Search result: Catalogue data in Spring Semester 2019
Health Sciences and Technology Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
376-0302-00L | Practicing Translational Science ![]() Only for Health Sciences and Technology MSc. | O | 2 credits | 4A | J. Goldhahn, S. Ben-Menahem, C. Ewald, W. Karlen | |
Abstract | Translational Science is a cross disciplinary scientific research that is motivated by the need for practical applications that help patients. The students should apply knowledge they gained in the prior course during a team approach focused on one topic provided by the supervisor. Each student has to take a role in the team and label clear responsibility and contribution. | |||||
Objective | After completing this course, students will be able to apply: a) Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication) b) The use of a translational approach in project planning and management | |||||
Prerequisites / Notice | Prerequisite: lecture 376-0300-00 "Translational Science for Health and Medicine" passed. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-0224-00L | Clinical Exercise Physiology | W | 3 credits | 2V | C. Spengler, C. Schmied, further lecturers | |
Abstract | This lecture series provides a comprehensive overview of the most important aspects of clinical exercise testing for diagnosis and assessment of functional status in different patient populations, e.g. patients with pulmonary, cardiac or neuro-muscular disease, with obesity, young or old age. Also, special aspects in the context of training perscriptions in these populations will be discussed. | |||||
Objective | By the end of this module, students: - Have the theoretical basis for disease-specific exercise testing and interpretation in clinical settings - Know important aspects for disease-specific exercise-training prescriptions and assessment of training progress - Are able to critically review and interpret scientific literature in the context of physical fitness, performance and training in different patient populations | |||||
Lecture notes | Handouts are provided via moodle. | |||||
Literature | Handouts are provided via moodle. | |||||
Prerequisites / Notice | The courses "Anatomie & Physiologie I+II", as well as "Sportphysiologie" (or Anatomy, Physiology and Exercise Physiology - equivalents for students without HST-BSc), are required. | |||||
376-1168-00L | Sports Biomechanics ![]() | W | 3 credits | 2V | S. Lorenzetti | |
Abstract | Various types of sport are studied from a mechanical point of view. Of particular interest are the key parameters of a sport as well as the performance relevant indicators. | |||||
Objective | The aim of this lecture is to enable the students to study a sport from a biomechanical viewpoint and to develop significant models for which evaluations of the limitations and verifications can be carried out. | |||||
Content | Sport biomechanics is concerned with the physical and mechanical basic principles of sports. The lecture requires an in-depth mechanical understanding on the side of the student. In this respect, the pre-attendance of the lectures Biomechanics II and Movement and Sports Biomechanics or an equivalent course is expected. The human body is treated as a mechanical system during sport. The interaction of the active and passive movements and outside influences is analysed. Using sports such as ski-jumping, cycling, or weight training, applicable models are created, analyzed and suitable measuring methods are introduced. In particular, the constraints as well as the limitations of the models are of great relevance. The students develop their own models for different sport types, critically discuss the advantages and disadvantages and evaluate applicable measurement methods. | |||||
Lecture notes | Handout will be distributed. | |||||
376-1306-00L | Clinical Neuroscience ![]() | W | 3 credits | 3G | G. Schratt, University lecturers | |
Abstract | The lecture series "Clinical Neuroscience" presents a comprehensive, condensed overview of the most important neurological diseases, their clinical presentation, diagnosis, therapy options and possible causes. Patient demonstrations (Übungen) follow every lecture that is dedicated to a particular disease. | |||||
Objective | By the end of this module students should be able to: - demonstrate their understanding and deep knowledge concerning the main neurological diseases - identify and explain the different clinical presentation of these diseases, the methodology of diagnosis and the current therapies available - summarize and critically review scientific literature efficiently and effectively | |||||
376-1660-00L | Scientific Writing, Reporting and Communication ![]() Number of participants limited to 30. Only for Health Sciences and Technology MSc | W | 3 credits | 2V | B. Taylor | |
Abstract | This course aims to teach many of the unwritten rules on how to communicate effectively, from writing reports or manuscripts (or indeed their Master thesis!) through to improving skills in oral presentations, and presenting themselves at interview. | |||||
Objective | This course will teach students to communicate effectively in official environments, including: - writing manuscripts, theses, CVs, reports etc - presenting posters - oral presentations - critical reviews of literature | |||||
376-1719-00L | Statistics for Experimental Research | W | 3 credits | 2V | R. van de Langenberg | |
Abstract | Students will learn the necessary statistical concepts and skills to independently (1) design experiments (2) analyse experimental data and (3) report analyses and results in a scientifically appropriate manner. | |||||
Objective | After successful completion of the course, students should be able to: 1. Determine appropriate experimental designs and choose, justify and perform the appropriate statistical analyses using R. 2. Report analyses and results in a scientifically appropriate manner, as laid out by the Publication Manual of the American Psychological Association (APA, sixth edition). | |||||
Content | We will cover basic statistical concepts (e.g., central tendency, variability, data distribution), the t-test (dependent and independent), ANOVA (univariate, factorial and repeated measures), correlation, multiple regression, nonparametric techniques, validity and reliability tests, effect size, data transformation, power and sample size estimation. | |||||
Lecture notes | Lecture notes will be delivered in the form of commented presentations in Microsoft Powerpoint (i.e. pptx) format. R practical session assignments will be delivered in pdf-format. | |||||
Literature | Both in the lectures and in the tutorials and practical sessions, we will refer students to the following publication: Field A, Miles J, Field Z (2013) Discovering Statistics Using R. Sage Publications Ltd, London, UK | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-0384-00L | Ultrasound Fundamentals, Imaging, and Medical Applications ![]() Number of participants limited to 60. | W | 4 credits | 3G | O. Göksel | |
Abstract | Ultrasound is the only imaging modality that is nonionizing (safe), real-time, cost-effective, and portable, with many medical uses in diagnosis, intervention guidance, surgical navigation, and as a therapeutic option. In this course, we introduce conventional and prospective applications of ultrasound, starting with the fundamentals of ultrasound physics and imaging. | |||||
Objective | Students can use the fundamentals of ultrasound, to analyze and evaluate ultrasound imaging techniques and applications, in particular in the field of medicine, as well as to design and implement basic applications. | |||||
Content | Ultrasound is used in wide range of products, from car parking sensors, to assessing fault lines in tram wheels. Medical imaging is the eye of the doctor into body; and ultrasound is the only imaging modality that is nonionizing (safe), real-time, cheap, and portable. Some of its medical uses include diagnosing breast and prostate cancer, guiding needle insertions/biopsies, screening for fetal anomalies, and monitoring cardiac arrhythmias. Ultrasound physically interacts with the tissue, and thus can also be used therapeutically, e.g., to deliver heat to treat tumors, break kidney stones, and targeted drug delivery. Recent years have seen several novel ultrasound techniques and applications – with many more waiting in the horizon to be discovered. This course covers ultrasonic equipment, physics of wave propagation, numerical methods for its simulation, image generation, beamforming (basic delay-and-sum and advanced methods), transducers (phased-, linear-, convex-arrays), near- and far-field effect, imaging modes (e.g., A-, M-, B-mode), Doppler and harmonic imaging, ultrasound signal processing techniques (e.g., filtering, time-gain-compensation, displacement tracking), image analysis techniques (deconvolution, real-time processing, tracking, segmentation, computer-assisted interventions), acoustic-radiation force, plane-wave imaging, contrast agents, micro-bubbles, elastography, biomechanical characterization, high-intensity focused ultrasound and therapy, lithotripsy, histotripsy, photo-acoustics phenomenon and opto-acoustic imaging, as well as sample non-medical applications such as the basics of non-destructive testing (NDT). Hands-on exercises: These will help to apply the concepts learned in the course, using simulation environments (such as Matlab k-Wave and FieldII toolboxes). The exercises will involve a mix of design, implementation, and evaluation examples commonly encountered in practical applications. Project: These will be part of the assessment in grading. Projects will be carried out throughout the course, individually or in small groups. Project reporting and presentations will be due at the end of the semester. Topics highly relevant in the field of ultrasound are offered as suggested projects. Students are also welcome to propose custom project topics of their own. | |||||
Prerequisites / Notice | Prerequisites: Familiarity with basic numerical methods. Basic programming skills in Matlab. | |||||
327-2125-00L | Microscopy Training SEM I - Introduction to SEM ![]() Limited number of participants. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). | W | 2 credits | 3P | K. Kunze, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, J. Reuteler | |
Abstract | The introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using 2 SEM instruments, students have the opportunity to study their own samples, or standard test samples, as well as solving exercises provided by ScopeM scientists. | |||||
Objective | - Set-up, align and operate a SEM successfully and safely. - Accomplish imaging tasks successfully and optimize microscope performances. - Master the operation of a low-vacuum and field-emission SEM and EDX instrument. - Perform sample preparation with corresponding techniques and equipment for imaging and analysis - Acquire techniques in obtaining secondary electron and backscatter electron micrographs - Perform EDX qualitative and semi-quantitative analysis | |||||
Content | During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students with no prior experience are able to align a SEM, to obtain secondary electron (SE) and backscatter electron (BSE) micrographs and to perform energy dispersive X-ray spectroscopy (EDX) qualitative and semi-quantitative analysis. The procedures to better utilize SEM to solve practical problems and to optimize SEM analysis for a wide range of materials will be emphasized. - Discussion of students' sample/interest - Introduction and discussion on Electron Microscopy and instrumentation - Lectures on electron sources, electron lenses and probe formation - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM - Brief description and demonstration of the SEM microscope - Practice on beam/specimen interaction, image formation, image contrast (and image processing) - Student participation on sample preparation techniques - Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities - Lecture and demonstrations on X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescans and spectral mapping - Practice on real-world samples and report results | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
327-2126-00L | Microscopy Training TEM I - Introduction to TEM ![]() Number of participants limited to 6. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). TEM 1 registration form: Link | W | 2 credits | 3P | M. Willinger, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm | |
Abstract | The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions. | |||||
Objective | - Overview of TEM theory, instrumentation, operation and applications. - Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully. - Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras. - To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns. - Overview of techniques for specimen preparation. | |||||
Content | Using two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods. - Introduction and discussion on Electron Microscopy and instrumentation. - Lectures on electron sources, electron lenses and probe formation. - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM. - Brief description and demonstration of the TEM microscope. - Practice on beam/specimen interaction, image formation, Image contrast (and image processing). - Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM). - Student participation on sample preparation techniques. - Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities. - TEM alignment, calibration, correction to improve image contrast and quality. - Electron diffraction. - Practice on real-world samples and report results. | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
363-1066-00L | Designing Effective Projects for Promoting Health@Work ![]() Number of participants limited to 30. | W | 3 credits | 2G | G. Bauer, R. Brauchli, G. J. Jenny | |
Abstract | The fast changing, flexible and performance-oriented economy implies increasing challenges and opportunities for the health of employees. Creating good working conditions and promoting healthy lifestyles of employees becomes more and more important for employers and employees. Students learn how to develop an effective, real-life project of their choice to promote health@work. | |||||
Objective | Students become familiar with challenges and opportunities of a changing world of work. They get an overview of intervention approaches and principles in the fields of worksite health promotion as well as work and organizational psychology. On this basis, they learn how to develop an effective, real life worksite health promotion project of their choice – addressing lifestyle factors or working conditions. During the project work, they learn to follow the typical phases of selecting/framing a relevant work-related health issue, conducting an analysis, formulating smart objectives, developing a realistic action plan, estimating the time and money needed for these actions, and finally evaluating the impact of the project. This will strengthen their general project management skills. Students will know how to apply key quality criteria of health promotion projects: 1.) how to follow a systematic, evidence-based approach (project management), 2.) how to assure involvement of and thus acceptance by the users (participation), 3.) how to consider both individual, lifestyle-related and organizational, work-related factors (comprehensiveness), and 4.) how to integrate the project into the routine of the organization to assure sustainability (integration). This will increase the impact of future health promotion projects developed by the students. D-MTEC students will be able to systematically address employee health and performance in their future management practice. D-HEST students will be able to apply their health promotion knowledge to the challenging context of corporations. D-USYS students will be able to consider lifestyle factors and the working environment in their future work. The exchange among these interdisciplinary student groups will foster their ability to solve real life problems in a transdisciplinary manner. Finally, students get acquainted how to design their future work in a health promoting way. | |||||
