehbar.
LiteraturSmith, A.M., et al.: Plant Biology, Garland Science, New York, Oxford, 2010
551-0110-00LGrundlagen der Biologie II: MikrobiologieO2 KP2VJ. Vorholt-Zambelli, W.‑D. Hardt, J. Piel
KurzbeschreibungBakterielle Zellbiologie, molekulare Genetik, Genregulation, Wachstumsphysiologie, Metabolismus (Schwerpunkt Bacteria und Archaea), bakterielle Wirkstoffe, Mikrobielle Interaktionen
LernzielGrundprinzipien des Zellaufbaus, der Wachstumsphysiologie, des Energiemetabolismus, der Genexpression und Regulation. Diversität Bacteria und Archaea. Phylogenie und Evolution.
InhaltBakterielle Zellbiologie, molekulare Genetik, Genregulation, Wachstumsphysiologie, Metabolismus (Schwerpunkt Bacteria und Archaea), bakterielle Wirkstoffe, Mikrobielle Interaktionen
LiteraturBrock, Biology of Microorganisms (Madigan, M.T. and Martinko, J.M., eds.), 14th ed., Pearson Prentice Hall, 2015
Wahlmodule
Biodiversität
NummerTitelTypECTSUmfangDozierende
551-1174-00LSystembiologieO4 KP2V + 2UU. Sauer, K. M. Borgwardt, J. Stelling, N. Zamboni
KurzbeschreibungAusgehend von biologischen Fragen und Phänomenen unterrichtet der Kurs zur Beantwortung notwendige Konzepte von Modellierungen und Datenanalysen. In den Übungen erhalten die Studenten erste praktische Erfahrungen in einfacher Programmierung eigener Modelle und Analysen.
LernzielWir unterrichten kein oder nur wenig neues biologisches Wissen oder experimentelle Analysemethoden, sondern nutzen aus dem Studium bekanntes Wissen (z. B. Enzymkinetik, Regulationsmechanismen oder analytische Methoden). Unser Ziel ist es biologische Probleme aufzuzeigen, die aus dynamischen Interaktionen molekularer Elemente entstehen und mit Hilfe von Computermethoden gelöst werden können. Spezifische Ziele sind:
- Verständnis der Limitationen intuitiver Argumentation in der Biologie
- Ein erster Überblick über Computermethoden in der Systembiologie
- Übersetzen biologischer Fragestellungen in computerlösbare Probleme
- Praktische Erfahrungen in Programmierung mit MATLAB
- Erste Erfahrungen in der Computerinterprätation von biologischen Daten
- Verständnis typischer Abstraktionen in der Modellierung molekularer Systeme
InhaltWährend der ersten 7 Wochen konzentrieren wir uns auf mechanistische Modellierungen. Ausgehend von einfachen Enzymkinetiken betrachten wir zunächst die Dynamik von kleinerer Stoffwechselwegen und enden mit stöchiometrischen Modellen mittlerer Netzwerke. In der zweiten Kurshälfte konzentrieren wir uns auf die Analyse von typischen biologischen Omics Datensätzen. Wir starten mit multivariaten statistischen Methoden wie z. B. Clustering und Principal Component Analysis und enden mit Methoden um Netzwerke aus Daten zu lernen.
SkriptSkripten zur Vorbereitung werden per Moodle zur Verfügung gestellt
LiteraturDer Kurs wird nicht mit einem bestimmten Lehrbuch unterrichtet, aber 2 Bücher werden zur Unterstützung empfohlen:
- Systems Biology (Klipp, Herwig, Kowald, Wierling und Lehrach) Wiley-VCH 2009
- A First Course in Systems Biology (Eberhardt O. Voight) Garland Science 2012
376-0152-00LAnatomie und Physiologie II Information O5 KP4VM. Ristow, K. De Bock, M. Kopf, L. Slomianka, C. Spengler
KurzbeschreibungKenntnis der Grundlagen der Anatomie und Physiologie des Verdauungstraktes, der endokrinen Organe, des Harnapparates, und des Geschlechtsapparates. Kenntnis elementarer pathophysiologischer Zusammenhänge. Studium sämtlicher Gewebe und ausgewählter Organsysteme des Menschen anhand von histologischen Schnitten.
LernzielKenntnis der Grundlagen der Anatomie und Physiologie des Menschen und Kenntnis elementarer pathophysiologischer Zusammenhänge.
InhaltDie Vorlesung gibt einen kurzgefassten Überblick über Humananatomie und -physiologie.
3. Semester:
Grundbegriffe der Gewebelehre und Embryologie. Anatomie und Physiologie: Nervensystem, Muskel, Sinnesorgane, Kreislaufsystem, Atmungssystem.
4. Semester:
Anatomie und Physiologie: Verdauungstrakt, endokrine Organe, Stoffwechsel und Thermoregulation, Haut, Blut und Immunsystem, Harnapparat, zirkadianer Rhythmus, Reproduktionsorgane, Schwangerschaft und Geburt.
LiteraturAnatomie: Martini, Timmons, Tallitsch, "Anatomie", Pearson; oder Schiebler, Korf, "Anatomie", Steinkopff / Springer; oder Spornitz, "Anatomie und Physiologie, Lehrbuch und Atlas für Pflege-und Gesundheitsfachberufe", Springer

Physiologie: Thews/Mutschler/Vaupel: Anatomie, Physiologie, Pathophysiologie des Menschen,
Wissenschaftliche Verlagsgesellschaft, Stuttgart

oder

Schmidt/Lang/Thews: Physiologie des Menschen, Springer-Verlag, Heidelberg
Voraussetzungen / BesonderesDer Besuch der Anatomie und Physiologie I - Vorlesung ist Voraussetzung, da die Anatomie und Physiologie II - Vorlesung auf dem Wissen der im vorangegangenen Semester gelesenen Anatomie und Physiologie I - Vorlesung aufbaut.
701-0360-00LSystematische Biologie: Pflanzen Belegung eingeschränkt - Details anzeigen O5 KP2V + 3PA. Guggisberg
KurzbeschreibungDie Vorlesung bietet einen Überblick über die Diversität der Farn- und Blütenpflanzen. Es werden die Grundlagen der Systematik vermittelt unter Berücksichtigung von morphologischen, phylogenetischen und ökologische Aspekten. Bei den Pflanzenarten liegt der Schwerpunkt auf der Flora der Schweiz, aber auch Beispiele mit pharmazeutischer Relevanz und Nutzpflanzen werden miteinbezogen.
LernzielDie Studierenden kennen:
- die Grundlagen der Pflanzensystematik
- die wichtigsten übergeordneten Pflanzengruppen anhand morphologischer Merkmale und ihrer Biologie
- ausgewählte Familien der Blütenpflanzen
- ausgewählte Arten und deren Ökologie, mit speziellem Fokus auf die Flora der Schweiz
- Beispiele von Arznei- und Nutzpflanzen
- Standorteigenschaften und die wichtigsten Vegetationstypen des Tieflandes.
InhaltDie Vorlesung verleiht einen Überblick über Moose, Farne, Gymnospermen und Angiospermen. Ausgewählte Familien der Angiospermen werden ausführlich behandelt. Weitere Themen sind Grundlagen der Pflanzensystematik, Generationswechsel, phylogenetische Stammbäume, morphologische Begriffe, sowie Lebensweise und Ökologie der Pflanzen. Anhand ausgewählter Beispiele wird auf die Bedeutung der Pflanzen als Arznei-, Zeiger- und Nutzpflanzen eingegangen. Zudem wird eine Übersicht über Standorteigenschaften und Vegetation des Tieflandes in der Schweiz gegeben.

Im praktischen Teil lernen die Studierenden Merkmale von Blütenpflanzen zu analysieren und üben das Bestimmen von Pflanzenarten. Auf Exkursionen werden Artkenntnisse vermittelt und ein Einblick gegeben in Flora und Vegetation ausgewählter Standorte im Schweizer Mittelland, wobei auch einheimische Arzneipflanzen berücksichtigt werden.
LiteraturBaltisberger et al., Systematische Botanik: Einheimische Farn- und Samenpflanzen. vdf Hochschulverlag AG an der ETH Zürich (4. Aufl. 2013).
Hess et al., Bestimmunsschlüssel zur Flora der Schweiz. Springer, Basel (7. Aufl. 2015).
Stützel, Botanische Bestimmungsübungen. UTB, Ulmer Verlag (3. Aufl. 2015).

Baltisberger, Conradin, Frey & Rudow, 2016: eBot6. Internetapplikation.
Für Studierende frei zugänglich unter Link.
Voraussetzungen / BesonderesFür Studierende der Pharmazeutischen Wissenschaften Bsc obligatorisch, für Studierende Biologie Bsc und Umweltnaturwissenschaften Bsc mit Vertiefungen in Ökologie und Evolution (Biologie), Wald und Landschaft oder Umweltbiologie besonders empfohlen (Umweltnaturwissenschaften).
701-0245-00LEvolutionary AnalysisO2 KP2VS. Wielgoss, G. Velicer
KurzbeschreibungThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions.
LernzielThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences.
InhaltTopics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection.
LiteraturTextbook:
Evolutionary Analysis
Scott Freeman and Jon Herron
5th Edition, English.
Voraussetzungen / BesonderesThe exam is based on lecture and textbook.
Zelluläre und molekulare Biologie
NummerTitelTypECTSUmfangDozierende
551-1174-00LSystembiologieO4 KP2V + 2UU. Sauer, K. M. Borgwardt, J. Stelling, N. Zamboni
KurzbeschreibungAusgehend von biologischen Fragen und Phänomenen unterrichtet der Kurs zur Beantwortung notwendige Konzepte von Modellierungen und Datenanalysen. In den Übungen erhalten die Studenten erste praktische Erfahrungen in einfacher Programmierung eigener Modelle und Analysen.
LernzielWir unterrichten kein oder nur wenig neues biologisches Wissen oder experimentelle Analysemethoden, sondern nutzen aus dem Studium bekanntes Wissen (z. B. Enzymkinetik, Regulationsmechanismen oder analytische Methoden). Unser Ziel ist es biologische Probleme aufzuzeigen, die aus dynamischen Interaktionen molekularer Elemente entstehen und mit Hilfe von Computermethoden gelöst werden können. Spezifische Ziele sind:
- Verständnis der Limitationen intuitiver Argumentation in der Biologie
- Ein erster Überblick über Computermethoden in der Systembiologie
- Übersetzen biologischer Fragestellungen in computerlösbare Probleme
- Praktische Erfahrungen in Programmierung mit MATLAB
- Erste Erfahrungen in der Computerinterprätation von biologischen Daten
- Verständnis typischer Abstraktionen in der Modellierung molekularer Systeme
InhaltWährend der ersten 7 Wochen konzentrieren wir uns auf mechanistische Modellierungen. Ausgehend von einfachen Enzymkinetiken betrachten wir zunächst die Dynamik von kleinerer Stoffwechselwegen und enden mit stöchiometrischen Modellen mittlerer Netzwerke. In der zweiten Kurshälfte konzentrieren wir uns auf die Analyse von typischen biologischen Omics Datensätzen. Wir starten mit multivariaten statistischen Methoden wie z. B. Clustering und Principal Component Analysis und enden mit Methoden um Netzwerke aus Daten zu lernen.
SkriptSkripten zur Vorbereitung werden per Moodle zur Verfügung gestellt
LiteraturDer Kurs wird nicht mit einem bestimmten Lehrbuch unterrichtet, aber 2 Bücher werden zur Unterstützung empfohlen:
- Systems Biology (Klipp, Herwig, Kowald, Wierling und Lehrach) Wiley-VCH 2009
- A First Course in Systems Biology (Eberhardt O. Voight) Garland Science 2012
376-0152-00LAnatomie und Physiologie II Information O5 KP4VM. Ristow, K. De Bock, M. Kopf, L. Slomianka, C. Spengler
KurzbeschreibungKenntnis der Grundlagen der Anatomie und Physiologie des Verdauungstraktes, der endokrinen Organe, des Harnapparates, und des Geschlechtsapparates. Kenntnis elementarer pathophysiologischer Zusammenhänge. Studium sämtlicher Gewebe und ausgewählter Organsysteme des Menschen anhand von histologischen Schnitten.
LernzielKenntnis der Grundlagen der Anatomie und Physiologie des Menschen und Kenntnis elementarer pathophysiologischer Zusammenhänge.
InhaltDie Vorlesung gibt einen kurzgefassten Überblick über Humananatomie und -physiologie.
3. Semester:
Grundbegriffe der Gewebelehre und Embryologie. Anatomie und Physiologie: Nervensystem, Muskel, Sinnesorgane, Kreislaufsystem, Atmungssystem.
4. Semester:
Anatomie und Physiologie: Verdauungstrakt, endokrine Organe, Stoffwechsel und Thermoregulation, Haut, Blut und Immunsystem, Harnapparat, zirkadianer Rhythmus, Reproduktionsorgane, Schwangerschaft und Geburt.
LiteraturAnatomie: Martini, Timmons, Tallitsch, "Anatomie", Pearson; oder Schiebler, Korf, "Anatomie", Steinkopff / Springer; oder Spornitz, "Anatomie und Physiologie, Lehrbuch und Atlas für Pflege-und Gesundheitsfachberufe", Springer

Physiologie: Thews/Mutschler/Vaupel: Anatomie, Physiologie, Pathophysiologie des Menschen,
Wissenschaftliche Verlagsgesellschaft, Stuttgart

oder

Schmidt/Lang/Thews: Physiologie des Menschen, Springer-Verlag, Heidelberg
Voraussetzungen / BesonderesDer Besuch der Anatomie und Physiologie I - Vorlesung ist Voraussetzung, da die Anatomie und Physiologie II - Vorlesung auf dem Wissen der im vorangegangenen Semester gelesenen Anatomie und Physiologie I - Vorlesung aufbaut.
529-0430-00LPraktikum Physikalische Chemie (für Biol./Pharm.Wiss.)O3 KP4PE. C. Meister
KurzbeschreibungPraktische Einführung in wichtige und grundlegende experimentelle Methoden der physikalischen Chemie. Untersuchung qualitativer und quantitativer Zusammenhänge zwischen physikalisch-chemischen Grössen in den beobachteten Systemen.
LernzielPraktische Einführung in die Experimentiertechnik der physikalischen Chemie. Kennenlernen wichtiger Messmethoden und Geräte. Auswertung der Messdaten unter statistischen Gesichtspunkten und kritische Beurteilung der erhaltenen Resultate. Umgang mit Computern. Abfassen von ausführlichen Versuchsberichten.
InhaltExperimente aus den Gebieten chemische Thermodynamik, Kinetik, Elektrochemie, Viskosität, Oberflächenspannung, Spektroskopie. Simulation physikalisch-chemischer Phänomene mit Computern.
SkriptErich Meister, "Grundpraktikum Physikalische Chemie: Theorie und Experimente", 2. Auflage, vdf Hochschul-Verlag an der ETH, Zürich, 2012. Als e-Book erhältlich.
Weitere Unterlagen zu einzelnen Versuchen werden abgegeben.
Voraussetzungen / BesonderesSchutzkonzept: Link
701-0245-00LEvolutionary AnalysisO2 KP2VS. Wielgoss, G. Velicer
KurzbeschreibungThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions.
LernzielThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences.
InhaltTopics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection.
LiteraturTextbook:
Evolutionary Analysis
Scott Freeman and Jon Herron
5th Edition, English.
Voraussetzungen / BesonderesThe exam is based on lecture and textbook.
Biologische Chemie
NummerTitelTypECTSUmfangDozierende
551-1174-00LSystembiologieW4 KP2V + 2UU. Sauer, K. M. Borgwardt, J. Stelling, N. Zamboni
KurzbeschreibungAusgehend von biologischen Fragen und Phänomenen unterrichtet der Kurs zur Beantwortung notwendige Konzepte von Modellierungen und Datenanalysen. In den Übungen erhalten die Studenten erste praktische Erfahrungen in einfacher Programmierung eigener Modelle und Analysen.
LernzielWir unterrichten kein oder nur wenig neues biologisches Wissen oder experimentelle Analysemethoden, sondern nutzen aus dem Studium bekanntes Wissen (z. B. Enzymkinetik, Regulationsmechanismen oder analytische Methoden). Unser Ziel ist es biologische Probleme aufzuzeigen, die aus dynamischen Interaktionen molekularer Elemente entstehen und mit Hilfe von Computermethoden gelöst werden können. Spezifische Ziele sind:
- Verständnis der Limitationen intuitiver Argumentation in der Biologie
- Ein erster Überblick über Computermethoden in der Systembiologie
- Übersetzen biologischer Fragestellungen in computerlösbare Probleme
- Praktische Erfahrungen in Programmierung mit MATLAB
- Erste Erfahrungen in der Computerinterprätation von biologischen Daten
- Verständnis typischer Abstraktionen in der Modellierung molekularer Systeme
InhaltWährend der ersten 7 Wochen konzentrieren wir uns auf mechanistische Modellierungen. Ausgehend von einfachen Enzymkinetiken betrachten wir zunächst die Dynamik von kleinerer Stoffwechselwegen und enden mit stöchiometrischen Modellen mittlerer Netzwerke. In der zweiten Kurshälfte konzentrieren wir uns auf die Analyse von typischen biologischen Omics Datensätzen. Wir starten mit multivariaten statistischen Methoden wie z. B. Clustering und Principal Component Analysis und enden mit Methoden um Netzwerke aus Daten zu lernen.
SkriptSkripten zur Vorbereitung werden per Moodle zur Verfügung gestellt
LiteraturDer Kurs wird nicht mit einem bestimmten Lehrbuch unterrichtet, aber 2 Bücher werden zur Unterstützung empfohlen:
- Systems Biology (Klipp, Herwig, Kowald, Wierling und Lehrach) Wiley-VCH 2009
- A First Course in Systems Biology (Eberhardt O. Voight) Garland Science 2012
529-0222-00LOrganic Chemistry IIO3 KP2V + 1UB. Morandi
KurzbeschreibungThis course builds on the material learned in Organic Chemistry I or Organic Chemistry II for Biology/Pharmacy Students. Topics include advanced concepts and mechanisms of organic reactions and introductions to pericyclic and organometallic reactions. The basics or retro- and forward synthesis are also introduced.
LernzielGoals of this course include a deeper understanding of basic organic reactions and mechanisms as well as advanced transformations. Reactive intermediates including carbenes and nitrenes are covered, along with methods for their generation and use in complex molecule synthesis. Frontier molecular orbital theory (FMO) is introduced and used to rationalize pericyclic reactions including Diels Alder reactions, cycloadditions, and rearrangements (Cope, Claisen). The basic concepts and key reactions of catalytic organometallic chemistry, which are key methods in modern organic synthesis, are introduced, with an emphasis on their catalytic cycles and elementary steps. All of these topics are combined in an overview of strategies for complex molecule synthesis, with specific examples from natural product derived molecules used as medicines.
InhaltRedox neutral reactions and rearrangements, advanced transformations of functional groups and reaction mechanisms, carbenes and nitrenes, frontier molecular orbital theory (FMO), cycloadditions and pericyclic reactions, introduction to organometallic chemistry and catalytic cross couplings, protecting groups, retrosynthetic analysis of complex organic molecules, planning and execution of multi-step reactions.
SkriptThe lecture notes and additional documents including problem sets are available as PDF files online, without charge. Link: Link
LiteraturClayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012.
529-0430-00LPraktikum Physikalische Chemie (für Biol./Pharm.Wiss.)O3 KP4PE. C. Meister
KurzbeschreibungPraktische Einführung in wichtige und grundlegende experimentelle Methoden der physikalischen Chemie. Untersuchung qualitativer und quantitativer Zusammenhänge zwischen physikalisch-chemischen Grössen in den beobachteten Systemen.
LernzielPraktische Einführung in die Experimentiertechnik der physikalischen Chemie. Kennenlernen wichtiger Messmethoden und Geräte. Auswertung der Messdaten unter statistischen Gesichtspunkten und kritische Beurteilung der erhaltenen Resultate. Umgang mit Computern. Abfassen von ausführlichen Versuchsberichten.
InhaltExperimente aus den Gebieten chemische Thermodynamik, Kinetik, Elektrochemie, Viskosität, Oberflächenspannung, Spektroskopie. Simulation physikalisch-chemischer Phänomene mit Computern.
SkriptErich Meister, "Grundpraktikum Physikalische Chemie: Theorie und Experimente", 2. Auflage, vdf Hochschul-Verlag an der ETH, Zürich, 2012. Als e-Book erhältlich.
Weitere Unterlagen zu einzelnen Versuchen werden abgegeben.
Voraussetzungen / BesonderesSchutzkonzept: Link
376-0152-00LAnatomie und Physiologie II Information W5 KP4VM. Ristow, K. De Bock, M. Kopf, L. Slomianka, C. Spengler
KurzbeschreibungKenntnis der Grundlagen der Anatomie und Physiologie des Verdauungstraktes, der endokrinen Organe, des Harnapparates, und des Geschlechtsapparates. Kenntnis elementarer pathophysiologischer Zusammenhänge. Studium sämtlicher Gewebe und ausgewählter Organsysteme des Menschen anhand von histologischen Schnitten.
LernzielKenntnis der Grundlagen der Anatomie und Physiologie des Menschen und Kenntnis elementarer pathophysiologischer Zusammenhänge.
InhaltDie Vorlesung gibt einen kurzgefassten Überblick über Humananatomie und -physiologie.
3. Semester:
Grundbegriffe der Gewebelehre und Embryologie. Anatomie und Physiologie: Nervensystem, Muskel, Sinnesorgane, Kreislaufsystem, Atmungssystem.
4. Semester:
Anatomie und Physiologie: Verdauungstrakt, endokrine Organe, Stoffwechsel und Thermoregulation, Haut, Blut und Immunsystem, Harnapparat, zirkadianer Rhythmus, Reproduktionsorgane, Schwangerschaft und Geburt.
LiteraturAnatomie: Martini, Timmons, Tallitsch, "Anatomie", Pearson; oder Schiebler, Korf, "Anatomie", Steinkopff / Springer; oder Spornitz, "Anatomie und Physiologie, Lehrbuch und Atlas für Pflege-und Gesundheitsfachberufe", Springer