Content | 1. Challenges in health@work and intervention approaches 2. Lifestyle interventions at work incl. digital tools 3. Personal and organizational strategies for promoting healthy work 4. Core concepts, values and principles in promoting health@work; introduction to project work & 7-pillar planning model 5. Framing and analysis of health@work issues 6. Participatory priority setting in health@work projects and defining outcome objectives 7. Combining levels of interventions and defining process objectives 8. Project management 9. Evaluation of process and outcomes 10. Preparation* & presentation of posters of group work Each lecture combines an input by an expert in the respective field and group discussions. During 8 sessions students will directly apply the acquired knowledge to an own, individual project on a self-chosen topic on health@work. Tutors closely support the students in designing their projects. During the last two dates, the students present their projects to the entire class in a poster format. This presentation will be commented by the course leader and serves as the final course assessment. | |||||
Prerequisites / Notice | A course for students dedicated to applied learning through projects. As the whole course is designed as a hands-on workshop for the students, active participation in all lectures is expected. Class size limited to 30 students. | |||||
376-0131-00L | Laboratory Course in Movement Biomechanics ![]() Only for Health Sciences and Technology MSc. | W | 3 credits | 4P | R. List, B. Postolka | |
Abstract | Selected experiments in Biomechanics. The practical course includes basic experiments to learn measurement methods and practical applications in Biomechanics. | |||||
Objective | Students can gain their first experience in the practical application of measurement methods in Biomechanics by means of basic experimentation. They also learn how to keep records in the laboratory journal. | |||||
Content | Various experiments are offered in the field of Biomechanics. | |||||
Lecture notes | Texts and further handouts will be provided. | |||||
376-0202-00L | Neural Control of Movement and Motor Learning | W | 4 credits | 3G | N. Wenderoth | |
Abstract | This course extends the students' knowledge regarding the neural control of movement and motor learning. Particular emphasis will be put on those methods and experimental findings that have shaped current knowledge of this area. | |||||
Objective | Knowledge of the physiological and anatomic basis underlying the neural control of movement and motor learning. One central element is that students have first hands-on experience in the lab where small experiments are independently executed, analysed and interpreted. | |||||
376-0204-00L | Exercise Sciences | W | 4 credits | 3G | E. de Bruin, P. Eggenberger, A. Krebs | |
Abstract | Evidence-based findings on the training of endurance, strength, and speed, planning and periodization of training, as well as motor learning will be presented and discussed in relation to specific age groups (childhood to older age), and performance levels. The theoretical knowledge will be applied in an annual training plan for an individually chosen sport/performance level. | |||||
Objective | Understand and critically evaluate evidence-based training recommendations for specific groups (children/youth, adults, older adults, recreational/high performance sport) and apply and evaluate this knowledge within a goal-oriented training plan. | |||||
Content | Lecture: - Evidence-based research in exercise sciences - Endurance, strength, and speed training - Training in childhood and youth - Training in older age - Analysis of a specific sport, planning and periodization models - Motor learning in sports practice Training sessions: - Development of a goal-oriented annual training plan for an individually chosen sport/performance level, based on evidence from the exercise sciences. Practice in the gym: - Practical examples for the training of strength and speed - Motor learning experiments | |||||
Lecture notes | Lecture slides and papers on the Moodle platform. | |||||
Literature | G.G. Haff & N.T. Triplett (eds): Essentials of Strength Training and Conditioning. Human Kinetics, 4th edition, 2016. W.E. Amonette, K.L. English, W.J. Kraemer: Evidence-Based Practice in Exercise Science. The Six-Step Approach. Human Kinetics, 2016. | |||||
376-0206-00L | Biomechanics II | W | 4 credits | 3G | B. Taylor, P. Schütz, F. Vogl | |
Abstract | Introduction in dynamics, kinetics and kinematic of rigid and elastic multi-body systems with examples in biology, medicine and especially the human movement | |||||
Objective | The students are able - to analyse and describe dynamic systems - to explain the mechanical laws and use them in biology and medicine | |||||
Content | The human movement from a mechanical point of view. Kinetic and kinematic concepts and their mechanical description. Energy and momentum of a movement. Mechanical description of a multi-body system. | |||||
376-0905-00L | Functional Anatomy ![]() | W | 3 credits | 2V | D. P. Wolfer, I. Amrein | |
Abstract | Introduction to the anatomy of the musculoskeletal with the goal to better understand movements and the mechanisms of injuries. | |||||
Objective | - understanding the three-dimensional organization of the human musculoskeletal system - correct use of anatomical nomenclature in the description of structure and function - understanding the connections between morphology and normal function of the musculoskeletal system - knowledge of selected mechanisms of injury in terms of the underlying anatomy | |||||
Content | - Allgemeine Anatomie des Bewegungsapparates (Bindegewebe, Knochen, Gelenke, Muskeln) - Becken und freie untere Extremität (Skelett, Gelenke, Muskeln) - Wirbelsäule, Brustkorb, Bauchwand (Skelett, Gelenke, Muskeln) - Schulter und freie obere Extremität (Skelett, Gelenke, Muskeln) | |||||
Literature | - Gehrke T, Sportanatomie, Rowohlt Taschenbuch Verlag - Weineck J, Sportanatomie, Spitta-Verlag - Appel H-J, Stang-Voss C, Funktionelle Anatomie, Springer-Verlag | |||||
376-1150-00L | Clinical Challenges in Musculoskeletal Disorders ![]() | W | 2 credits | 2G | M. Leunig, S. J. Ferguson, A. Müller | |
Abstract | This course reviews musculoskeletal disorders focusing on the clinical presentation, current treatment approaches and future challenges and opportunities to overcome failures. | |||||
Objective | Appreciation of the surgical and technical challenges, and future perspectives offered through advances in surgical technique, new biomaterials and advanced medical device construction methods. | |||||
Content | Foot deformities, knee injuries, knee OA, hip disorders in the child and adolescent, hip OA, spine deformities, degenerative spine disease, shoulder in-stability, hand, rheumatoid diseases, neuromuscular diseases, sport injuries and prevention | |||||
376-1178-00L | Human Factors II | W | 3 credits | 2V | M. Menozzi Jäckli, R. Huang, M. Siegrist | |
Abstract | Strategies, abilities and needs of human at work as well as properties of products and systems are factors controlling quality and performance in everyday interactions. In Human Factors II (HF II), cognitive aspects are in focus therefore complementing the more physical oriented approach in HF I. A basic scientific approach is adopted and relevant links to practice are illustrated. | |||||
Objective | The goal of the lecture is to empower students in designing products and systems enabling an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, well-being, and safety as well. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy. | |||||
Content | Cognitive factors in perception, information processing and action. Experimental techniques in assessing human performance and well-being, human factors and ergonomics in development of products and complex systems, innovation, decision taking, consumer behavior. | |||||
Literature | Salvendy G. (ed), Handbook of Human Factors, Wiley & Sons, 2012 | |||||
376-1217-00L | Rehabilitation Engineering I: Motor Functions | W | 4 credits | 2V + 1U | R. Riener, J. Duarte Barriga | |
Abstract | “Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits. | |||||
Objective | Provide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities. | |||||
Content | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons). The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | |||||
Lecture notes | Lecture notes will be distributed at the beginning of the lecture (1st session) | |||||
Literature | Introductory Books Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000. Selected Journal Articles Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11 Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849 Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1308-00L | Development Strategies for Medical Implants ![]() Number of participants limited to 25 until 30. Assignments will be considered chronological. | W | 3 credits | 2V + 1U | J. Mayer-Spetzler, M. Rubert | |
Abstract | Introduction to development strategies for implantable devices considering the interdependecies of biocompatibility, clinical and economical requirements ; discussion of the state of the art and actual trends in in orthopedics, sports medicine, traumatology and cardio-vascular surgery as well as regenerative medicine (tissue engineering). | |||||
Objective | Basic considerations in implant development Concept of structural and surface biocompatiblity and its relevance for the design of implant and surgical technique Understanding of conflicting factors, e.g. clinical need, economics and regulatory requirements Concepts of tissue engineering, its strengths and weaknesses as current and future clinical solution | |||||
Content | Biocompatibility as bionic guide line for the development of medical implants; implant and implantation related tissue reactions, biocompatible materials and material processing technologies; implant testing and regulatory procedures; discussion of the state of the art and actual trends in implant development in orthopedics, sports medicine, traumatology, spinal and cardio-vascular surgery; introduction to tissue engineering. Selected topics will be further illustrated by commented movies from surgeries. Seminar: Group seminars on selected controversial topics in implant development. Participation is mandatory Planned excursions (limited availability, not mandatory, to be confirmed): 1. Participation (as visitor) on a life surgery (travel at own expense) | |||||
Lecture notes | Scribt (electronically available): - presented slides - selected scientific papers for further reading | |||||
Literature | Reference to key papers will be provided during the lectures | |||||
Prerequisites / Notice | Achieved Bachelor degree is mandatory The number of participants in the course is limited to 25-30 students in total. Students will be exposed to surgical movies which may cause emotional reactions. The viewing of the surgical movies is voluntary and is on the student's own responsability. | |||||
376-1392-00L | Mechanobiology: Implications for Development, Regeneration and Tissue Engineering | W | 3 credits | 2G | A. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong | |
Abstract | This course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs. | |||||
Objective | This course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena. | |||||
Content | Typically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include osteogenesis (bones), chondrogenesis (cartilage), and tendogenesis (tendons). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance. The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering. | |||||
Lecture notes | n/a | |||||
Literature | Topical Scientific Manuscripts | |||||
376-1397-00L | Orthopaedic Biomechanics ![]() Number of participants limited to 48. | W | 3 credits | 2G | R. Müller, P. Atkins | |
Abstract | This course is aimed at studying the mechanical and structural engineering of the musculoskeletal system alongside the analysis and design of orthopaedic solutions to musculoskeletal failure. | |||||
Objective | To apply engineering and design principles to orthopaedic biomechanics, to quantitatively assess the musculoskeletal system and model it, and to review rigid-body dynamics in an interesting context. | |||||
Content | Engineering principles are very important in the development and application of quantitative approaches in biology and medicine. This course includes a general introduction to structure and function of the musculoskeletal system: anatomy and physiology of musculoskeletal tissues and joints; biomechanical methods to assess and quantify tissues and large joint systems. These methods will also be applied to musculoskeletal failure, joint replacement and reconstruction; implants; biomaterials and tissue engineering. | |||||
Lecture notes | Stored on ILIAS. | |||||
Literature | Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems Authors: Donald L. Bartel, Dwight T. Davy, Tony M. Keaveny Publisher: Prentice Hall; Copyright: 2007 ISBN-10: 0130089095; ISBN-13: 9780130089090 | |||||
Prerequisites / Notice | Lectures will be given in English. | |||||
376-1400-00L | Transfer of Technologies into Neurorehabilitation ![]() | W | 3 credits | 2V | C. Müller, R. Gassert, R. Riener, H. Van Hedel, N. Wenderoth | |
Abstract | The course focuses on clinical as well as industrial aspects of advanced technologies and their transfer into neurorehabilitation from both theoretical and practical perspectives. The students will learn the basics of neurorehabilitation and the linkage to technologies, gain insight into the development within the medtech field and learn applications of technologies in clinical settings. | |||||
Objective | The students will: - Learn basics and principles of clinical neuroscience and neurorehabilitation. - Gain insight into the technical basics of advanced technologies and the transfer into product development processes. - Gain insight into the application, the development and integration of advanced technologies in clinical settings. This includes the advantages and limitations according to different pathologies and therapy goals. - Get the opportunity to test advanced technologies in practical settings. - Learn how to transfer theoretical concepts to actual settings in different working fields. | |||||
Content | Main focus: - Neurobiological principles applied to the field of neurorehabilitation. - Clinical applications of advanced rehabilitation technologies. - Visit medical technology companies, rehabilitation centers and labs to gain deeper insight into the development, application and evaluation of advanced technologie | |||||
Lecture notes | Teaching materials will be provided for the individual events and lectures. - Slides (pdf files) - Information sheets and flyers of the visited companies, labs and clinics | |||||
376-1620-00L | Skeletal Repair ![]() Number of participants limited to 42. Only for Health Sciences and Technology MSc and Biomedical Engineering MSc. | W | 3 credits | 3G | S. Grad, D. Eglin, F. Moriarty, M. Stoddart | |
Abstract | The course gives an introduction into traumatic and degenerative pathologies of skeletal tissues. Emphasis is put on bone, cartilage and intervertebral disc. Established and new treatments are described, including cell, gene and molecular therapy, biomaterials, tissue engineering and infection prevention. In vitro/in vivo models are explained. | |||||
Objective | The objectives of this course are to acquire a basic understanding of (1) important pathologies of skeletal tissues and their consequences for the patient and the public health (2) current surgical approaches for skeletal repair, their advantages and drawbacks (3) recent advances in biological strategies for skeletal repair, such as (stem) cell therapy, gene therapy, biomaterials and tissue engineering (4) pathology, prevention and treatment of implant associated infections (5) in vitro and in vivo models for basic, translational and pre-clinical studies | |||||
Content | According to the expected background knowledge, the cellular and extracellular composition and the structure of the skeletal tissues, including bone, cartilage, intervertebral disc, ligament and tendon will briefly be recapitulated. The functions of the healthy tissues and the impact of acute injury (e.g. bone fracture) or progressive degenerative failure (e.g. osteoarthritis) will be demonstrated. Physiological self-repair mechanisms, their limitations, and current (surgical) treatment options will be outlined. Particular emphasis will be put on novel approaches for biological repair or regeneration of critical bone defects, damaged hyaline cartilage of major articulating joints, and degenerative intervertebral disc tissues. These new treatment options include autologous cell therapies, stem cell applications, bioactive factors, gene therapy, biomaterials or biopolymers; while tissue engineering / regenerative medicine is considered as a combination of some of these factors. In vitro bioreactor systems and in vivo animal models will be described for preclinical testing of newly developed materials and techniques. Bacterial infection as a major complication of invasive treatment will be explained, covering also established and new methods for its effective inhibition. Finally, the translation of new therapies for skeletal repair from the laboratory to the clinical application will be illustrated by recent developments. | |||||
Prerequisites / Notice | Basic knowledge in the cellular and molecular composition, structure and function of healthy skeletal tissues, especially bone, cartilage and intervertebral disc are required; furthermore, basic understanding of biomaterial properties, cell-surface interactions, and bacterial infection are necessary to follow this course. | |||||
376-1624-00L | Practical Methods in Biofabrication ![]() Number of participants limited to 12. | W | 5 credits | 4P | M. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak | |
Abstract | Biofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft. | |||||
Objective | The objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project. | |||||
Prerequisites / Notice | Not recommended if passed 376-1622-00 Practical Methods in Tissue Engineering | |||||
376-1721-00L | Bone Biology and Consequences for Human Health | W | 2 credits | 2V | G. A. Kuhn, J. Goldhahn, E. Wehrle | |
Abstract | Bone is a complex tissue that continuously adapts to mechanical and metabolic demands. Failure of this remodeling results in reduced mechanic stability ot the skeleton. This course will provide the basic knowledge to understand the biology and pathophysiology of bone necessary for engineering of bone tissue and design of implants. | |||||
Objective | After completing this course, students will be able to understand: a) the biological and mechanical aspects of normal bone remodeling b) pathological changes and their consequences for the musculoskeletal system c) the consequences for implant design, tissue engineering and treatment interventions. | |||||
Content | Bone adapts continuously to mechanical and metabolic demands by complex remodeling processes. This course will deal with biological processes in bone tissue from cell to tissue level. This lecture will cover mechanisms of bone building (anabolic side), bone resorption (catabolic side), their coupling, and regulation mechanisms. It will also cover pathological changes and typical diseases like osteoporosis. Consequences for musculoskeletal health and their clinical relevance will be discussed. Requirements for tissue engineering as well as implant modification will be presented. Actual examples from research and development will be utilized for illustration. | |||||
376-1724-00L | Appropriate Health System Design ![]() ![]() Number of participants limited to 42. | W | 3 credits | 2V | W. Karlen | |
Abstract | This course elaborates upon relevant aspects in the conception, implementation and distribution of health devices and systems that effectively meet peoples and societies' needs in a local context. Four key elements of appropriateness (usage, cost, durability and performance) that are integral to the engineering design process are extensively discussed and applied. | |||||
Objective | The main goals are to > Evaluate the appropriateness of health systems to the cultural, financial, environmental and medical context in which they will be applied and > Design health systems from a user's perspective for a specific context At the end of the course, students can > name, understand and describe the 4 main principles that define appropriate technology > apply these principles to critically analyze and assess health systems and technology > project him/herself into a unfamiliar person and context and create hypotheses as to that person's needs, requirements, and priorities > modify specifications of existing systems to improve appropriateness > discuss the challenges and illustrate the the ethical and societal consequences of proposed design modifications > communicate effectively the results of his/her system analysis and implementation strategies to non-specialists | |||||
Content | The course will be interactive and involve roleplay. Please do not sign up for this course if you are not ready to leave your comfort zone in class. The lectures are divided in two parts: The first part elaborates upon the important concepts of the design of health care devices and systems, and discusses implementation and dissemination strategies. We focus on communities such as low income households, the elderly, and patients with chronic illnesses that have special needs. Topics covered include point-of-care diagnostics, information and communication technologies, mobile health, user interactions, and also the social-cultural considerations. The second part consists of elaboration of an appropriate device conducted by student groups. Each group will analyse an existing product or solution, critically assess its appropriateness according to the criteria learned in class, and provide explanations as to why the system succeeds or fails. The students will also present design improvements. Grading will be based on a written case report due in the middle of the semester and a final seminar presentation in form of a poster discussion and demo. | |||||
Literature | WHO, "Medical Devices: Managing the Mismatch", 2010. http://www.who.int/medical_devices/publications/med_dev_man-mismatch/en/ PATH, "The IC2030 report. Reimagining Global Health," 2015. http://ic2030.org/report/ R. Malkin and K. Von Oldenburg Beer, "Diffusion of novel healthcare technologies to resource poor settings," Annals of Biomedical Engineering, vol. 41, no. 9, pp. 1841:50, 2013. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and doctoral students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1974-00L | Colloquium in Biomechanics ![]() | W | 2 credits | 2K | B. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, B. Taylor, K. Würtz-Kozak, M. Zenobi-Wong | |
Abstract | Current topics in biomechanics presented by speakers from academia and industry. | |||||
Objective | Getting insight into actual areas and problems of biomechanics. | |||||
376-1986-00L | Bayesian Data Analysis on Models of Behavior No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: DOEC0829 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 3 credits | 2S | R. Polania, University lecturers | |
Abstract | Making sense of the data acquired via experiments is fundamental in many fields of sciences. This course is designed for students/researchers who want to gain practical experience with data analysis based on Bayesian inference. Coursework involves practical demonstrations and discussion of solutions for data analysis problems. No advanced knowledge of statistics and probability is required. | |||||
Objective | The overall goal of this course it that the students are able to develop both analytic and problem-solving skills that will serve to draw reasonable inferences from observations. The first objective is to make the participants familiar with the conceptual framework of Bayesian data analysis. The second goal is to introduce the ideas of modern Bayesian data analysis, including techniques such as Markov chain Monte Carlo (MCMC) techniques, alongside the introduction of programming tools that facilitate the creation of any Bayesian inference model. Throughout the course, this will involve practical demonstrations with example datasets, homework, and discussions that should convince the participants of this course that it is possible to make inference and understand the data acquired from the experiments that they usually obtain in their own research (starting from simple linear regressions all the way up to more complex models with hierarchical structures and dependencies). After working through this course, the participants should be able to build their own inference models in order to interpret meaningfully their own data. | |||||
Prerequisites / Notice | The very basics (or at least intuition) of programming in either Matlab or R | |||||
402-0673-00L | Physics in Medical Research: From Humans to Cells | W | 6 credits | 2V + 1U | B. K. R. Müller | |
Abstract | The aim of this lecture series is to introduce the role of physics in state-of-the-art medical research and clinical practice. Topics to be covered range from applications of physics in medical implant technology and tissue engineering, through imaging technology, to its role in interventional and non-interventional therapies. | |||||
Objective | The lecture series is focused on applying knowledge from physics in diagnosis, planning, and therapy close to clinical practice and fundamental medical research. Beside a general overview, the lectures give a deep insight into a very few selected techniques, which will help the students to apply the knowledge to a broad range of related techniques. In particular, the lectures will elucidate the physics behind the X-ray imaging currently used in clinical environment and contemporary high-resolution developments. It is the goal to visualize and quantify (sub-)microstructures of human tissues and implants as well as their interface. Ultrasound is not only used for diagnostic purposes but includes therapeutic approaches such as the control of the blood-brain barrier under MR-guidance. Physicists in medicine are working on modeling and simulation. Based on the vascular structure in cancerous and healthy tissues, the characteristic approaches in computational physics to develop strategies against cancer are presented. In order to deliberately destroy cancerous tissue, heat can be supplied or extracted in different manner: cryotherapy (heat conductivity in anisotropic, viscoelastic environment), radiofrequency treatment (single and multi-probe), laser application, and proton therapy. Medical implants play an important role to take over well-defined tasks within the human body. Although biocompatibility is here of crucial importance, the term is insufficiently understood. The aim of the lectures is the understanding of biocompatibility performing well-defined experiments in vitro and in vivo. Dealing with different classes of materials (metals, ceramics, polymers) the influence of surface modifications (morphology and surface coatings) are key issues for implant developments, which might be bio-inspired. Mechanical stimuli can drastically influence soft and hard tissue behavior. The students should realize that a physiological window exists, where a positive tissue response is expected and how the related parameter including strain, frequency, and resting periods can be selected and optimized for selected tissues such as bone. For the treatment of severe incontinence, we are developing artificial smart muscles. The students should have a critical look at promising solutions and the selection procedure as well as realize the time-consuming and complex way to clinical practice. The course will be completed by relating the numerous examples and a common round of questions. | |||||
Content | This lecture series will cover the following topics: Introduction: Imaging the human body down to individual cells and beyond Development of artificial muscles for incontinence treatment X-ray-based computed tomography in clinics and related medical research High-resolution micro computed tomography Phase tomography using hard X-rays in biomedical research Metal-based implants and scaffolds Natural and synthetic ceramics for implants and regenerative medicine Biomedical simulations Polymers for medical implants From open surgery to non-invasive interventions - Physical approaches in medical imaging Dental research Focused Ultrasound and its clinical use Applying physics in medicine: Benefitting patients | |||||
Lecture notes | http://www.bmc.unibas.ch/education/ETH_Zurich.phtml login and password to be provided during the lecture | |||||
Prerequisites / Notice | Students from other departments are very welcome to join and gain insight into a variety of sophisticated techniques for the benefit of patients. No special knowledge is required. Nevertheless, gaps in basic physical knowledge will require additional efforts. | |||||
535-0534-00L | Drug, Society and Public Health | W | 1 credit | 1V | J. Steurer, R. Heusser | |
Abstract | Introduction of basic concepts and methods in Public Health, epidemiology, and Evidence Based Medicine. An overview on concepts and principles of clinical trials on efficacy of drugs | |||||
Objective | Students know the concepts and principles of epidemiological and clinical research, they are informed about the principles of evidence based medicine and know how and where to search for evidence. | |||||
Content | Einführung in Epidemiologie / Pharmakoepidemiologie / Evidence-based Medicine: Grundbegriffe, Studiendesigns, object-design, statistische Grundlagen, Kausalität in der Pharmako-Epidemiologie, Methoden und Konzepte, Fallbeispiele. | |||||
Lecture notes | Wird abgegeben | |||||
Literature | - F. Gutzwiller/ F. Paccaud (Hrsg.): Sozial- und Präventivmedizin - Public Health. 4. Aufl. 2011, Verlag Hans Huber, Bern - R. Beaglehole, R. Bonita, T. Kjellström: Einführung in die Epidemiologie. 1997, Verlag Hans Huber, Bern - L. Gordis: Epidemiology, 4 th Ed. 2009, W.B. Saunders Comp. - K.J. Rothman, S. Greenland: Modern Epidemiology, 2. Ed. 1998, Lippincott Williams & Wilkins - A.G. Hartzema, M. Porta, H.H. Tilson (Eds.): Pharmacoepidemiology - An Introduction. 3. Ed. Harvey Whitney Comp., Cincinnati - R. Bonita, R. Beaglehole. Einführung in die Epidemiologie, 2. überarbeitete Auflage, 2008 Huber Verlag. - B.L. Strom (Eds.): Pharmacoepidemiology. 3. Ed. 2000, Wiley & Sons Ltd., Chichester - S.E. Straus, W.S. Richardson, P.Glasziou, R.B. Haynes: Evidence-based Medicine. 2005, Churchill Livingstone, London - U. Jaehde, R.Radziwill, S. Mühlebach, W. Schnack (Hrsg): Lehrbuch der Klinischen Pharmazie - L.M. Bachmann, M.A. Puhan, J.Steurer (Eds.): Patientenorientierte Forschung. EInführung in die Planung und Durchführung einer Studie. Verlag Hans Huber, 2008 | |||||
701-1704-01L | Health Impact Assessment: Concepts and Case Studies | W | 3 credits | 2V | M. Winkler, C. Guéladio, M. Röösli, J. M. Utzinger | |
Abstract | This course introduces the concept of health impact assessment (HIA) and discusses a suite of case studies in industrialised and developing countries. HIA pursues an inter- and multidisciplinary approach, employs qualitative and quantitative methods with the overarching goal to influence decision-making. | |||||
Objective | After successful completion of the course, students should be able to: o critically reflect on the concept of HIA and the different steps from screening to implementation and monitoring; and o apply specific tools and methodologies for HIA of policies, programmes and projects in different social, ecological and epidemiological settings. | |||||
Content | The course will present a broad set of tools and methods for the systematic and evidence-based judgment of potential health effects related to policies, programmes and projects. Methodological features will be introduced and applied to a variety of case studies in the public sector (e.g. traffic-related air pollution, passive smoking and waste water management) and private sector (e.g. water resource developments and extractive industries) all over the world. | |||||
Lecture notes | Handouts will be distributed. | |||||
Literature | Whenever possible, at least one peer-reviewed paper will be made available for each session. | |||||
![]() | ||||||
![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-0302-00L | Practicing Translational Science ![]() Only for Health Sciences and Technology MSc. | O | 2 credits | 4A | J. Goldhahn, S. Ben-Menahem, C. Ewald, W. Karlen | |
Abstract | Translational Science is a cross disciplinary scientific research that is motivated by the need for practical applications that help patients. The students should apply knowledge they gained in the prior course during a team approach focused on one topic provided by the supervisor. Each student has to take a role in the team and label clear responsibility and contribution. | |||||
Objective | After completing this course, students will be able to apply: a) Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication) b) The use of a translational approach in project planning and management | |||||