Physiologie: Thews/Mutschler/Vaupel: Anatomie, Physiologie, Pathophysiologie des Menschen,
Wissenschaftliche Verlagsgesellschaft, Stuttgart

oder

Schmidt/Lang/Thews: Physiologie des Menschen, Springer-Verlag, Heidelberg
Voraussetzungen / BesonderesDer Besuch der Anatomie und Physiologie I - Vorlesung ist Voraussetzung, da die Anatomie und Physiologie II - Vorlesung auf dem Wissen der im vorangegangenen Semester gelesenen Anatomie und Physiologie I - Vorlesung aufbaut.
3. Studienjahr, 6. Semester
Konzeptkurse
NummerTitelTypECTSUmfangDozierende
529-0732-00LProteins and Lipids
Hinweis für BSc Biologiestudierende: Nur einer der beiden Konzeptkurse 529-0731-00 Nucleic Acids and Carbohydrates (Herbstsemester) oder 529-0732-00 Proteins and Lipids (Frühlingsemester) kann für das Bachelorstudium angerechnet werden.
W6 KP3GD. Hilvert
KurzbeschreibungAn overview of the relationship between protein sequence, conformation and function.
LernzielOverview of the relationship between protein sequence, conformation and function.
InhaltProteins, structures and properties, (bio)synthesis of polypeptides, protein folding and design, protein engineering, chemical modification of proteins, proteomics.
LiteraturGeneral Literature:
- T.E. Creighton: Proteins: Structures and Molecular Properties, 2nd Edition, H.W. Freeman and Company, New York, 1993.
- C. Branden, J. Tooze , Introduction to Protein Structure, Garland Publishing, New York, 1991.
- J. M. Berg, J. L. Tymoczko, L. Stryer: Biochemistry, 5th edition, H.W. Freeman and Company, New York, 2002.
- G.A. Petsko, D. Ringe: Protein Structure and Function, New Science Press Ltd., London, 2004.

Original Literature:
Citations from the original literature relevant to the individual lectures will be assigned weekly.
551-0324-00LSystems Biology Information W6 KP4VP. Picotti, M. Claassen, U. Sauer, B. Snijder, B. Wollscheid
KurzbeschreibungIntroduction to experimental and computational methods of systems biology. By using baker’s yeast as a thread through the series, we focus on global methods for analysis of and interference with biological functions. Illustrative applications to other organisms will highlight medical and biotechnological aspects.
Lernziel- obtain an overview of global analytical methods
- obtain an overview of computational methods in systems biology
- understand the concepts of systems biology
InhaltOverview of global analytical methods (e.g. DNA arrays, proteomics, metabolomics, fluxes etc), global interference methods (siRNA, mutant libraries, synthetic lethality etc.) and imaging methods. Introduction to mass spectrometry and proteomics. Concepts of metabolism in microbes and higher cells. Systems biology of developmental processes. Concepts of mathematical modeling and applications of computational systems biology.
Skriptno script
LiteraturThe course is not taught by a particular book, but some books are suggested for further reading:

- Systems biology in Practice by Klipp, Herwig, Kowald, Wierling und Lehrach. Wiley-VCH 2005
551-0320-00LCellular Biochemistry (Part II)W3 KP2VY. Barral, R. Kroschewski, A. E. Smith
KurzbeschreibungThis course will focus on molecular mechanisms and concepts underlying cellular biochemistry, providing advanced insights into the structural and functional details of individual cell components, and the complex regulation of their interactions. Particular emphasis will be on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes.
LernzielThe full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterization of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain how different molecules and signaling pathways can be integrated during complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, and cell division. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer or during cellular infection.
InhaltSpatial and temporal integration of different molecules and signaling pathways into global cellular processes, such as cell division, cell infection and cell motility. Emphasis is also put on the understanding of pathologies associated with defective cell physiology, such as cancer or during cellular infection.
LiteraturRecommended supplementary literature may be provided during the course.
Voraussetzungen / BesonderesTo attend this course the students must have a solid basic knowledge in chemistry, biochemistry, cell biology and general biology. Biology students have in general already attended the first part of the "Cellular Biochemistry" concept course (551-0319-00). The course will be taught in English.
In addition, the course will be based on a blended-learning scenario, where frontal lectures will be complemented with carefully chosen web-based teaching elements that students access through the ETH Moodle platform.
551-0314-00LMicrobiology (Part II)W3 KP2VW.‑D. Hardt, L. Eberl, J. Piel, J. Vorholt-Zambelli
KurzbeschreibungAdvanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
LernzielThis concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
InhaltAdvanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
SkriptUpdated handouts will be provided during the class.
LiteraturCurrent literature references will be provided during the lectures.
Voraussetzungen / BesonderesEnglish
551-0326-00LCell Biology Information W6 KP4VS. Werner, H. Gehart, W. Kovacs, M. Schäfer, U. Suter, A. Wutz, weitere Dozierende
KurzbeschreibungThis Course introduces principle concepts, techniques, and experimental strategies used in modern Cell Biology. Major topics include: neuron-glia interactions in health and disease; mitochondrial dynamics; stem cell biology; growth factor action in development, tissue repair and disease; cell metabolism, in particular sensing and signaling mechanisms, cell organelles, and lipid metabolism.
Lernziel-To prepare the students for successful and efficient lab work by learning how to ask the right questions and to use the appropriate techniques in a research project.
-To convey knowledge about neuron-glia interactions in health and disease.
- To provide information on different types of stem cells and their function in health and disease
-To provide information on growth factor signaling in development, repair and disease and on the use of growth factors or their receptors as drug targets for major human diseases
-To convey knowledge on the mechanisms underlying repair of injured tissues
-To provide the students with an overview of mitochondrial dynamics.
-Providing an understanding of RNA processing reactions and their regulations.
-To provide a comprehensive understanding of metabolic sensing mechanisms occurring in different cell types and organelles in response to glucose, hormones, oxygen, nutrients as well as lipids, and to discuss downstream signaling pathways and cellular responses.
-To provide models explaining how disturbances in complex metabolic control networks and bioenergetics can lead to disease and to highlight latest experimental approaches to uncover the intricacies of metabolic control at the cellular and organismal level.
-Providing the background and context that foster cross-disciplinary scientific thinking.
551-0318-00LImmunology IIW3 KP2VA. Oxenius, M. Kopf, S. R. Leibundgut, E. Slack, weitere Dozierende
KurzbeschreibungEinführung in die zellulären und molekularen Grundlagen des Immunsystems und die Immunreaktionen gegen verschiedene Pathogene, Tumore, Transplantate, und körpereigene Strukturen (Autoimmunität)
LernzielDie Vorlesung soll ein grundlegendes Verständnis vermitteln über:
- die Interaktion der verschiedenen Immunzellen auf zellulärer und molekularer Ebene?
- Erkennung und Abwehr ausgewählter Viren, Bakterien, und Parasiten.
- Abwehr von Tumoren.
- Mechanismen der Toleranz für körpereigene Moleküle.
- Funktion des Immunsystems im Darm und warum kommensale Bakterien keine Immunantwort auslösen.
- Immunpathologie und entzündliche Erkrankungen.
InhaltZiel dieser Vorlesung ist das Verständnis:
> Wie Pathogene vom unspezifischen Immunystem erkannt werden
> Wie Pathogene vom Immunsystem bekämpft werden
> Immunantworten der Haut, Lung, und Darms
> Tumorimmunologie
> Migration von Immunzellen
> Toleranz und Autoimmunität
> das Gedächtnis von T Zellen
SkriptDie Vorlesungsunterlagen der Dozenten sind verfügbar in Moodle
LiteraturEmpfohlen: Kuby Immunology (Freeman)
376-0209-00LMolecular Disease MechanismsW6 KP4VC. Wolfrum, H. Gahlon, M. Kopf
KurzbeschreibungIn this course the mechanisms of disease development will be studied. Main topics will be:

1. Influence of environmental factors with an emphasis on inflammation and the immune response.
2. Mechanisms underlying disease progression in metabolic disorders, integrating genetic and environmental factors.
3. Mechanisms underlying disease progression in cancer, integrating genetic and environment
LernzielTo understand the mechanisms governing disease development with a special emphasis on genetic and environmental associated components
SkriptAll information can be found at:

Link

The enrollment key will be provided by email
551-0307-01LMolecular and Structural Biology II: Molecular Machines and Cellular Assemblies
D-BIOL students are obliged to take part I and part II as a two-semester course.
W3 KP2VN. Ban, F. Allain, S. Jonas, M. Pilhofer
KurzbeschreibungThis course on advanced topics in Molecular Biology and Biochemistry will cover the structure and function of cellular assemblies. General topics in basic biochemistry will be further developed with examples of the function of large cellular machines involved in DNA packaging, translation, virus architecture, RNA processing, cell-cell interactions, and the molecular basis of CRISPER systems.
LernzielStudents will gain a deep understanding of large cellular assemblies and the structure-function relationships governing their function in fundamental cellular processes. The lectures throughout the course will be complemented by exercises and discussions of original research examples to provide students with a deeper understanding of the subjects and to encourage active student participation.
InhaltAdvanced class covering the state of the research in structural molecular biology of basic cellular processes with emphasis on the function of large cellular assemblies.
SkriptUpdated handouts will be provided during the class.
LiteraturThe lecture will be based on the latest literature. Additional suggested
literature:
Branden, C., and J. Tooze, Introduction to Protein Structure, 2nd ed.
(1995). Garland, New York.
Blockkurse
Anmeldung zu Blockkursen muss zwingend über die website Link
Anmeldung möglich von 19.12.2020 bis 09.01.2021

Bitte die ETH Aufnahmekriterien für die Aufnahme von Studierenden der ETH in ETH Blockkurse auf der Blockkurs-Anmeldeseite unter "Zuteilung" beachten.
Blockkurse im 1. Semesterviertel
Von 23.02.2021 bis 17.03.2021
NummerTitelTypECTSUmfangDozierende
551-0342-00LMetabolomics Belegung eingeschränkt - Details anzeigen
Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PN. Zamboni, U. Sauer
KurzbeschreibungThe course covers all basic aspects of metabolome measurements, from sample sampling to mass spectrometry and data analysis. Participants work in groups and independently perform and interpret metabolomic experiments.
LernzielPerforming and reporting a metabolomic experiment, understanding pro and cons of mass spectrometry based metabolomics. Knowledge of workflows and tools to assist experiment interpretation, and metabolite identification.
InhaltBasics of metabolomics: workflows, sample preparation, targeted and untargeted mass spectrometry, instrumentation, separation techniques (GC, LC, CE), metabolite identification, data interpretation and integration, normalization, QCs, maintenance.

Soft skills to be trained: project planning, presentation, reporting, independent working style, team work.
551-0339-00LMolecular Mechanisms of Cell Dynamics Belegung eingeschränkt - Details anzeigen
Number of participants limited to 18.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PE. Dultz, Y. Barral, U. Kutay, M. Peter, K. Weis
KurzbeschreibungApplication of current experimental strategies to study the dynamics of complex and highly regulated cellular processes.
LernzielIn this course, students will
- learn what principles govern cellular dynamics and how these are regulated.
- learn to evaluate and to apply current strategies to study the dynamics of complex and highly regulated cellular processes
InhaltDuring this Block-Course, the students will learn to
(1) describe the important mechanisms and regulators of dynamic processes in cells,
(2) perform experimental techniques to quantify dynamic cellular processes,
(3) evaluate and compare experimental strategies and model systems,
(4) formulate and present scientific concepts in an oral presentation.

Topics discussed will include
- mobility in the cell (passive and active)
- compartmentalization (by membranes and via phase separation)
- examples of cell biological processes dependent on mobility and compartmentalization.

Students will work in small groups in individual labs on one research project (8 full days of practical work; every group of students will stay in the same lab during the entire course). The projects are close to the actual research carried out in the participating research groups, but with a clear connection to the subject of the course.
LiteraturDocumentation and recommended literature (review articles and selected primary literature) will be provided during the course.
Voraussetzungen / BesonderesThis course will be taught in english.
551-1516-00LNeuron-Glia Interactions and Myelination in Health and Disease Belegung eingeschränkt - Details anzeigen
Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PU. Suter
KurzbeschreibungThe course provides general basic insights and new perspectives in the development, plasticity and repair of the nervous system. The focus is on molecular, cellular and transgenic approaches, mainly with the mouse as model system.
LernzielThrough a combination of practical work with lectures, discussions, project preparations and presentations, the students learn basic principles of neural plasticity and repair in health and disease. The course is linked to ongoing research projects in the lab to provide the participants with insights into current experimental approaches and strategies.
551-0118-00LCell Biology of Plant-Fungus Interaction Belegung eingeschränkt - Details anzeigen
Number of participants limited to 5.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PC. Sánchez-Rodríguez
KurzbeschreibungThe course is a collaboration of the Plant Cell Biology groups of ETHZ and UZH. The students will learn key concepts related with the remarkable ability of plants to adapt to challenges provided by their environment (both biotic, such as pathogens, and abiotic, like nutrient deficiencies). A multidisciplinary approach including molecular genetics, cell biology, biochemistry and bioinformatics tool
LernzielIn this course, students will get cell biological and molecular genetics insights into the developmental plasticity of plants to adapt to their environmental conditions using the model plant Arabidopsis thaliana. With this aim, they will actively participate in ongoing research projects tutored by doctoral students.
InhaltStudents will be engaged in research projects aimed to understand the specialized mechanisms evolved by the plants to grow under challenging environments. In a lecture series, the theoretical background for the projects and their interrelationship is provided.
Students will design and perform experiments, evaluate experimental results, present their projects, and discuss recent publications to understand the relevance of their work in the context of the current state of plant development and stress response.
SkriptNo script
LiteraturThe recommended literature and list of individual reading assignments will be provided during the course
Voraussetzungen / BesonderesAll general lectures will be held at ETH Centrum (LFW building). Students will be divided into small groups to carry out experiments at ETH (Central; LFW) and UZH (Botanical Garden)
Blockkurse im 2. Semesterviertel
Von 18.03.2021 bis 16.04.2021
NummerTitelTypECTSUmfangDozierende
376-1346-00LStudy of Epigenetic Mechanisms in Mental Health Belegung eingeschränkt - Details anzeigen
Number of participants limited to 10.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected.
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged.
-Any additional rules for individual courses have to be respected.
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.
W6 KP7PI. Mansuy
KurzbeschreibungThis block course is focused on the study of the epigenetic mechanisms that regulate complex brain functions and behavior. It provides an overview of molecular methods used in experimental mice or in human samples to investigate epigenetic processes that control genome activity and gene expression, and are associated with cognitive functions and behavioral responses.
LernzielThe purpose is to learn the principles of major methods in epigenetics that allow examine genome activity at the level of DNA, RNA or protein, in the context of complex brain functions.
Inhalt4 independent projects for 3 students each covering various aspects of epigenetic mechanisms. It will focus on state-of-the-art techniques to measure or manipulate gene expression and gene activity in the adult brain or in cell culture, and analyse the effects in vitro or in vivo using omics analyses, molecular and biochemical tools and behavioral testing.
SkriptProvided at the beginning of the practical.
551-0352-00LIntroduction to Mass Spectrometry-Based Proteomics Belegung eingeschränkt - Details anzeigen
Number of participants limited to 12.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PL. Gillet, P. Picotti
KurzbeschreibungProtein-Analyse durch Massenspektrometrie
Die folgende Thematik wird abgedeckt: Grundlagen der biologischen Massenspektrometrie einschliesslich Instrumentation, Datenaufnahme und -bearbeitung; Anwendung zur Identifizierung und Charakterisierung von Proteinen; Probevorbereitung; Proteomic-Strategien einschliesslich quantitative Analysen.
LernzielProbenvorbereitung fuer die MS Analyse (Trypsin Verdau, C18 Aufreinigung)
Prinzipien LC-MS basierter Datenaquisition (QTOF und/oder Ion Trap Instrumenten)
Qualitative Proteom Analyse (Protein Identifizierung mit Hilfe von Mascot und/oder Sequest Software)
Quantitative Proteom Analyse (unmarkierte und Isotopen markierte Strategien)
Analyse und Auswertung von Datensätzen zur Detektion von hoch- bzw. runter-regulierten Proteinen
551-0434-00LNMR Spectroscopy in Biology Belegung eingeschränkt - Details anzeigen
Number of participants limited to 6.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PF. Allain, A. D. Gossert, K. Wüthrich
KurzbeschreibungIn this block course, students actively participate in ongoing research projects in the research groups of Profs. Allain, Wüthrich and Dr. Gossert. The students will be tutored in their experimental work by experienced postdoc students. In addition, the course includes specific lectures that provide the theoretical background for the experimental work, as well as exercises and literature work.
LernzielThe course provides first "hands on" insight into applications of NMR spectroscopy in biological sciences. The course should enable the students to understand the potential and limitations of NMR applied to biological problems.
InhaltThe topics include studies of proteins, RNA and protein-RNA interactions,