Prerequisites / Notice | Prerequisite: lecture 376-0300-00 "Translational Science for Health and Medicine" passed. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-1724-00L | Appropriate Health System Design ![]() ![]() Number of participants limited to 42. | W | 3 credits | 2V | W. Karlen | |
Abstract | This course elaborates upon relevant aspects in the conception, implementation and distribution of health devices and systems that effectively meet peoples and societies' needs in a local context. Four key elements of appropriateness (usage, cost, durability and performance) that are integral to the engineering design process are extensively discussed and applied. | |||||
Objective | The main goals are to > Evaluate the appropriateness of health systems to the cultural, financial, environmental and medical context in which they will be applied and > Design health systems from a user's perspective for a specific context At the end of the course, students can > name, understand and describe the 4 main principles that define appropriate technology > apply these principles to critically analyze and assess health systems and technology > project him/herself into a unfamiliar person and context and create hypotheses as to that person's needs, requirements, and priorities > modify specifications of existing systems to improve appropriateness > discuss the challenges and illustrate the the ethical and societal consequences of proposed design modifications > communicate effectively the results of his/her system analysis and implementation strategies to non-specialists | |||||
Content | The course will be interactive and involve roleplay. Please do not sign up for this course if you are not ready to leave your comfort zone in class. The lectures are divided in two parts: The first part elaborates upon the important concepts of the design of health care devices and systems, and discusses implementation and dissemination strategies. We focus on communities such as low income households, the elderly, and patients with chronic illnesses that have special needs. Topics covered include point-of-care diagnostics, information and communication technologies, mobile health, user interactions, and also the social-cultural considerations. The second part consists of elaboration of an appropriate device conducted by student groups. Each group will analyse an existing product or solution, critically assess its appropriateness according to the criteria learned in class, and provide explanations as to why the system succeeds or fails. The students will also present design improvements. Grading will be based on a written case report due in the middle of the semester and a final seminar presentation in form of a poster discussion and demo. | |||||
Literature | WHO, "Medical Devices: Managing the Mismatch", 2010. http://www.who.int/medical_devices/publications/med_dev_man-mismatch/en/ PATH, "The IC2030 report. Reimagining Global Health," 2015. http://ic2030.org/report/ R. Malkin and K. Von Oldenburg Beer, "Diffusion of novel healthcare technologies to resource poor settings," Annals of Biomedical Engineering, vol. 41, no. 9, pp. 1841:50, 2013. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and doctoral students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
363-1066-00L | Designing Effective Projects for Promoting Health@Work ![]() Number of participants limited to 30. | W | 3 credits | 2G | G. Bauer, R. Brauchli, G. J. Jenny | |
Abstract | The fast changing, flexible and performance-oriented economy implies increasing challenges and opportunities for the health of employees. Creating good working conditions and promoting healthy lifestyles of employees becomes more and more important for employers and employees. Students learn how to develop an effective, real-life project of their choice to promote health@work. | |||||
Objective | Students become familiar with challenges and opportunities of a changing world of work. They get an overview of intervention approaches and principles in the fields of worksite health promotion as well as work and organizational psychology. On this basis, they learn how to develop an effective, real life worksite health promotion project of their choice – addressing lifestyle factors or working conditions. During the project work, they learn to follow the typical phases of selecting/framing a relevant work-related health issue, conducting an analysis, formulating smart objectives, developing a realistic action plan, estimating the time and money needed for these actions, and finally evaluating the impact of the project. This will strengthen their general project management skills. Students will know how to apply key quality criteria of health promotion projects: 1.) how to follow a systematic, evidence-based approach (project management), 2.) how to assure involvement of and thus acceptance by the users (participation), 3.) how to consider both individual, lifestyle-related and organizational, work-related factors (comprehensiveness), and 4.) how to integrate the project into the routine of the organization to assure sustainability (integration). This will increase the impact of future health promotion projects developed by the students. D-MTEC students will be able to systematically address employee health and performance in their future management practice. D-HEST students will be able to apply their health promotion knowledge to the challenging context of corporations. D-USYS students will be able to consider lifestyle factors and the working environment in their future work. The exchange among these interdisciplinary student groups will foster their ability to solve real life problems in a transdisciplinary manner. Finally, students get acquainted how to design their future work in a health promoting way. | |||||
Content | 1. Challenges in health@work and intervention approaches 2. Lifestyle interventions at work incl. digital tools 3. Personal and organizational strategies for promoting healthy work 4. Core concepts, values and principles in promoting health@work; introduction to project work & 7-pillar planning model 5. Framing and analysis of health@work issues 6. Participatory priority setting in health@work projects and defining outcome objectives 7. Combining levels of interventions and defining process objectives 8. Project management 9. Evaluation of process and outcomes 10. Preparation* & presentation of posters of group work Each lecture combines an input by an expert in the respective field and group discussions. During 8 sessions students will directly apply the acquired knowledge to an own, individual project on a self-chosen topic on health@work. Tutors closely support the students in designing their projects. During the last two dates, the students present their projects to the entire class in a poster format. This presentation will be commented by the course leader and serves as the final course assessment. | |||||
Prerequisites / Notice | A course for students dedicated to applied learning through projects. As the whole course is designed as a hands-on workshop for the students, active participation in all lectures is expected. Class size limited to 30 students. | |||||
752-6104-00L | Nutrition for Health and Development | W | 2 credits | 2V | M. B. Zimmermann | |
Abstract | The course presents nutrition and health issues with a special focus on developing countries. Micronutrient deficiencies including assessment and prevalence and food fortification with micronutrients. | |||||
Objective | Knowing commonly used nutrition and health indicators to evaluate the nutritional status of populations. Knowing and evaluating nutritional problems in developing countries. Understanding the problem of micronutrient deficiencies and the principles of food fortification with micronutrients. | |||||
Content | The course presents regional and global aspects and status of food security and commonly used nutrition and health indicators. Child growth, childhood malnutrition and the interaction of nutrition and infectious diseases in developing countries. Specific nutritional problems in emergencies. The assessment methods and the prevalence of micronutrient deficiencies at regional and global level. The principles of food fortification with micronutrients and examples fortification programs. | |||||
Lecture notes | The lecture details are available. | |||||
Literature | Leathers and Foster, The world food problem, Tackling the causes of undernutrition in the third world. 3rd ed., 2004. Semba and Bloem, Nutrition and health in developing countries, 2nd edition, Humana Press, 2008. WHO, FAO, Guidelines on food fortification with micronutrients, WHO, 2006. | |||||
![]() ![]() ![]() | ||||||
![]() ![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-1708-00L | Infectious Disease Dynamics | W | 4 credits | 2V | S. Bonhoeffer, R. D. Kouyos, R. R. Regös, T. Stadler | |
Abstract | This course introduces into current research on the population biology of infectious diseases. The course discusses the most important mathematical tools and their application to relevant diseases of human, natural or managed populations. | |||||
Objective | Attendees will learn about: * the impact of important infectious pathogens and their evolution on human, natural and managed populations * the population biological impact of interventions such as treatment or vaccination * the impact of population structure on disease transmission Attendees will learn how: * the emergence spread of infectious diseases is described mathematically * the impact of interventions can be predicted and optimized with mathematical models * population biological models are parameterized from empirical data * genetic information can be used to infer the population biology of the infectious disease The course will focus on how the formal methods ("how") can be used to derive biological insights about the host-pathogen system ("about"). | |||||
Content | After an introduction into the history of infectious diseases and epidemiology the course will discuss basic epidemiological models and the mathematical methods of their analysis. We will then discuss the population dynamical effects of intervention strategies such as vaccination and treatment. In the second part of the course we will introduce into more advanced topics such as the effect of spatial population structure, explicit contact structure, host heterogeneity, and stochasticity. In the final part of the course we will introduce basic concepts of phylogenetic analysis in the context of infectious diseases. | |||||
Lecture notes | Slides and script of the lecture will be available online. | |||||
Literature | The course is not based on any of the textbooks below, but they are excellent choices as accompanying material: * Keeling & Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton Univ Press 2008 * Anderson & May, Infectious Diseases in Humans, Oxford Univ Press 1990 * Murray, Mathematical Biology, Springer 2002/3 * Nowak & May, Virus Dynamics, Oxford Univ Press 2000 * Holmes, The Evolution and Emergence of RNA Viruses, Oxford Univ Press 2009 | |||||
Prerequisites / Notice | Basic knowledge of population dynamics and population genetics as well as linear algebra and analysis will be an advantage. | |||||
![]() ![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
752-1300-00L | Introduction to Toxicology | W | 3 credits | 2V | R. Eggen, S. J. Sturla | |
Abstract | Introduction to how chemical properties and biological interactions govern the disposition and influences of toxicants. | |||||
Objective | The objectives are for the student to establish a framework for examining adverse effects resulting from exposures to toxicants by understanding key mechanisms that give rise to toxic responses and disease processes. | |||||
Content | This course will introduce mechanisms governing the chemical disposition and biological influences of toxicants. The course is geared toward advanced bachelors students in food science, environmental science, and related disciplines, such as chemistry, biology and pharmaceutical sciences. Examples of topics include: dose-response relationships and risk assessment, absorption, transport, and biotransformation of xenobiotic chemicals; Carcinogenesis; DNA damage, repair, and mutation; Immunotoxicity; Neurotoxicity; and modern toxicity testing strategies. These fundamental concepts in Mechanistic Toxicology will be integrated with examples of toxicants relevant to food, drugs and the environment. | |||||
Literature | Casarett & Doull's Toxicology, The Basic Science of Poisons. Seventh Edition. Editor: Curtis D. Klaassen, 2008, McGraw-Hill. (available on-line) | |||||
Prerequisites / Notice | Basic knowledge of organic chemistry and biochemistry is required. | |||||
752-1300-01L | Food Toxicology ![]() | W | 2 credits | 1V | S. J. Sturla, N. Antczak | |
Abstract | Builds on a foundation in Toxicology fundamentals to address situations and toxins relevant to Food Science, Nutrition, and Food Safety & Quality. | |||||
Objective | Course objectives are for the student to have a broad awareness of toxicant classes and toxicants relevant to food, and to know their identities (i.e. chemical structure or biological nature), origins, relevance of human exposures, general mode of biological action, and potential mitigation strategies. | |||||
Content | Builds on a foundation in Toxicology fundamentals to address situations relevant to Food Science, Nutrition, and Food Safety & Quality. Representative topics: Toxic Phytochemicals and Mycotoxins, Industrial Contaminants and Packaging Materials, Toxicants formed During Food Processing, Alcohol and Tobacco. The class is comprised of bi-weekly lectures, independent reading, and preparation of an independent evaluation of a food-related toxin. | |||||
Literature | Reading from the primary literature will be referenced in class and posted to the course website. | |||||
Prerequisites / Notice | The course "Introduction to Toxicology" (752-1300-00V) is a prerequisite for the students who want to take this course. Equivalent course may be accepted; contact the instructor. | |||||
752-6102-00L | The Role of Food and Nutrition for Disease Prevention | W | 3 credits | 2V | M. Andersson | |
Abstract | The course teaches the links between the diet and the etiology and progression of chronic diseases. | |||||
Objective | To examine and understand the protective effects of foods and food ingredients in the maintenance of health and the prevention of chronic disease, as well as the progression of complications of chronic diseases. | |||||
Content | The course evaluates food and nutrition in relation to primary and secondary prevention of chronic diseases. | |||||
Lecture notes | There is no script. Powerpoint presentations and relevant literature will be made available online to students. | |||||
Literature | Obligatory course literature to be provided by the responsible lecturer and the individual invited lecturers. | |||||
Prerequisites / Notice | No compulsory prerequisites, but prior completion of Introduction to Nutritional Science (752-6001-00L) and Advanced Topics in Nutritional Science (752-6002-00L) is strongly adviced. | |||||
752-6302-00L | Physiology of Eating ![]() | W | 3 credits | 2V | W. Langhans | |
Abstract | Introduction to the basic knowledge necessary for an understanding of the physiology and pathology of hunger, satiety, and body weight control, how this knowledge is generated, and how it helps improve nutritional advice for healthy people as well as nutritional guidelines for patients. | |||||
Objective | This course requires basic knowledge in physiology and is designed to build on course HE03 “Selected Topics in Physiology Related to Nutrition.” The course covers psychological and physiological determinants of food selection and amount eaten. The aim is to introduce the students to (a) the basic knowledge necessary for an understanding of the physiology and pathology of hunger, satiety, and body weight control, (b) how new scientific knowledge in this area is generated, (c) how this basic knowledge helps improve nutritional advice for healthy people as well as nutritional guidelines for patients. Major topics are: Basic scientific concepts for the physiological study of eating in animals and humans; the psychopharmacology of reward; endocrine and metabolic controls of eating; the neural control of eating; psychological aspects of eating; eating behavior and energy balance; exercise, eating and body weight; popular diets and their evaluation; epidemiology, clinical features and the treatment of psychiatric eating disorders; epidemiology, clinical features and the treatment of obesity, including related aspects of non-insulin dependent diabetes; mechanisms of cachexia and anorexia during illness; exogenous factors that influence eating, including pharmaceutical drugs, alcohol, coffee, etc. | |||||
Lecture notes | Handouts will be provided | |||||
Literature | Literature will be discussed in class | |||||
![]() ![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
701-0662-00L | Environmental Impacts, Threshold Levels and Health Effects ![]() | W | 3 credits | 2V | C.‑T. Monn, M. Brink | |
Abstract | Environmental impacts on human health and well-being will be discussed. Concepts and methods for exposure measurements and assessments will be shown. In the first part of the semester, air pollutants (for example for ozone, and fine particles). In the second part, noise, its effects and control, will be covered. | |||||
Objective | - to understand the basic concepts of an exposure assessment (air, noise) - to know methods used in health effect research - to know criteria and methods for setting threshold levels | |||||
Content | Air Pollutants - sources of pollutants (indoors and outdoors) - concepts of an exposure assessment - measurement methods for gases and particles - health effect of pollutants (methods, most important pollutants, such as fine particles and ozone) Noise - Introduction to acoustics, Measurement, Hearing - Auditory processing - Exposure assessment of noise - Noise effects, Exposure-effect relationships - Basics of noise control and abatement, exposure limits - Noise abatement policy | |||||
Lecture notes | Presentations (ppt, pdf) will be sent by email. | |||||
Literature | see references in the scripts. | |||||
701-1312-00L | Advanced Ecotoxicology | W | 3 credits | 2V | R. Eggen, E. Janssen, K. Schirmer, M. Suter | |
Abstract | This course will take up the principles of environmental chemistry and ecotoxicology from the bachelor courses and deepen the understanding on selected topics. Linkages will be made between i) bioavailability and effects, ii) structures of compounds and modes of toxic action, iii) effects over various biological levels, moderated by environmental factors, iv) chemical and biological assessments | |||||
Objective | - Understanding the key processes involved in fate, behavior and the bioaccumulation of (mainly) organic contaminants - Overview on and understanding of mechanisms of toxicity - linking structures and characteristics of compounds with effects - processes in hazard assessment and risk assessment - get insight in integrative approaches in ecotoxicology | |||||
Content | Units 1-3: Fate of contaminants, dynamic interactions with the (a)biotic environment, toxikokinetics - physico-chemical properties - partitioning processes in environmental compartments - partitioning to biota - bioavailability and bioaccumulation concepts - partitioning in biota Units 4-6: Toxicodynamics (effect of contaminants on biota) - internal concentrations; dose-response concept - molecular mechanisms of toxic actions - classification - Exercise: databases and estimation of toxicity Unit 7-10: Toxic effects: from molecular to ecosystems - complex mechanisms and feedback loops - mixtures and multiple stressors - stress- and adaptive responses - dynamic exposures - confounding factors, food web interactions - Exercise: linking compounds with modes of toxic action Unit 11: metal ecotoxicology Unit 12-14: integrative approaches and case studies - bioassays, -omics, systems ecotoxicology, phenotypic anchoring - in vivo versus in vitro biotesting - linking chemical with biological analytics - bioassay-directed fractionation and identification - (inter) national case studies and linkage of learned with approaches in practice | |||||
Lecture notes | Parts of scripts will be distributed, otherwise copies of overheads and selected publications | |||||
Literature | R.P. Schwarzenbach, P.M. Gschwend, D.M. Imboden, Environmental Organic Chemistry, third edition, Wiley, 2005 C.J. van Leeuwen, J.L.M. Hermens (Editoren), Risk Assessment of Chemicals: An Introduction, Kluwer, 1995 Principles of ecotoxicology, CH Walker, RM Sibly, SP Hopkin, DB Peakall, fourth edition, CRC Press, 2012 | |||||
Prerequisites / Notice | Required: 1. Basics in environmental chemistry 2. Basics in environmental toxicology | |||||
701-1350-00L | Case Studies in Environment and Health | W | 4 credits | 2V | K. McNeill, N. Borduas-Dedekind, T. Julian | |
Abstract | This course will focus on a few individual chemicals and pathogens from different standpoints: their basic chemistry or biology, their environmental behavior, (eco)toxicology, and human health impacts. The course will draw out the common points in each chemical or pathogen's history. | |||||
Objective | This course aims to illustrate how the individual properties of chemicals and pathogens along with societal pressures lead to environmental and human health crises. The ultimate goal of the course is to identify common aspects that will improve prediction of environmental crises before they occur. Students are expected to participate actively in the course, which includes the critical reading of the pertinent literature and class presentations. | |||||
Content | Each semester will feature case studies of chemicals and pathogens that have had a profound effect on human health and the environment. The instructors will present eight of these and the students will present approx. six in groups of three or four. Students will be expected to contribute to the discussion and, on selected topics, to lead the discussion. | |||||
Lecture notes | Handouts will be provided as needed. | |||||
Literature | Handouts will be provided as needed. | |||||
701-1704-01L | Health Impact Assessment: Concepts and Case Studies | W | 3 credits | 2V | M. Winkler, C. Guéladio, M. Röösli, J. M. Utzinger | |
Abstract | This course introduces the concept of health impact assessment (HIA) and discusses a suite of case studies in industrialised and developing countries. HIA pursues an inter- and multidisciplinary approach, employs qualitative and quantitative methods with the overarching goal to influence decision-making. | |||||
Objective | After successful completion of the course, students should be able to: o critically reflect on the concept of HIA and the different steps from screening to implementation and monitoring; and o apply specific tools and methodologies for HIA of policies, programmes and projects in different social, ecological and epidemiological settings. | |||||
Content | The course will present a broad set of tools and methods for the systematic and evidence-based judgment of potential health effects related to policies, programmes and projects. Methodological features will be introduced and applied to a variety of case studies in the public sector (e.g. traffic-related air pollution, passive smoking and waste water management) and private sector (e.g. water resource developments and extractive industries) all over the world. | |||||
Lecture notes | Handouts will be distributed. | |||||
Literature | Whenever possible, at least one peer-reviewed paper will be made available for each session. | |||||
![]() | ||||||
![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-0302-00L | Practicing Translational Science ![]() Only for Health Sciences and Technology MSc. | O | 2 credits | 4A | J. Goldhahn, S. Ben-Menahem, C. Ewald, W. Karlen | |
Abstract | Translational Science is a cross disciplinary scientific research that is motivated by the need for practical applications that help patients. The students should apply knowledge they gained in the prior course during a team approach focused on one topic provided by the supervisor. Each student has to take a role in the team and label clear responsibility and contribution. | |||||
Objective | After completing this course, students will be able to apply: a) Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication) b) The use of a translational approach in project planning and management | |||||
Prerequisites / Notice | Prerequisite: lecture 376-0300-00 "Translational Science for Health and Medicine" passed. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-0022-00L | Imaging and Computing in Medicine ![]() | W | 4 credits | 3G | R. Müller, P. Christen | |
Abstract | Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamental as well as modern techniques and methods of imaging and computing in medicine. | |||||
Objective | 1. Understanding and practical implementation of biosignal processes methods for imaging 2. Understanding of imaging techniques including radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging 3. Knowledge of computing, programming, modelling and simulation fundamentals 4. Computational and systems thinking as well as scripting and programming skills 5. Understanding and practical implementation of emerging computational methods and their application in medicine including artificial intelligence, deep learning, big data, and complexity 6. Understanding of the emerging concept of personalised and in silico medicine 7. Encouragement of critical thinking and creating an environment for independent and self-directed studying | |||||
Content | Imaging and computing methods are key to advances and innovation in medicine. This course introduces established fundamental as well as modern techniques and methods of imaging and computing in medicine. In imaging, biosignal processing, radiation imaging, radiographic imaging systems, computed tomography imaging, diagnostic ultrasound imaging, and magnetic resonance imaging are covered. In computing, computing, programming, and modelling and simulation fundamentals are covered as well as their application in artificial intelligence and deep learning, complexity and systems medicine, big data and personalised medicine, and computational physiology and in silico medicine. The course is structured as a seminar in three parts of 45 minutes with video lectures and a flipped class room setup: in the first part (TORQUEs: Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness), students study the basic concepts in short video lectures on the online learning platform Moodle. At the end of this first part, must post a number of questions in the Moodle forum that will be addressed in the second part of the lectures using a flipped classroom concept. First, the lecturers may prepare additional teaching material to answer the posted questions and potentially discuss further questions (Q&A). Second, the students will form small groups to acquire additional knowledge online or from additionally distributed material and to present their findings to the rest of the class. | |||||
Lecture notes | Stored on Moodle. | |||||
376-0210-00L | Biomechatronics Primarily designed for HSTstudents The Biomechatronics lecture is not appropriate for students who already attended the lecture "Physical Human-Robot Interaction"(376-1504-00L), because it covers similar topics. Matlab skills are beneficial-> online Tutorial http://www.imrtweb.ethz.ch/matlab/ | W | 4 credits | 3G | R. Riener, R. Gassert | |
Abstract | Development of mechatronic systems (i.e. mechanics, electronics, computer science and system integration) with inspiration from biology and application in the living (human) organism. | |||||
Objective | The objective of this course is to give an introduction to the fundamentals of biomechatronics, through lectures on the underlying theoretical/mechatronics aspects and application fields. In the exercises, these concepts will be intensified and trained on the basis of specific examples. The course will guide students through the design and evaluation process of such systems, and highlight a number of applications. By the end of this course, you should understand the critical elements of biomechatronics and their interaction with biological systems, both in terms of engineering metrics and human factors. You will be able to apply the learned methods and principles to the design, improvement and evaluation of safe and efficient biomechatronics systems. | |||||
Content | The course will cover the interdisciplinary elements of biomechatronics, ranging from human factors to sensor and actuator technologies, real-time signal processing, system kinematics and dynamics, modeling and simulation, controls and graphical rendering as well as safety/ethical aspects, and provide an overview of the diverse applications of biomechatronics technology. | |||||
Lecture notes | Slides will be distributed through moodle before the lectures. | |||||
Literature | Brooker, G. (2012). Introduction to Biomechatronics. SciTech Publishing. Riener, R., Harders, M. (2012) Virtual Reality in Medicine. Springer, London. | |||||
Prerequisites / Notice | None | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0630-00L | Nanorobotics ![]() | W | 4 credits | 2V + 1U | S. Pané Vidal | |
Abstract | Nanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. | |||||
Objective | The aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine. | |||||
151-0980-00L | Biofluiddynamics | W | 4 credits | 2V + 1U | D. Obrist, P. Jenny | |
Abstract | Introduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics). | |||||
Objective | A basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately. | |||||
Content | This lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear. | |||||
Lecture notes | Lecture notes are provided electronically. | |||||
Literature | A list of books on selected topics of biofluiddynamics can be found on the course web page. | |||||
227-0384-00L | Ultrasound Fundamentals, Imaging, and Medical Applications ![]() Number of participants limited to 60. | W | 4 credits | 3G | O. Göksel | |
Abstract | Ultrasound is the only imaging modality that is nonionizing (safe), real-time, cost-effective, and portable, with many medical uses in diagnosis, intervention guidance, surgical navigation, and as a therapeutic option. In this course, we introduce conventional and prospective applications of ultrasound, starting with the fundamentals of ultrasound physics and imaging. | |||||
Objective | Students can use the fundamentals of ultrasound, to analyze and evaluate ultrasound imaging techniques and applications, in particular in the field of medicine, as well as to design and implement basic applications. | |||||
Content | Ultrasound is used in wide range of products, from car parking sensors, to assessing fault lines in tram wheels. Medical imaging is the eye of the doctor into body; and ultrasound is the only imaging modality that is nonionizing (safe), real-time, cheap, and portable. Some of its medical uses include diagnosing breast and prostate cancer, guiding needle insertions/biopsies, screening for fetal anomalies, and monitoring cardiac arrhythmias. Ultrasound physically interacts with the tissue, and thus can also be used therapeutically, e.g., to deliver heat to treat tumors, break kidney stones, and targeted drug delivery. Recent years have seen several novel ultrasound techniques and applications – with many more waiting in the horizon to be discovered. This course covers ultrasonic equipment, physics of wave propagation, numerical methods for its simulation, image generation, beamforming (basic delay-and-sum and advanced methods), transducers (phased-, linear-, convex-arrays), near- and far-field effect, imaging modes (e.g., A-, M-, B-mode), Doppler and harmonic imaging, ultrasound signal processing techniques (e.g., filtering, time-gain-compensation, displacement tracking), image analysis techniques (deconvolution, real-time processing, tracking, segmentation, computer-assisted interventions), acoustic-radiation force, plane-wave imaging, contrast agents, micro-bubbles, elastography, biomechanical characterization, high-intensity focused ultrasound and therapy, lithotripsy, histotripsy, photo-acoustics phenomenon and opto-acoustic imaging, as well as sample non-medical applications such as the basics of non-destructive testing (NDT). Hands-on exercises: These will help to apply the concepts learned in the course, using simulation environments (such as Matlab k-Wave and FieldII toolboxes). The exercises will involve a mix of design, implementation, and evaluation examples commonly encountered in practical applications. Project: These will be part of the assessment in grading. Projects will be carried out throughout the course, individually or in small groups. Project reporting and presentations will be due at the end of the semester. Topics highly relevant in the field of ultrasound are offered as suggested projects. Students are also welcome to propose custom project topics of their own. | |||||