Participation in one of the following projects will be possible:
- NMR of RNA
- NMR of several protein-RNA complexes (hnRNPF, nPTB, SR proteins)
- NMR studies of protein-ligand interactions
- dynamics of protein-RNA complexes
- Segmental isotopic labeling to study multidomain proteins
- NMR Methods Development
SkriptNo script
LiteraturLists of individual reading assignments will be handed out.
529-0810-01LOrganische Chemie II (für D-BIOL) Belegung eingeschränkt - Details anzeigen
-Wo immer möglich müssen die Distanzregeln eingehalten werden.
-Alle Studierende müssen während des gesamten Kurses Masken tragen. Bitte Reserve-Masken bereithalten. Zugelassen sind Hygienemasken (IIR) oder Schutzmasken (FFP2) ohne Ventil. Community Masken (Stoffmasken) sind nicht erlaubt.
-Die Installation und Aktivierung der Schweizer Covid-App ist sehr zu empfehlen.
-Alle zusätzlichen Regeln für einzelne Kurse müssen eingehalten werden -Studierende, die COVID-19-Symptome aufweisen, dürfen die ETH-Gebäude nicht betreten und müssen den verantwortlichen Kursleiter informieren.
W12 KP4PC. Thilgen
KurzbeschreibungBearbeiten eines organisch-synthetischen Teilprojekts aus der aktuellen Forschung einer Gruppe des Laboratoriums für Organische Chemie unter der Anleitung von Doktorierenden.
LernzielErlernen von Planung und Durchführung anspruchsvoller Mehrstufensynthesen unter Einbezug moderner Methoden; vertieftes Verständnis organisch-chemischer Reaktionen durch Experimente; Entwickeln eines organisch-synthetischen Forschungsprojekts; akkurates Protokollieren, Verfassen eines Berichts im Stil einer Veröffentlichung und Präsentieren der Ergebnisse in Form eines Kurzvortrags.
InhaltBearbeiten eines organisch-synthetischen Teilprojekts aus der aktuellen Forschung einer Gruppe des Laboratoriums für Organische Chemie unter der Anleitung von Doktorierenden.
SkriptKein Skript.
LiteraturKeine Pflichtliteratur. Literatur wird von den betreuenden Doktorierenden angegeben bzw. zur Verfügung gestellt.
Voraussetzungen / BesonderesVoraussetzungen: bestandenes Praktikum Organische Chemie I (529-0229-00); bestandene Sessionsprüfung Organische Chemie I (529-0221-00 bzw. 529-1011-00) / Organische Chemie II (529-0222-00 bzw. 529-1012-00). Die Zahl der Teilnehmenden ist auf 12 beschränkt.
551-1147-00LBioactive Natural Products from Bacteria Belegung eingeschränkt - Details anzeigen
Number of participants limited to 7.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PJ. Piel
KurzbeschreibungLab course. In small groups projects of relevance to current research questions in the field of bacterial natural product biosynthesis are addressed.
LernzielIntroduction to relevant subjects of the secondary metabolism of bacteria. Training in practical work in a research laboratory. Scientific writing in form of a research report.
InhaltResearch project on bacteria that produce bioactive natural products (e.g., Streptomycetes, Cyanobacteria, uncultivated bacteria). The techniques used will depend on the project, e.g. PCR, cloning, natural product analysis, precursor feeding studies, enzyme expression and analysis.
Skriptnone.
LiteraturWill be provided for each of the projects at the beginning of the course.
551-1554-00LMultigene Expression in Mammalian Cells Belegung eingeschränkt - Details anzeigen
Number of participants limited to 5.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PP. Berger, G. Schertler
KurzbeschreibungGenetic engineering of mammalian cells with multiple expression cassettes is an essential need in contemporary cell biology. It is useful for protein expression for structural studies, the reprogramming of somatic cells, or for the expression of several fluorescently-tagged sensors. In this course, we use MultiLabel (Kriz et al., Nat. Commun., 2010) to create multigene expression plasmids.
LernzielStudents will learn to design and clone multigene expression constructs for mammalian cells. The functionality of the constructs will be tested by immunofluorescence microscopy or Western blotting.
InhaltWe will clone fluorescently-tagged markers for subcellular compartments, assemble them to a multigene expression construct and transfect them into mammalian cells. These markers of subcellular compartments will be used to study the trafficking of activated receptors (e.g. serotonin receptor). Pictures will be taken on our microscopes and then we will quantify colocalization.
Skriptnone
551-0436-00LCryo-Electron Microscopic Studies of Ribosomal Complexes with Biomedically Important Viral Proteins Belegung eingeschränkt - Details anzeigen
Number of participants limited to 15.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PN. Ban, D. Böhringer, M. A. Leibundgut, T. Lenarcic
KurzbeschreibungMany viruses have evolved specialized mechanisms to hijack the host gene expression machinery and employ cellular resources to regulate viral life cycle. They accomplish this through producing non-structural proteins that can, among other things, inhibit host protein synthesis. Participants of this course will visualize ribosomes in complex with a non-structural viral protein at high resolution.
LernzielThe goal of the course is to acquire the most important techniques and methods for the purification and structural characterisation of macromolecular complexes by transmission electron microscopy. The emphasis of the course is on the special practical requirements for the application of these techniques on macromolecular structures in the MDa range.
InhaltProtein synthesis is a very energy intensive process that can consume over half the total metabolism of a cell. In eukaryotes, translation is therefore tightly regulated at the stage of initiation. Regulatory processes are much more complex at this step than in prokaryotes and a large number of RNA modification processes and translation initiation factors are required to ensure faithful initiation, elongation and termination of translation. However, several viruses may interfere with host translation by affecting the initiation step or by modifying the activity of key initiation factors to ensure an efficient translation of viral mRNA. Amongst such viruses is also SARS-CoV-2, which infects a large variety of vertebrate species. On entering host cells, the viral genomic RNA is translated by the cellular protein synthesis machinery to produce a set of non-structural proteins, which by inhibiting host translation render cell conditions favorable for viral production. Within the Ban lab, we have studied, and continue to investigate, medically relevant viral proteins. This course will involve producing and attempting to determine the structure of a non-structural viral protein in a ribosome-bound form.

A variety of purification techniques, including affinity chromatography and ultracentrifugation, will be used during the purification of macromolecular complexes. Purified assemblies will be then investigated functionally. Students will then characterise their samples structurally through transmission electron cryo-microscopy (cryo-EM), including sample preparation, microscopy, data evaluation and the calculation of densities. Finally, students will learn how to build and refine molecular models into parts of the calculated cryo-EM density. The participants will be working on a closed project related to current research within the laboratory and throughout the course the practical work will be accompanied by brief theoretical introductions. The principal aim of the course is to strengthen the skills required to independently conduct meaningful biophysical and biochemical experiments and to provide an early introduction into the structural characterisation of cellular macromolecular assemblies.
SkriptA script will be distributed at the beginning of the course that will cover the experiments to be performed, provide references to the relevant literature and suggest points for further consideration for interested students.
LiteraturLiterature
A basic overview is provided within the references below. Further reading and citations shall be detailed in the course script.
- A. Fersht, Structure and mechanism in protein science, Freeman, 1999 (Chapters 1 and 6).
- M. van Heel et al., Single-particle electron cryo microscopy: towards atomic resolution, Quart. Rev. Biophys. (33), 307-369 (2000).
Voraussetzungen / BesonderesThe course will be held in English. Students should have either completed courses:
551-0307-00L Biomolecular Structure and Mechanism I: Protein Structure and Function
551-0307-01L Biomolecular Structure and Mechanism II: Large Cellular Machines
or equivalent courses covering the structure and function of biological macromolecules.
Blockkurse im 3. Semesterviertel
Von 20.04.2021 bis 12.05.2021
NummerTitelTypECTSUmfangDozierende
551-0362-00LMolecular Health: Biomedical Analysis of the Extracellular Interactome Belegung eingeschränkt - Details anzeigen
Number of participants limited to 12.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PB. Wollscheid, E. Tschudy-Milani
KurzbeschreibungIn this course you will learn to measure, integrate, analyze and validate the cellular surfaceome as a complex information gateway connecting the intracellular to the extracellular interactome. You will apply next generation technologies at the interface of biology, chemistry, medicine and bioinformatics to establish the surfaceome proteotype and its signaling interaction networks.
Lernziel"If a cell surface molecule such as the B cell receptor would have the size of a human being, then the cell surface of a B cell would have roughly the size of three times NYC Central Park." How many people/proteins/proteoforms reside in this space ("Surfaceome")? Similar to humans, proteins don't act alone. Function is encoded in dynamic protein-protein interactions. How are these proteoforms organized in signaling islands/networks in order to fulfill specific cellular functions ("Interactome")? What are the ligands interacting with the surfaceome to communicate information from other cells & tissues in the body? What goes wrong in these signaling islands if we get sick?