Prerequisites / Notice | Prerequisites: Familiarity with basic numerical methods. Basic programming skills in Matlab. | |||||
227-0391-00L | Medical Image Analysis Basic knowledge of computer vision would be helpful. | W | 3 credits | 2G | E. Konukoglu, M. A. Reyes Aguirre, C. Tanner | |
Abstract | It is the objective of this lecture to introduce the basic concepts used in Medical Image Analysis. In particular the lecture focuses on shape representation schemes, segmentation techniques, machine learning based predictive models and various image registration methods commonly used in Medical Image Analysis applications. | |||||
Objective | This lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas. | |||||
Prerequisites / Notice | Prerequisites: Basic concepts of mathematical analysis and linear algebra. Preferred: Basic knowledge of computer vision and machine learning would be helpful. The course will be held in English. | |||||
227-0946-00L | Molecular Imaging - Basic Principles and Biomedical Applications | W | 2 credits | 2V | M. Rudin | |
Abstract | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
Objective | Molecular Imaging is a rapidly emerging discipline that translates concepts developed in molecular biology and cellular imaging to in vivo imaging in animals and ultimatly in humans. Molecular imaging techniques allow the study of molecular events in the full biological context of an intact organism and will therefore become an indispensable tool for biomedical research. | |||||
Content | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
227-0948-00L | Magnetic Resonance Imaging in Medicine | W | 4 credits | 3G | S. Kozerke, M. Weiger Senften | |
Abstract | Introduction to magnetic resonance imaging and spectroscopy, encoding and contrast mechanisms and their application in medicine. | |||||
Objective | Understand the basic principles of signal generation, image encoding and decoding, contrast manipulation and the application thereof to assess anatomical and functional information in-vivo. | |||||
Content | Introduction to magnetic resonance imaging including basic phenomena of nuclear magnetic resonance; 2- and 3-dimensional imaging procedures; fast and parallel imaging techniques; image reconstruction; pulse sequences and image contrast manipulation; equipment; advanced techniques for identifying activated brain areas; perfusion and flow; diffusion tensor imaging and fiber tracking; contrast agents; localized magnetic resonance spectroscopy and spectroscopic imaging; diagnostic applications and applications in research. | |||||
Lecture notes | D. Meier, P. Boesiger, S. Kozerke Magnetic Resonance Imaging and Spectroscopy | |||||
327-2125-00L | Microscopy Training SEM I - Introduction to SEM ![]() Limited number of participants. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). | W | 2 credits | 3P | K. Kunze, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, J. Reuteler | |
Abstract | The introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using 2 SEM instruments, students have the opportunity to study their own samples, or standard test samples, as well as solving exercises provided by ScopeM scientists. | |||||
Objective | - Set-up, align and operate a SEM successfully and safely. - Accomplish imaging tasks successfully and optimize microscope performances. - Master the operation of a low-vacuum and field-emission SEM and EDX instrument. - Perform sample preparation with corresponding techniques and equipment for imaging and analysis - Acquire techniques in obtaining secondary electron and backscatter electron micrographs - Perform EDX qualitative and semi-quantitative analysis | |||||
Content | During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students with no prior experience are able to align a SEM, to obtain secondary electron (SE) and backscatter electron (BSE) micrographs and to perform energy dispersive X-ray spectroscopy (EDX) qualitative and semi-quantitative analysis. The procedures to better utilize SEM to solve practical problems and to optimize SEM analysis for a wide range of materials will be emphasized. - Discussion of students' sample/interest - Introduction and discussion on Electron Microscopy and instrumentation - Lectures on electron sources, electron lenses and probe formation - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM - Brief description and demonstration of the SEM microscope - Practice on beam/specimen interaction, image formation, image contrast (and image processing) - Student participation on sample preparation techniques - Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities - Lecture and demonstrations on X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescans and spectral mapping - Practice on real-world samples and report results | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
327-2126-00L | Microscopy Training TEM I - Introduction to TEM ![]() Number of participants limited to 6. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). TEM 1 registration form: Link | W | 2 credits | 3P | M. Willinger, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm | |
Abstract | The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions. | |||||
Objective | - Overview of TEM theory, instrumentation, operation and applications. - Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully. - Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras. - To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns. - Overview of techniques for specimen preparation. | |||||
Content | Using two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods. - Introduction and discussion on Electron Microscopy and instrumentation. - Lectures on electron sources, electron lenses and probe formation. - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM. - Brief description and demonstration of the TEM microscope. - Practice on beam/specimen interaction, image formation, Image contrast (and image processing). - Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM). - Student participation on sample preparation techniques. - Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities. - TEM alignment, calibration, correction to improve image contrast and quality. - Electron diffraction. - Practice on real-world samples and report results. | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
376-0131-00L | Laboratory Course in Movement Biomechanics ![]() Only for Health Sciences and Technology MSc. | W | 3 credits | 4P | R. List, B. Postolka | |
Abstract | Selected experiments in Biomechanics. The practical course includes basic experiments to learn measurement methods and practical applications in Biomechanics. | |||||
Objective | Students can gain their first experience in the practical application of measurement methods in Biomechanics by means of basic experimentation. They also learn how to keep records in the laboratory journal. | |||||
Content | Various experiments are offered in the field of Biomechanics. | |||||
Lecture notes | Texts and further handouts will be provided. | |||||
376-1150-00L | Clinical Challenges in Musculoskeletal Disorders ![]() | W | 2 credits | 2G | M. Leunig, S. J. Ferguson, A. Müller | |
Abstract | This course reviews musculoskeletal disorders focusing on the clinical presentation, current treatment approaches and future challenges and opportunities to overcome failures. | |||||
Objective | Appreciation of the surgical and technical challenges, and future perspectives offered through advances in surgical technique, new biomaterials and advanced medical device construction methods. | |||||
Content | Foot deformities, knee injuries, knee OA, hip disorders in the child and adolescent, hip OA, spine deformities, degenerative spine disease, shoulder in-stability, hand, rheumatoid diseases, neuromuscular diseases, sport injuries and prevention | |||||
376-1178-00L | Human Factors II | W | 3 credits | 2V | M. Menozzi Jäckli, R. Huang, M. Siegrist | |
Abstract | Strategies, abilities and needs of human at work as well as properties of products and systems are factors controlling quality and performance in everyday interactions. In Human Factors II (HF II), cognitive aspects are in focus therefore complementing the more physical oriented approach in HF I. A basic scientific approach is adopted and relevant links to practice are illustrated. | |||||
Objective | The goal of the lecture is to empower students in designing products and systems enabling an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, well-being, and safety as well. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy. | |||||
Content | Cognitive factors in perception, information processing and action. Experimental techniques in assessing human performance and well-being, human factors and ergonomics in development of products and complex systems, innovation, decision taking, consumer behavior. | |||||
Literature | Salvendy G. (ed), Handbook of Human Factors, Wiley & Sons, 2012 | |||||
376-1217-00L | Rehabilitation Engineering I: Motor Functions | W | 4 credits | 2V + 1U | R. Riener, J. Duarte Barriga | |
Abstract | “Rehabilitation engineering” is the application of science and technology to ameliorate the handicaps of individuals with disabilities in order to reintegrate them into society. The goal of this lecture is to present classical and new rehabilitation engineering principles and examples applied to compensate or enhance especially motor deficits. | |||||
Objective | Provide theoretical and practical knowledge of principles and applications used to rehabilitate individuals with motor disabilities. | |||||
Content | “Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive (also communicational) disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities. Orthoses support existing but affected body functions (e.g., glasses, crutches), while prostheses compensate for lost body functions (e.g., cochlea implant, artificial limbs). In case of sensory disorders, the lost function can also be substituted by other modalities (e.g. tactile Braille display for vision impaired persons). The goal of this lecture is to present classical and new technical principles as well as specific examples applied to compensate or enhance mainly motor deficits. Modern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited by displaying the patient with a maximum amount of information in order to compensate his/her impairment. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. Multi-modality and interactivity have the potential to increase the therapeutical outcome compared to classical rehabilitation strategies. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics. | |||||
Lecture notes | Lecture notes will be distributed at the beginning of the lecture (1st session) | |||||
Literature | Introductory Books Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics – Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Control of Movement for the Physically Disabled. Eds.: D. Popovic, T. Sinkjaer. Springer Verlag London, 2000. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Biomechanics and Neural Control of Posture and Movement. Eds.: J.M. Winters, P.E. Crago. Springer New York, 2000. Selected Journal Articles Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Colombo, G., Jörg, M., Jezernik, S. (2002) Automatisiertes Lokomotionstraining auf dem Laufband. Automatisierungstechnik at, vol. 50, pp. 287-295. Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Leifer, L. (1981): Rehabilitive robotics, Robot Age, pp. 4-11 Platz, T. (2003): Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht, Nervenarzt, 74, pp. 841-849 Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R., Fuhr, T., Schneider, J. (2002) On the complexity of biomechanical models used for neuroprosthesis development. International Journal of Mechanics in Medicine and Biology 2, pp. 389-404. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK - Biomedical Engineering - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1308-00L | Development Strategies for Medical Implants ![]() Number of participants limited to 25 until 30. Assignments will be considered chronological. | W | 3 credits | 2V + 1U | J. Mayer-Spetzler, M. Rubert | |
Abstract | Introduction to development strategies for implantable devices considering the interdependecies of biocompatibility, clinical and economical requirements ; discussion of the state of the art and actual trends in in orthopedics, sports medicine, traumatology and cardio-vascular surgery as well as regenerative medicine (tissue engineering). | |||||
Objective | Basic considerations in implant development Concept of structural and surface biocompatiblity and its relevance for the design of implant and surgical technique Understanding of conflicting factors, e.g. clinical need, economics and regulatory requirements Concepts of tissue engineering, its strengths and weaknesses as current and future clinical solution | |||||
Content | Biocompatibility as bionic guide line for the development of medical implants; implant and implantation related tissue reactions, biocompatible materials and material processing technologies; implant testing and regulatory procedures; discussion of the state of the art and actual trends in implant development in orthopedics, sports medicine, traumatology, spinal and cardio-vascular surgery; introduction to tissue engineering. Selected topics will be further illustrated by commented movies from surgeries. Seminar: Group seminars on selected controversial topics in implant development. Participation is mandatory Planned excursions (limited availability, not mandatory, to be confirmed): 1. Participation (as visitor) on a life surgery (travel at own expense) | |||||
Lecture notes | Scribt (electronically available): - presented slides - selected scientific papers for further reading | |||||
Literature | Reference to key papers will be provided during the lectures | |||||
Prerequisites / Notice | Achieved Bachelor degree is mandatory The number of participants in the course is limited to 25-30 students in total. Students will be exposed to surgical movies which may cause emotional reactions. The viewing of the surgical movies is voluntary and is on the student's own responsability. | |||||
376-1392-00L | Mechanobiology: Implications for Development, Regeneration and Tissue Engineering | W | 3 credits | 2G | A. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong | |
Abstract | This course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs. | |||||
Objective | This course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena. | |||||
Content | Typically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include osteogenesis (bones), chondrogenesis (cartilage), and tendogenesis (tendons). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance. The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering. | |||||
Lecture notes | n/a | |||||
Literature | Topical Scientific Manuscripts | |||||
376-1397-00L | Orthopaedic Biomechanics ![]() Number of participants limited to 48. | W | 3 credits | 2G | R. Müller, P. Atkins | |
Abstract | This course is aimed at studying the mechanical and structural engineering of the musculoskeletal system alongside the analysis and design of orthopaedic solutions to musculoskeletal failure. | |||||
Objective | To apply engineering and design principles to orthopaedic biomechanics, to quantitatively assess the musculoskeletal system and model it, and to review rigid-body dynamics in an interesting context. | |||||
Content | Engineering principles are very important in the development and application of quantitative approaches in biology and medicine. This course includes a general introduction to structure and function of the musculoskeletal system: anatomy and physiology of musculoskeletal tissues and joints; biomechanical methods to assess and quantify tissues and large joint systems. These methods will also be applied to musculoskeletal failure, joint replacement and reconstruction; implants; biomaterials and tissue engineering. | |||||
Lecture notes | Stored on ILIAS. | |||||
Literature | Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems Authors: Donald L. Bartel, Dwight T. Davy, Tony M. Keaveny Publisher: Prentice Hall; Copyright: 2007 ISBN-10: 0130089095; ISBN-13: 9780130089090 | |||||
Prerequisites / Notice | Lectures will be given in English. | |||||
376-1400-00L | Transfer of Technologies into Neurorehabilitation ![]() | W | 3 credits | 2V | C. Müller, R. Gassert, R. Riener, H. Van Hedel, N. Wenderoth | |
Abstract | The course focuses on clinical as well as industrial aspects of advanced technologies and their transfer into neurorehabilitation from both theoretical and practical perspectives. The students will learn the basics of neurorehabilitation and the linkage to technologies, gain insight into the development within the medtech field and learn applications of technologies in clinical settings. | |||||
Objective | The students will: - Learn basics and principles of clinical neuroscience and neurorehabilitation. - Gain insight into the technical basics of advanced technologies and the transfer into product development processes. - Gain insight into the application, the development and integration of advanced technologies in clinical settings. This includes the advantages and limitations according to different pathologies and therapy goals. - Get the opportunity to test advanced technologies in practical settings. - Learn how to transfer theoretical concepts to actual settings in different working fields. | |||||
Content | Main focus: - Neurobiological principles applied to the field of neurorehabilitation. - Clinical applications of advanced rehabilitation technologies. - Visit medical technology companies, rehabilitation centers and labs to gain deeper insight into the development, application and evaluation of advanced technologie | |||||
Lecture notes | Teaching materials will be provided for the individual events and lectures. - Slides (pdf files) - Information sheets and flyers of the visited companies, labs and clinics | |||||
376-1614-00L | Principles in Tissue Engineering | W | 3 credits | 2V | K. Maniura, J. Möller, M. Zenobi-Wong | |
Abstract | Fundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Objective | Understanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed. | |||||
Content | This class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Lecture notes | Handouts provided during the classes and references therin. | |||||
Literature | The molecular Biology of the Cell, Alberts et al., 5th Edition, 2009. Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002 | |||||
376-1620-00L | Skeletal Repair ![]() Number of participants limited to 42. Only for Health Sciences and Technology MSc and Biomedical Engineering MSc. | W | 3 credits | 3G | S. Grad, D. Eglin, F. Moriarty, M. Stoddart | |
Abstract | The course gives an introduction into traumatic and degenerative pathologies of skeletal tissues. Emphasis is put on bone, cartilage and intervertebral disc. Established and new treatments are described, including cell, gene and molecular therapy, biomaterials, tissue engineering and infection prevention. In vitro/in vivo models are explained. | |||||
Objective | The objectives of this course are to acquire a basic understanding of (1) important pathologies of skeletal tissues and their consequences for the patient and the public health (2) current surgical approaches for skeletal repair, their advantages and drawbacks (3) recent advances in biological strategies for skeletal repair, such as (stem) cell therapy, gene therapy, biomaterials and tissue engineering (4) pathology, prevention and treatment of implant associated infections (5) in vitro and in vivo models for basic, translational and pre-clinical studies | |||||
Content | According to the expected background knowledge, the cellular and extracellular composition and the structure of the skeletal tissues, including bone, cartilage, intervertebral disc, ligament and tendon will briefly be recapitulated. The functions of the healthy tissues and the impact of acute injury (e.g. bone fracture) or progressive degenerative failure (e.g. osteoarthritis) will be demonstrated. Physiological self-repair mechanisms, their limitations, and current (surgical) treatment options will be outlined. Particular emphasis will be put on novel approaches for biological repair or regeneration of critical bone defects, damaged hyaline cartilage of major articulating joints, and degenerative intervertebral disc tissues. These new treatment options include autologous cell therapies, stem cell applications, bioactive factors, gene therapy, biomaterials or biopolymers; while tissue engineering / regenerative medicine is considered as a combination of some of these factors. In vitro bioreactor systems and in vivo animal models will be described for preclinical testing of newly developed materials and techniques. Bacterial infection as a major complication of invasive treatment will be explained, covering also established and new methods for its effective inhibition. Finally, the translation of new therapies for skeletal repair from the laboratory to the clinical application will be illustrated by recent developments. | |||||
Prerequisites / Notice | Basic knowledge in the cellular and molecular composition, structure and function of healthy skeletal tissues, especially bone, cartilage and intervertebral disc are required; furthermore, basic understanding of biomaterial properties, cell-surface interactions, and bacterial infection are necessary to follow this course. | |||||
376-1624-00L | Practical Methods in Biofabrication ![]() Number of participants limited to 12. | W | 5 credits | 4P | M. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak | |
Abstract | Biofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft. | |||||
Objective | The objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project. | |||||
Prerequisites / Notice | Not recommended if passed 376-1622-00 Practical Methods in Tissue Engineering | |||||
376-1660-00L | Scientific Writing, Reporting and Communication ![]() Number of participants limited to 30. Only for Health Sciences and Technology MSc | W | 3 credits | 2V | B. Taylor | |
Abstract | This course aims to teach many of the unwritten rules on how to communicate effectively, from writing reports or manuscripts (or indeed their Master thesis!) through to improving skills in oral presentations, and presenting themselves at interview. | |||||
Objective | This course will teach students to communicate effectively in official environments, including: - writing manuscripts, theses, CVs, reports etc - presenting posters - oral presentations - critical reviews of literature | |||||
376-1712-00L | Finite Element Analysis in Biomedical Engineering ![]() | W | 3 credits | 2V | S. J. Ferguson, B. Helgason | |
Abstract | This course provides an introduction to finite element analysis, with a specific focus on problems and applications from biomedical engineering. | |||||
Objective | Finite element analysis is a powerful simulation method for the (approximate) solution of boundary value problems. While its traditional roots are in the realm of structural engineering, the methods have found wide use in the biomedical engineering domain for the simulation of the mechanical response of the human body and medical devices. This course provides an introduction to finite element analysis, with a specific focus on problems and applications from biomedical engineering. This domain offers many unique challenges, including multi-scale problems, multi-physics simulation, complex and non-linear material behaviour, rate-dependent response, dynamic processes and fluid-solid interactions. Theories taught are reinforced through practical applications in self-programmed and commercial simulation software, using e.g. MATLAB, ANSYS, FEBIO. | |||||
Content | (Theory) The Finite Element and Finite Difference methods Gallerkin, weighted residuals, discretization (Theory) Mechanical analysis of structures Trusses, beams, solids and shells, DOFs, hand calculations of simple FE problems, underlying PDEs (Application) Mechanical analysis of structures Truss systems, beam systems, 2D solids, meshing, organ level analysis of bones (Theory and Application) Mechanical analysis of structures Micro- and multi-scale analysis, voxel models, solver limitations, large scale solvers (Theory) Non-linear mechanical analysis of structures Large strain, Newton-Rhapson, plasticity (Application) Non-linear mechanical analysis of structures Plasticity (bone), hyperelasticity, viscoelasticity (Theory and Application) Contact analysis Friction, bonding, rough contact, implants, bone-cement composites, pushout tests (Theory) Flow in Porous Media Potential problems, Terzhagi's consolidation (Application) Flow in Porous Media Confined and unconfined compression of cartilage (Theory) Heat Transfer and Mass Transport Diffusion, conduction and convection, equivalency of equations (Application) Heat Transfer and Mass Transport Sequentially-coupled poroelastic and transport models for solute transport (Theory) Computational Biofluid Dynamics Newtonian vs. Non-Newtonian fluid, potential flow (Application) Computational Biofluid Dynamics Flow between micro-rough parallel plates | |||||
Lecture notes | Handouts consisting of (i) lecturers' script, (ii) selected excerpts from relevant textbooks, (iii) selected excerpts from theory manuals of commercial simulation software, (iv) relevant scientific publications. | |||||
Prerequisites / Notice | Familiarity with basic numerical methods. Programming experience with MATLAB. | |||||
376-1721-00L | Bone Biology and Consequences for Human Health | W | 2 credits | 2V | G. A. Kuhn, J. Goldhahn, E. Wehrle | |
Abstract | Bone is a complex tissue that continuously adapts to mechanical and metabolic demands. Failure of this remodeling results in reduced mechanic stability ot the skeleton. This course will provide the basic knowledge to understand the biology and pathophysiology of bone necessary for engineering of bone tissue and design of implants. | |||||
Objective | After completing this course, students will be able to understand: a) the biological and mechanical aspects of normal bone remodeling b) pathological changes and their consequences for the musculoskeletal system c) the consequences for implant design, tissue engineering and treatment interventions. | |||||
Content | Bone adapts continuously to mechanical and metabolic demands by complex remodeling processes. This course will deal with biological processes in bone tissue from cell to tissue level. This lecture will cover mechanisms of bone building (anabolic side), bone resorption (catabolic side), their coupling, and regulation mechanisms. It will also cover pathological changes and typical diseases like osteoporosis. Consequences for musculoskeletal health and their clinical relevance will be discussed. Requirements for tissue engineering as well as implant modification will be presented. Actual examples from research and development will be utilized for illustration. | |||||
376-1724-00L | Appropriate Health System Design ![]() ![]() Number of participants limited to 42. | W | 3 credits | 2V | W. Karlen | |
Abstract | This course elaborates upon relevant aspects in the conception, implementation and distribution of health devices and systems that effectively meet peoples and societies' needs in a local context. Four key elements of appropriateness (usage, cost, durability and performance) that are integral to the engineering design process are extensively discussed and applied. | |||||
Objective | The main goals are to > Evaluate the appropriateness of health systems to the cultural, financial, environmental and medical context in which they will be applied and > Design health systems from a user's perspective for a specific context At the end of the course, students can > name, understand and describe the 4 main principles that define appropriate technology > apply these principles to critically analyze and assess health systems and technology > project him/herself into a unfamiliar person and context and create hypotheses as to that person's needs, requirements, and priorities > modify specifications of existing systems to improve appropriateness > discuss the challenges and illustrate the the ethical and societal consequences of proposed design modifications > communicate effectively the results of his/her system analysis and implementation strategies to non-specialists | |||||
Content | The course will be interactive and involve roleplay. Please do not sign up for this course if you are not ready to leave your comfort zone in class. The lectures are divided in two parts: The first part elaborates upon the important concepts of the design of health care devices and systems, and discusses implementation and dissemination strategies. We focus on communities such as low income households, the elderly, and patients with chronic illnesses that have special needs. Topics covered include point-of-care diagnostics, information and communication technologies, mobile health, user interactions, and also the social-cultural considerations. The second part consists of elaboration of an appropriate device conducted by student groups. Each group will analyse an existing product or solution, critically assess its appropriateness according to the criteria learned in class, and provide explanations as to why the system succeeds or fails. The students will also present design improvements. Grading will be based on a written case report due in the middle of the semester and a final seminar presentation in form of a poster discussion and demo. | |||||
Literature | WHO, "Medical Devices: Managing the Mismatch", 2010. http://www.who.int/medical_devices/publications/med_dev_man-mismatch/en/ PATH, "The IC2030 report. Reimagining Global Health," 2015. http://ic2030.org/report/ R. Malkin and K. Von Oldenburg Beer, "Diffusion of novel healthcare technologies to resource poor settings," Annals of Biomedical Engineering, vol. 41, no. 9, pp. 1841:50, 2013. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and doctoral students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1974-00L | Colloquium in Biomechanics ![]() | W | 2 credits | 2K | B. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, B. Taylor, K. Würtz-Kozak, M. Zenobi-Wong | |
Abstract | Current topics in biomechanics presented by speakers from academia and industry. | |||||
Objective | Getting insight into actual areas and problems of biomechanics. | |||||
376-1986-00L | Bayesian Data Analysis on Models of Behavior No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: DOEC0829 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 3 credits | 2S | R. Polania, University lecturers | |
Abstract | Making sense of the data acquired via experiments is fundamental in many fields of sciences. This course is designed for students/researchers who want to gain practical experience with data analysis based on Bayesian inference. Coursework involves practical demonstrations and discussion of solutions for data analysis problems. No advanced knowledge of statistics and probability is required. | |||||
Objective | The overall goal of this course it that the students are able to develop both analytic and problem-solving skills that will serve to draw reasonable inferences from observations. The first objective is to make the participants familiar with the conceptual framework of Bayesian data analysis. The second goal is to introduce the ideas of modern Bayesian data analysis, including techniques such as Markov chain Monte Carlo (MCMC) techniques, alongside the introduction of programming tools that facilitate the creation of any Bayesian inference model. Throughout the course, this will involve practical demonstrations with example datasets, homework, and discussions that should convince the participants of this course that it is possible to make inference and understand the data acquired from the experiments that they usually obtain in their own research (starting from simple linear regressions all the way up to more complex models with hierarchical structures and dependencies). After working through this course, the participants should be able to build their own inference models in order to interpret meaningfully their own data. | |||||
Prerequisites / Notice | The very basics (or at least intuition) of programming in either Matlab or R | |||||
402-0673-00L | Physics in Medical Research: From Humans to Cells | W | 6 credits | 2V + 1U | B. K. R. Müller | |
Abstract | The aim of this lecture series is to introduce the role of physics in state-of-the-art medical research and clinical practice. Topics to be covered range from applications of physics in medical implant technology and tissue engineering, through imaging technology, to its role in interventional and non-interventional therapies. | |||||