In this course you will learn to measure, integrate, analyze and validate the cellular surfaceome and its signaling islands as a complex information gateway connecting the intracellular to the extracellular interactome. You will apply next generation technologies at the interface of biology, chemistry, medicine and bioinformatics to generate unprecedented data to establish the surfaceome proteotype and its signaling interaction networks. This digital proteotype data layer provides the basis for generating qualitative and quantitative surfaceome models explaining how molecular nanoscale organization influences cellular signaling and biological function.
Inhalt"If a cell surface molecule such as the B cell receptor would have the size of a human being, then the cell surface of a B cell would have roughly the size of three times NYC Central Park." How many people/proteins/proteoforms reside in this space ("Surfaceome")? Similar to humans, proteins don't act alone. Function is encoded in dynamic protein-protein interactions. How are these proteoforms organized in signaling islands/networks in order to fulfill specific cellular functions ("Interactome")? What are the ligands interacting with the surfaceome to communicate information from other cells & tissues in the body? What goes wrong in these signaling islands if we get sick?

In this course you will learn to measure, integrate, analyze and validate the cellular surfaceome and its signaling islands as a complex information gateway connecting the intracellular to the extracellular interactome. You will apply next generation technologies at the interface of biology, chemistry, medicine and bioinformatics to generate unprecedented data to establish the surfaceome proteotype and its signaling interaction networks. This digital proteotype data layer provides the basis for generating qualitative and quantitative surfaceome models explaining how molecular nanoscale organization influences cellular signaling and biological function.
LiteraturD. Bausch-Fluck, E. S. Milani, B. Wollscheid, Surfaceome nanoscale organization and extracellular interaction networks, Curr. Opin. Chem. Biol. 48, 26–33 (2019).

Link
Voraussetzungen / BesonderesThis course requires a basic knowledge in mass spectrometry based proteomics and experience in computational data processing using R or MatLab. Ideally this course should be combined with course 551-0352-00L "Introduction to Mass Spectrometry-based Proteomics".
529-0810-01LOrganische Chemie II (für D-BIOL) Belegung eingeschränkt - Details anzeigen
-Wo immer möglich müssen die Distanzregeln eingehalten werden.
-Alle Studierende müssen während des gesamten Kurses Masken tragen. Bitte Reserve-Masken bereithalten. Zugelassen sind Hygienemasken (IIR) oder Schutzmasken (FFP2) ohne Ventil. Community Masken (Stoffmasken) sind nicht erlaubt.
-Die Installation und Aktivierung der Schweizer Covid-App ist sehr zu empfehlen.
-Alle zusätzlichen Regeln für einzelne Kurse müssen eingehalten werden -Studierende, die COVID-19-Symptome aufweisen, dürfen die ETH-Gebäude nicht betreten und müssen den verantwortlichen Kursleiter informieren.
W12 KP4PC. Thilgen
KurzbeschreibungBearbeiten eines organisch-synthetischen Teilprojekts aus der aktuellen Forschung einer Gruppe des Laboratoriums für Organische Chemie unter der Anleitung von Doktorierenden.
LernzielErlernen von Planung und Durchführung anspruchsvoller Mehrstufensynthesen unter Einbezug moderner Methoden; vertieftes Verständnis organisch-chemischer Reaktionen durch Experimente; Entwickeln eines organisch-synthetischen Forschungsprojekts; akkurates Protokollieren, Verfassen eines Berichts im Stil einer Veröffentlichung und Präsentieren der Ergebnisse in Form eines Kurzvortrags.
InhaltBearbeiten eines organisch-synthetischen Teilprojekts aus der aktuellen Forschung einer Gruppe des Laboratoriums für Organische Chemie unter der Anleitung von Doktorierenden.
SkriptKein Skript.
LiteraturKeine Pflichtliteratur. Literatur wird von den betreuenden Doktorierenden angegeben bzw. zur Verfügung gestellt.
Voraussetzungen / BesonderesVoraussetzungen: bestandenes Praktikum Organische Chemie I (529-0229-00); bestandene Sessionsprüfung Organische Chemie I (529-0221-00 bzw. 529-1011-00) / Organische Chemie II (529-0222-00 bzw. 529-1012-00). Die Zahl der Teilnehmenden ist auf 12 beschränkt.
551-0344-00LPlant Microbiomes Belegung eingeschränkt - Details anzeigen
Number of participants limited to 8.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PJ. Vorholt-Zambelli
KurzbeschreibungLaboratory course. Research projects in the field of plant microbiomes are conducted in small groups. They address open questions related to plant microbiomes and include microbial community assembly, microbial interactions, plant protection and plant immunity.
LernzielIntroduction to relevant subjects of the biology of plant-associated microorganisms. Training in practical work in a research laboratory. Exposure to current research topics in the field of plant microbiomes. Scientific writing in form of a research report.
InhaltResearch project in plant microbiomes. The techniques used will depend on the project, e.g. PCR, cloning, microbial community analysis via next-generation sequencing, plant inoculation experiments, phenotypic analyses, fluorescence microscopy, gene expression, metabolomics, bioinformatics
Skriptnone
LiteraturWill be provided for each of the projects at the beginning of the course.
551-1556-00LMacromolecular Structure Determination Using Modern Methods Belegung eingeschränkt - Details anzeigen
Number of participants limited to 11 in the 3rd semester quarter of the spring semester

Number of participants limited to 12 in the 4th semester quarter of the spring semester

The block course will only take place with a minimum of 4 participants.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PK. Locher, R. Irobalieva, J. Kowal, G. Schertler
KurzbeschreibungThis course will expose the students to two prominent techniques for high-resolution structural characterization of biological macromolecules. The students will have the opportunity to get hands-on experience in either cryo-electron microscopy (ETH) or X-ray crystallography (PSI).
LernzielThe goal of this course is to introduce the students to the principles of high-resolution structure determination. Students will conduct hands-on experiments and use computational techniques for data processing.
InhaltAt the ETH the students will prepare and vitrify a protein and then image it on a cryo-TEM. Next, the students will process the data and build an atomic model into the EM map.

At the PSI the students will purify and crystallize a membrane protein, collect X-ray diffraction data using synchrotron X-ray source or with cryo-EM, analyze and build an atomic model into a density map. They will refine this model and interpret and illustrate the determined structure. The course work is trying to present insights in the use of structural information. The course also includes a demonstration of the Synchrotron capabilities at the Paul Scherrer Institute (SLS).
Voraussetzungen / BesonderesThe students will be split into two groups for the practical part of the work: One group will work at ETH Hönggerberg, the other at the Paul Scherrer Institute (PSI) at Villigen. All students will spend one full day at the PSI for a tour of the facilities, including a visit of the synchrotron beam lines of the Swiss Light Source SLS.

The students joining the ETH Hönggerberg group will spend the majority of the time on data processing and are therefore expected to have some basic knowledge of bash terminal commands. Basic physics, optics and linear algebra knowledge is also helpful. By the end of the course, the students will be expected to understand concepts such as the difference between Fourier and real space, image formation, contrast transfer, fast Fourier transfer and Fourier shell correlation.
551-1312-00LRNA-Biology II Belegung eingeschränkt - Details anzeigen
Number of participants limited to 14.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PS. Jonas, F. Allain, J. Corn, U. Kutay, O. Voinnet
KurzbeschreibungIntroduction to the diversity of current RNA-research at all levels from structural biology to systems biology using mainly model systems like S. cerevisiae (yeast), mammalian cells.
LernzielThe students will obtain an overview about the diversity of current RNA-research. They will learn to design experiments and use techniques necessary to analyze different aspects of RNA biology. Through lectures and literature seminars, they will learn about the burning questions of RNA research and discuss approaches to address these questions experimentally. In practical lab projects the students will work in one of the participating laboratories. Finally, they will learn how to present and discuss their data in an appropriate manner. Student assessment is a graded semester performance based on individual performance in the laboratory, the written exam and the project presentation.
SkriptRelevant material from the lectures will be made available during the course via the corresponding Moodle page.
LiteraturDocumentation and recommended literature will be provided at the beginning and during the course.
551-1300-00LCause and Consequences of Unstable Genomes Belegung eingeschränkt - Details anzeigen
Number of participants limited to 14.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PM. Jagannathan, Y. Barral, C. Beyer, K. Bomblies, R. Kroschewski, G. Neurohr
KurzbeschreibungThe course will introduce students to key concepts and laboratory research within the broad field of "Genome stability".
LernzielStudents will learn to design, apply and evaluate current research strategies in a wide range of modern research areas encompassing the broad field of "Genome stability".
InhaltThe course will consist of lectures, practical laboratory work in small groups, informal progress report sessions, and the presentation of laboratory work. Lectures will expose students to key concepts and techniques in the field. Students will team into small groups and work in one laboratory for the duration of the course. Students will meet regularly for informal "progress report" discussions of their projects. Student performance will be assessed based on the quality of their practical work, a written exam on frontal lecture material, and a presentation of their practical work.
LiteraturDocumentation and recommended literature in the form of review articles and selected primary literature will be provided during the course.
Voraussetzungen / BesonderesThis course will be taught in English.
Blockkurse im 4. Semesterviertel
Von 14.05.2021 bis 04.06.2021
NummerTitelTypECTSUmfangDozierende
551-0376-00LExperimentelle Pflanzenökologie Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 20
Wird nur bei mindestens 4 Teilnehmenden durchgeführt.

Die Belegung erfolgt durch das D-BIOL Studiensekretariat.

Allgemeine Sicherheitsbestimmungen für alle Blockkurse:
-Wo immer möglich müssen die Distanzregeln eingehalten werden
-Alle Studierende müssen während des gesamten Kurses Masken tragen. Bitte Reserve-Masken bereithalten. Zugelassen sind Hygienemasken (IIR) oder Schutzmasken (FFP2) ohne Ventil. Community Masken (Stoffmasken) sind nicht erlaubt.
-Die Installation und Aktivierung der Schweizer Covid-App ist sehr zu empfehlen.
-Alle zusätzlichen Regeln für einzelne Kurse müssen eingehalten werden
-Studierende, die COVID-19-Symptome aufweisen, dürfen die ETH-Gebäude nicht betreten und müssen den verantwortlichen Kursleiter informieren.
W6 KP7PD. Ramseier, H. G. M. Olde Venterink
KurzbeschreibungDer Blockkurs gibt eine Einführung in die experimentelle Pflanzenökologie. Dabei wird mittels Vorlesungen, Demonstrationen, Exkursionen und eigenen Experimenten ein weites Spektrum von praxisnahen (für die Naturschutzpraxis) Experimenten über Einfluss von "global change"-Faktoren auf Ökosysteme bis zu Grundlagenforschung zur Koexistenz von Pflanzen in Ökosystemen abgedeckt.
Lernziel- Kennen lernen und evaluieren verschiedener experimenteller Ansätze, der Messmethoden und der benötigten Instrumente in der experimentellen Pflanzenökologie.
- Erlangung praktischer Fähigkeiten zur Durchführung und Auswertung pflanzenökologischer Experimente
InhaltExperimente in der Pflanzenökologie gewinnen zunehmend an Bedeutung zur Abschätzung des Einflusses von "Global Change" und invasiven Arten auf Ökosysteme und deren Funktionen und "ecosystem Services". Ausserdem gibt es viele Renaturierungsprojekte, wo man vom "trial - error"-Prinzip wegkommen möchte und aufgrund gezielter Experimente den Erfolg von Renaturierungsmassnahmen antizipieren möchte um die Planung entsprechend anpassen zu können.
In diesem Blockkurs wird ein Einblick in dieses Fachgebiet mittels Vorlesungen, Demonstrationen, Exkursionen, Literaturstudium und allem voran Experimenten in Gruppen vermittelt. In einem theoretischen Teil werden unter anderem Vor- und Nachteile verschiedener experimenteller Ansätze, Messmethoden und Geräten diskutiert.
Im praktischen Teil werde die Studierenden gruppenweise Experimente von A bis Z durchführen; dies beinhaltet klare Fragestellungen erarbeiten, Literatursuche, Anlage und Unterhalt der Experimente, Messungen, allenfalls chemische Analysen, Auswertungen und Vorträge. Beispiele von Experimenten: a) Einfluss funktioneller Gruppen auf die kühlende Wirkung von Flachdachbegrünungen; b) Einfluss der Mobilität von Nährstoffen im Boden auf die Konkurrenz und die Koexistenz von Pflanzen; c) Verhindert P-Mangel die weitere Ausbreitung von Amorpha fruticosa, einer invasiven Fabaceae am Tagliamento (N-Italien)? Wie optimieren Samen ihr Keimungsverhalten? Wie kann die Keimung für Renaturierungsprojekte oder Flachdachbegrünungen verbessert werden?
Auf einer der Exkursionen werden wir das Renaturierungsprojekt Seebachtalseen (Link), an welchem einer der Dozenten für die Wieder-etablierung von Flachmoorgesellschaften seit vielen Jahren beteiligt ist, besuchen. Auf einer andern Exkursionen werden wir einen langjährigen Flachdachversuch betreffs Einfluss verschiedener Substrate und unterschiedlicher Substratdicke auf die Entwicklung der Vegetation beleuchten.
SkriptUnterlagen werden im Kurs verteilt
Voraussetzungen / BesonderesDie Art von pflanzenökologischen Versuchen, wie sie innerhalb dieses Kurses angelegt werden, dauern typischerweise 6-8 Wochen. Daher werden sie vor dem eigentlichen Block durch die Studierenden eingerichtet und im Block (letztes Semesterquartal) geerntet. Wir geben zu Beginn des Semesters eine 45 minütige Einführung (Termin nach Absprache), bei welcher die Themenwahl und die Gruppeneinteilung stattfinden wird. Die Experimente werden danach gruppenweise angelegt. Die vor dem eigentlichen Block aufgewendete Zeit kann kompensiert werden.
376-1398-00LCellular and Behavioural Neuroscience Belegung eingeschränkt - Details anzeigen
Number of participants limited to 10.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected.
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged.
-Any additional rules for individual courses have to be respected.
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.
W6 KP7PG. Schratt, J. Bohacek
KurzbeschreibungEinführung in unsere Forschung und Mitarbeit bei aktuellen Forschungsprojekten mit dem Ziel, selbstständiges wissenschaftliches Denken zu fördern und theoretisches Wissen in praktische Experimente umzusetzen. Der Kurs beinhaltet zudem das Lesen von Originalliteratur und die Präsentation der eigenen Arbeit.
LernzielMitarbeit bei aktuellen Forschungsprojekten mit dem Ziel, selbstständiges wissenschaftliches Denken zu fördern und theoretisches Wissen in praktische Experimente umzusetzen. Weitere Ziele sind das Lesen und die Interpretation von Originalliteratur und die Präsentation der eigenen Arbeit.
InhaltEinführung in unsere Forschung und Mitarbeit bei aktuellen Forschungsprojekten mit dem Ziel, selbstständiges wissenschaftliches Denken zu fördern und theoretisches Wissen in praktische Experimente umzusetzen. Die experimentellen Ansätze schliessen in vivo Experimente mit Ratten und/oder Mäusen ein. Neben den Verhaltensexperimenten werden auch histologisch-anatomische Auswertungen gemacht. Der Kurs beinhaltet zudem das Lesen von Originalliteratur und die Präsentation der eigenen Arbeit.
SkriptOriginalartikel werden während des Kurses ausgehändigt und diskutiert.
LiteraturOriginalartikel werden während des Kurses ausgehändigt und diskutiert.
551-1556-00LMacromolecular Structure Determination Using Modern Methods Belegung eingeschränkt - Details anzeigen
Number of participants limited to 11 in the 3rd semester quarter of the spring semester

Number of participants limited to 12 in the 4th semester quarter of the spring semester

The block course will only take place with a minimum of 4 participants.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PK. Locher, R. Irobalieva, J. Kowal, G. Schertler
KurzbeschreibungThis course will expose the students to two prominent techniques for high-resolution structural characterization of biological macromolecules. The students will have the opportunity to get hands-on experience in either cryo-electron microscopy (ETH) or X-ray crystallography (PSI).
LernzielThe goal of this course is to introduce the students to the principles of high-resolution structure determination. Students will conduct hands-on experiments and use computational techniques for data processing.
InhaltAt the ETH the students will prepare and vitrify a protein and then image it on a cryo-TEM. Next, the students will process the data and build an atomic model into the EM map.

At the PSI the students will purify and crystallize a membrane protein, collect X-ray diffraction data using synchrotron X-ray source or with cryo-EM, analyze and build an atomic model into a density map. They will refine this model and interpret and illustrate the determined structure. The course work is trying to present insights in the use of structural information. The course also includes a demonstration of the Synchrotron capabilities at the Paul Scherrer Institute (SLS).
Voraussetzungen / BesonderesThe students will be split into two groups for the practical part of the work: One group will work at ETH Hönggerberg, the other at the Paul Scherrer Institute (PSI) at Villigen. All students will spend one full day at the PSI for a tour of the facilities, including a visit of the synchrotron beam lines of the Swiss Light Source SLS.

The students joining the ETH Hönggerberg group will spend the majority of the time on data processing and are therefore expected to have some basic knowledge of bash terminal commands. Basic physics, optics and linear algebra knowledge is also helpful. By the end of the course, the students will be expected to understand concepts such as the difference between Fourier and real space, image formation, contrast transfer, fast Fourier transfer and Fourier shell correlation.
551-0334-00LMolecular Defense Mechanisms of Fungi Belegung eingeschränkt - Details anzeigen
Number of participants limited to 6.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PM. Künzler
KurzbeschreibungThe course offers an introduction into the molecular biology of fungi by participation in a current research project on Molecular Defense Mechanisms of Fungi. The performed experiments, in conjunction with accompanying seminars should enable the students to answer questions regarding central aspects of innate defense mechanisms and the life style of multicellular fungi.
LernzielThe course should enable the students to answer questions regarding central aspects of innate defense mechanisms and the life style of multicellular fungi, and their experimental accessibility.
InhaltExperiments include the isolation, identification and characterization of defense effector molecules from multicellular fungi. Methods include molecular genetics, biochemistry, mass spectrometry and biotoxicity assays towards different model organisms including fungi, bacteria, insects and nematodes. Experiments are supported by seminars giving an overview over Fungal Defense Mechanisms and Fungal Lifestyle.
LiteraturLink
Voraussetzungen / BesonderesThe "Leistungskontrolle" is composed of:
-Oral presentation of results
-Short oral exam (20') at the end of the course
-Written report
-Performance in the laboratory
Blockkurse in den Semesterferien
NummerTitelTypECTSUmfangDozierende
551-0396-01LImmunology I Belegung eingeschränkt - Details anzeigen
Number of participants limited to 30.

Prerequisites: Attendance of the concept courses Immunology I (551-0317-00L) and Immunology II (551-0318-00L)

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PA. Oxenius, B. Becher, M. Groettrup, M. Kopf, B. Ludewig, C. Münz, R. Spörri, M. van den Broek
KurzbeschreibungDieser Blockkurs in Immunologie vermittelt einen breiten Einblick und eine Einführung in praktisches Immunologisches Arbeiten sowie theoretische Vertiefungen in ausgewählten Gebieten der Immunologie.
LernzielDas Ziel des Blockkurses ist das Erlernen verschiedener immunologischer Techniken und umfasst die experimentelle Durchführung als auch Analyse und Interpretation der experimentellen Daten. Begleitet wird der praktische Teil von vertiefenden Vorlesungen in ausgewählten Gebieten der Immunologie, welche auf dem Inhalt des Immunologie-Konzeptkurses basieren. Selbständiges Erarbeiten und Präsentieren von Publikationen durch die Studenten bietet Grundlage für wissenschafltiche Diskussionen.
InhaltPraktische Arbeiten: Zellkultur, Isolation hämatopoietische Stammzellen und Differenzierung von Makrophagen und dendritischen Zellen, Aktivierung und Zytokinproduktion durch Makrophagen und dendritische Zellen, 51Cr release assay, VSV Neutralisationsassay, Durchflusszytometrie, Proliferationsexperimente, SEREX, Intrazelluläres Zytokinstaining, Immunhistologie und Fluoreszenzmikroskopie, MACS, Zytokin-Bioassays, Phagozytose, Proteosomale Prozessierung
Vertiefende Vorlesungen: Immune responses to pathogens, Vaccination and B cells, Tolerance & Autoimmunity, Antigen processing & presentation, Pattern recognition, NK cells, Generation of (TCR) tg or ko mice, Antigen screening and definition
SkriptEin Skript wird vor Kursbeginn online abrufbar sein (link wird im Immunologie-konzeptkurs bekannt gegeben, 551-0318-00L).
Voraussetzungen / BesonderesVoraussetzung für die Anmeldung zum Kurs ist der Besuch der Immunologie-Konzeptvorlesungen 551-0317-00L und 551-0318-00L.
Leistungskontrolle erfolgt individuell durch die beteiligten Dozenten.
701-2314-00LPflanzendiversität Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 4 (D-BIOL)

Voraussetzung: Teilnahme und bestandene Prüfung an der LV 701-0360-00L (Systematische Biologie: Pflanzen).

Belegung durch primäre Zielgruppe bis 19.02.2021.
Führung einer Warteliste bis 31.3.2021

Das Anmeldeformular muss bis 05.03.2021 eingereicht werden. Nicht bestätigte Plätze werden an Studierende auf der Warteliste vergeben.

Allgemeine Sicherheitsbestimmungen für alle Blockkurse:
-Wo immer möglich müssen die Distanzregeln eingehalten werden.
-Alle Studierende müssen während des gesamten Kurses Masken tragen. Bitte Reserve-Masken bereithalten. Zugelassen sind Hygienemasken (IIR) oder Schutzmasken (FFP2) ohne Ventil. Community Masken (Stoffmasken) sind nicht erlaubt.
-Die Installation und Aktivierung der Schweizer Covid-App ist sehr zu empfehlen.
-Alle zusätzlichen Regeln für einzelne Kurse müssen eingehalten werden -Studierende, die COVID-19-Symptome aufweisen, dürfen die ETH-Gebäude nicht betreten und müssen den verantwortlichen
W6 KP12PR. Berndt, A. Guggisberg
KurzbeschreibungIm Praktikum beschäftigen wir uns mit der Flora und Vegetation ausgewählter Gebiete von der kollinen bis in die alpine Stufe. Während zweier Geländepraktika vertiefen die Studierenden ihre Artenkenntnis und lernen wichtige Vegetationseinheiten und deren standörtliche Besonderheiten kennen.
LernzielKennenlernen der wichtigsten Vegetationstypen, deren Pflanzenarten und ökologischen Bedingungen von der kollinen bis in die alpine Stufe. Vertiefung taxonomischer und pflanzenmorphologischer Kenntnisse und Erwerb von Bestimmungspraxis mit einer wissenschaftlichen Bestimmungsflora. Erlernen der Grundlagen des wissenschaftlichen Sammelns und Herbarisierens von Pflanzen (Kursteil I kollin/montan).
InhaltIn diesem Kurs erweitern die Studierenden ihre Artenkenntnis und ihre Kenntnis der Pflanzenfamilien und Pflanzenmorphologie. Während der Exkursionen studieren wir ausserdem die Pflanzen in ihren charakteristischen Vegetationseinheiten und besprechen deren ökologische Bedingungen sowie eventuelle Anpassungen. Siehe weitere Details unter den jeweiligen Kursteilen.
Literatur- Baltisberger M., Nyffeler R. & Widmer A. 2013: Systematische Botanik. 4., vollständig überarbeitete und erweiterte Aufl. v/d/f Hochschulverlag AG an der ETH Zürich.
- Stützel T. 2015. Botanische Bestimmungsübungen (3. Aufl.). UTB, Ulmer Verlag.
- Hess H.E., Landolt E., Hirzel R. & Baltisberger M. 2015: Bestimmungsschlüssel zur Flora der Schweiz. 7., aktualisierte und überarbeitete Aufl., Birkhäuser Verlag, Basel/Boston/Berlin.
Voraussetzungen / BesonderesAm Praktikum können nur Studierende teilnehmen, die die einführenden Vorlesungen zur Systematischen Botanik sowie die zugehörigen Exkursionen und Übungen erfolgreich absolviert haben (siehe LV 701-0360-00L Systematische Biologie: Pflanzen). Es wird erwartet, dass die Teilnehmerinnen und Teilnehmer den grundlegenden Umgang mit einer Bestimmungsflora beherrschen (Bestimmungsschlüssel zur Flora der Schweiz) und mit der notwendigen pflanzenmorphologischen Terminologie vertraut sind.

Studierende anderer Universitäten nehmen bitte Kontakt mit den Dozierenden auf.

Programm:
Kursteil I kollin/montan: Je nach aktueller CoVid-Situation sind Programmänderungen möglich!
15.-19.6.: Tagesexkursionen (gesonderte Ankündigung)
22.6.: Prüfung (9-11 Uhr, HIL E1)

Kursteil II subalpin/alpin:
27.6.-1.7.: individuelle Aktivitäten oder geführte Tagesexkursionen (gesonderte Ankündigung)
3.7.: Prüfung im ETH Zentrum

Die Exkursion finden bei jedem Wetter statt. Sie erfordern deshalb Geländegängigkeit und angepasste Ausrüstung der Teilnehmerinnen und Teilnehmer. Feste Bergschuhe sind Pflicht!

Kosten:
Es fallen keine Kosten an.
551-0438-00LProtein Folding, Assembly and Degradation Belegung eingeschränkt - Details anzeigen
Number of participants limited to 6.

The enrolment is done by the D-BIOL study administration.

General safety regulations for all block courses:
-Whenever possible the distance rules have to be respected
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged
-Any additional rules for individual courses have to be respected
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible
W6 KP7PR. Glockshuber, E. Weber-Ban
KurzbeschreibungStudents will carry out defined research projects related to the current research topics of the groups of Prof. Glockshuber and Prof. Weber-Ban. The topics include mechanistic studies on the assembly of adhesive pili from pathogenic bacteria, disulfide bond formation in the bacterial periplasm, ATP-dependent chaperone-protease complexes and formation of amyloid deposits in Alzheimer's disese.
LernzielThe course should enable the students to understand and apply biophysical methods, in particular kinetic and spectroscopic methods, to unravel the mechanism of complex reactions of biological macromolecules and assemblies in a quantitative manner.
InhaltThe students will be tutored in their experimental work by doctoral or postdoctoral students from the Glockshuber or Weber-Ban group. In addition, the course includes specific lectures that provide the theoretical background for the experimental work, as well as excercises on the numeric evaluation of biophysical data, and literature work.

Participation in one of the following projects will be possible:

Projects of the Glockshuber group:
- Purification, biophysical characterization and structure determiation of enzymes required for disulfide bond formation in the periplasm of Gram-negative bacteria.
- Mechanistic studies on the assembly of type 1 pili from pathogenic Escherichia coli strains. In vitro reconstitution of pilus assembly from all purified components. Characterization of folding, stability and assembly behaviour of individual pilus subunits.
- Identification of intermediates in the aggregation of the human Abeta peptide

Experimental work on these projects involves
- Molecular cloning, recombinant protein production in E. coli and protein purification
- Protein crystallization
- Thermodynamic and kinetic characterization of conformational changes in proteins and protein-ligand interactions by fluorescence and circular dischoism spectroscopy
- Analysis of rapid reactions by stopped-flow fluorescence
- Negative-stain electron microscopy
- Light scattering



Projects of the Weber-Ban group:

- Generation and purification of site-directed variants of the E. coli ClpA/P protease and chaperone-proteasome complexes from other organisms, their biophysical characterization, including rapid kinetics by stopped-flow methods, ATPase activity measurtements, negative-stain electron microscopy and light scattering
Voraussetzungen / BesonderesMarks will be given according to the following criteria:

- Planning, execution and documentation of experimental work
- Final report, including introduction with short overview on the relevant literature, results with figures and brief discussion (maximum: 5 pages)
- Performance in the exercises
GESS Wissenschaft im Kontext
Wissenschaft im Kontext
» Empfehlungen aus dem Bereich Wissenschaft im Kontext (Typ B) für das D-BIOL
» siehe Studiengang Wissenschaft im Kontext: Typ A: Förderung allgemeiner Reflexionsfähigkeiten
Sprachkurse
» siehe Studiengang Wissenschaft im Kontext: Sprachkurse ETH/UZH