Objective | The lecture series is focused on applying knowledge from physics in diagnosis, planning, and therapy close to clinical practice and fundamental medical research. Beside a general overview, the lectures give a deep insight into a very few selected techniques, which will help the students to apply the knowledge to a broad range of related techniques. In particular, the lectures will elucidate the physics behind the X-ray imaging currently used in clinical environment and contemporary high-resolution developments. It is the goal to visualize and quantify (sub-)microstructures of human tissues and implants as well as their interface. Ultrasound is not only used for diagnostic purposes but includes therapeutic approaches such as the control of the blood-brain barrier under MR-guidance. Physicists in medicine are working on modeling and simulation. Based on the vascular structure in cancerous and healthy tissues, the characteristic approaches in computational physics to develop strategies against cancer are presented. In order to deliberately destroy cancerous tissue, heat can be supplied or extracted in different manner: cryotherapy (heat conductivity in anisotropic, viscoelastic environment), radiofrequency treatment (single and multi-probe), laser application, and proton therapy. Medical implants play an important role to take over well-defined tasks within the human body. Although biocompatibility is here of crucial importance, the term is insufficiently understood. The aim of the lectures is the understanding of biocompatibility performing well-defined experiments in vitro and in vivo. Dealing with different classes of materials (metals, ceramics, polymers) the influence of surface modifications (morphology and surface coatings) are key issues for implant developments, which might be bio-inspired. Mechanical stimuli can drastically influence soft and hard tissue behavior. The students should realize that a physiological window exists, where a positive tissue response is expected and how the related parameter including strain, frequency, and resting periods can be selected and optimized for selected tissues such as bone. For the treatment of severe incontinence, we are developing artificial smart muscles. The students should have a critical look at promising solutions and the selection procedure as well as realize the time-consuming and complex way to clinical practice. The course will be completed by relating the numerous examples and a common round of questions. | |||||
Content | This lecture series will cover the following topics: Introduction: Imaging the human body down to individual cells and beyond Development of artificial muscles for incontinence treatment X-ray-based computed tomography in clinics and related medical research High-resolution micro computed tomography Phase tomography using hard X-rays in biomedical research Metal-based implants and scaffolds Natural and synthetic ceramics for implants and regenerative medicine Biomedical simulations Polymers for medical implants From open surgery to non-invasive interventions - Physical approaches in medical imaging Dental research Focused Ultrasound and its clinical use Applying physics in medicine: Benefitting patients | |||||
Lecture notes | http://www.bmc.unibas.ch/education/ETH_Zurich.phtml login and password to be provided during the lecture | |||||
Prerequisites / Notice | Students from other departments are very welcome to join and gain insight into a variety of sophisticated techniques for the benefit of patients. No special knowledge is required. Nevertheless, gaps in basic physical knowledge will require additional efforts. | |||||
551-0320-00L | Cellular Biochemistry (Part II) | W | 3 credits | 2V | Y. Barral, R. Kroschewski, A. E. Smith | |
Abstract | This course will focus on molecular mechanisms and concepts underlying cellular biochemistry, providing advanced insights into the structural and functional details of individual cell components, and the complex regulation of their interactions. Particular emphasis will be on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes. | |||||
Objective | The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterization of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain how different molecules and signaling pathways can be integrated during complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, and cell division. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer or during cellular infection. | |||||
Content | Spatial and temporal integration of different molecules and signaling pathways into global cellular processes, such as cell division, cell infection and cell motility. Emphasis is also put on the understanding of pathologies associated with defective cell physiology, such as cancer or during cellular infection. | |||||
Literature | Recommended supplementary literature (review articles and selected primary literature) will be provided during the course. | |||||
Prerequisites / Notice | To attend this course the students must have a solid basic knowledge in chemistry, biochemistry, cell biology and general biology. Biology students have in general already attended the first part of the "Cellular Biochemistry" concept course (551-0319-00). The course will be taught in English. In addition, the course will be based on a blended-learning scenario, where frontal lectures will be complemented with carefully chosen web-based teaching elements that students access through the ETH Moodle platform. | |||||
551-0318-00L | Immunology II | W | 3 credits | 2V | A. Oxenius, M. Kopf, S. R. Leibundgut, E. Wetter Slack, further lecturers | |
Abstract | Introduction into the cellular and molecular basis of the immune system and immune responses against diverse pathogens, tumors, transplants, and self (autoimmunity) | |||||
Objective | The lectures will provide a detailed understanding: - how innate and adaptive immune responses interact at the cellular and molecular level. - how the immune system recognizes and fights against pathogenic microorganisms including viruses, bacteria, and parasites. - why lymphocytes tolerate self molecules. - about function and dysfunction the intestinal immune system. - immunopathology and inflammatory diseases. | |||||
Content | The aim of lecture is to understand: > How pathogens are recognized by the innate immune system > Immune defense against various pathogens > Immunology of the skin, lung and intestines > Tumor immunology > Migration and homing of immune cells > tolerance and autoimmunity > T cell memory | |||||
Lecture notes | Presentations of the lecturers are available at the Moodle link | |||||
Literature | Recommended: Kuby Immunology (Freeman) | |||||
![]() | ||||||
![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-0302-00L | Practicing Translational Science ![]() Only for Health Sciences and Technology MSc. | O | 2 credits | 4A | J. Goldhahn, S. Ben-Menahem, C. Ewald, W. Karlen | |
Abstract | Translational Science is a cross disciplinary scientific research that is motivated by the need for practical applications that help patients. The students should apply knowledge they gained in the prior course during a team approach focused on one topic provided by the supervisor. Each student has to take a role in the team and label clear responsibility and contribution. | |||||
Objective | After completing this course, students will be able to apply: a) Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication) b) The use of a translational approach in project planning and management | |||||
Prerequisites / Notice | Prerequisite: lecture 376-0300-00 "Translational Science for Health and Medicine" passed. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
551-0326-00L | Cell Biology ![]() | W | 6 credits | 4V | S. Werner, M. Bordoli, R. Henneberger, W. Kovacs, M. Schäfer, U. Suter, A. Wutz | |
Abstract | This Course introduces principle concepts, techniques, and experimental strategies used in modern Cell Biology. Major topics include: neuron-glia interactions in health and disease; mitochondrial dynamics; stem cell biology; growth factor action in development, tissue repair and disease; cell metabolism, in particular sensing and signaling mechanisms, cell organelles, and lipid metabolism. | |||||
Objective | -To prepare the students for successful and efficient lab work by learning how to ask the right questions and to use the appropriate techniques in a research project. -To convey knowledge about neuron-glia interactions in health and disease. - To provide information on different types of stem cells and their function in health and disease -To provide information on growth factor signaling in development, repair and disease and on the use of growth factors or their receptors as drug targets for major human diseases -To convey knowledge on the mechanisms underlying repair of injured tissues -To provide the students with an overview of mitochondrial dynamics. -Providing an understanding of RNA processing reactions and their regulations. -To provide a comprehensive understanding of metabolic sensing mechanisms occurring in different cell types and organelles in response to glucose, hormones, oxygen, nutrients as well as lipids, and to discuss downstream signaling pathways and cellular responses. -To provide models explaining how disturbances in complex metabolic control networks and bioenergetics can lead to disease and to highlight latest experimental approaches to uncover the intricacies of metabolic control at the cellular and organismal level. -Providing the background and context that foster cross-disciplinary scientific thinking. | |||||
376-0209-00L | Molecular Disease Mechanisms | W | 6 credits | 4V | C. Wolfrum, H. Gahlon, M. Kopf | |
Abstract | In this course the mechanisms of disease development will be studied. Main topics will be: 1. Influence of environmental factors with an emphasis on inflammation and the immune response. 2. Mechanisms underlying disease progression in metabolic disorders, integrating genetic and environmental factors. 3. Mechanisms underlying disease progression in cancer, integrating genetic and environment | |||||
Objective | To understand the mechanisms governing disease development with a special emphasis on genetic and environmental associated components | |||||
Lecture notes | All information can be found at: https://moodle-app2.let.ethz.ch/course/view.php?id=690 The enrollment key will be provided by email | |||||
551-0318-00L | Immunology II | W | 3 credits | 2V | A. Oxenius, M. Kopf, S. R. Leibundgut, E. Wetter Slack, further lecturers | |
Abstract | Introduction into the cellular and molecular basis of the immune system and immune responses against diverse pathogens, tumors, transplants, and self (autoimmunity) | |||||
Objective | The lectures will provide a detailed understanding: - how innate and adaptive immune responses interact at the cellular and molecular level. - how the immune system recognizes and fights against pathogenic microorganisms including viruses, bacteria, and parasites. - why lymphocytes tolerate self molecules. - about function and dysfunction the intestinal immune system. - immunopathology and inflammatory diseases. | |||||
Content | The aim of lecture is to understand: > How pathogens are recognized by the innate immune system > Immune defense against various pathogens > Immunology of the skin, lung and intestines > Tumor immunology > Migration and homing of immune cells > tolerance and autoimmunity > T cell memory | |||||
Lecture notes | Presentations of the lecturers are available at the Moodle link | |||||
Literature | Recommended: Kuby Immunology (Freeman) | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-0396-00L | EXCITE Interdisciplinary Summer School on Bio-Medical Imaging ![]() ![]() The school admits 60 MSc or PhD students with backgrounds in biology, chemistry, mathematics, physics, computer science or engineering based on a selection process. Students have to apply for acceptance by April 22, 2019. To apply a curriculum vitae and an application letter need to be submitted. The notification of acceptance will be given by May 24, 2019. Further information can be found at: www.excite.ethz.ch. | W | 4 credits | 6G | S. Kozerke, G. Csúcs, J. Klohs-Füchtemeier, S. F. Noerrelykke, M. P. Wolf | |
Abstract | Two-week summer school organized by EXCITE (Center for EXperimental & Clinical Imaging TEchnologies Zurich) on biological and medical imaging. The course covers X-ray imaging, magnetic resonance imaging, nuclear imaging, ultrasound imaging, infrared and optical microscopy, electron microscopy, image processing and analysis. | |||||
Objective | Students understand basic concepts and implementations of biological and medical imaging. Based on relative advantages and limitations of each method they can identify preferred procedures and applications. Common foundations and conceptual differences of the methods can be explained. | |||||
Content | Two-week summer school on biological and medical imaging. The course covers concepts and implementations of X-ray imaging, magnetic resonance imaging, nuclear imaging, ultrasound imaging, infrared and optical microscopy and electron microscopy. Multi-modal and multi-scale imaging and supporting technologies such as image analysis and modeling are discussed. Dedicated modules for physical and life scientists taking into account the various backgrounds are offered. | |||||
Lecture notes | Hand-outs, Web links | |||||
Prerequisites / Notice | The school admits 60 MSc or PhD students with backgrounds in biology, chemistry, mathematics, physics, computer science or engineering based on a selection process. To apply a curriculum vitae, a statement of purpose and applicants references need to be submitted. Further information can be found at: http://www.excite.ethz.ch/education/summer-school.html | |||||
227-0946-00L | Molecular Imaging - Basic Principles and Biomedical Applications | W | 2 credits | 2V | M. Rudin | |
Abstract | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
Objective | Molecular Imaging is a rapidly emerging discipline that translates concepts developed in molecular biology and cellular imaging to in vivo imaging in animals and ultimatly in humans. Molecular imaging techniques allow the study of molecular events in the full biological context of an intact organism and will therefore become an indispensable tool for biomedical research. | |||||
Content | Concept: What is molecular imaging. Discussion/comparison of the various imaging modalities used in molecular imaging. Design of target specific probes: specificity, delivery, amplification strategies. Biomedical Applications. | |||||
327-2125-00L | Microscopy Training SEM I - Introduction to SEM ![]() Limited number of participants. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). | W | 2 credits | 3P | K. Kunze, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, J. Reuteler | |
Abstract | The introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using 2 SEM instruments, students have the opportunity to study their own samples, or standard test samples, as well as solving exercises provided by ScopeM scientists. | |||||
Objective | - Set-up, align and operate a SEM successfully and safely. - Accomplish imaging tasks successfully and optimize microscope performances. - Master the operation of a low-vacuum and field-emission SEM and EDX instrument. - Perform sample preparation with corresponding techniques and equipment for imaging and analysis - Acquire techniques in obtaining secondary electron and backscatter electron micrographs - Perform EDX qualitative and semi-quantitative analysis | |||||
Content | During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students with no prior experience are able to align a SEM, to obtain secondary electron (SE) and backscatter electron (BSE) micrographs and to perform energy dispersive X-ray spectroscopy (EDX) qualitative and semi-quantitative analysis. The procedures to better utilize SEM to solve practical problems and to optimize SEM analysis for a wide range of materials will be emphasized. - Discussion of students' sample/interest - Introduction and discussion on Electron Microscopy and instrumentation - Lectures on electron sources, electron lenses and probe formation - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM - Brief description and demonstration of the SEM microscope - Practice on beam/specimen interaction, image formation, image contrast (and image processing) - Student participation on sample preparation techniques - Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities - Lecture and demonstrations on X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescans and spectral mapping - Practice on real-world samples and report results | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
327-2126-00L | Microscopy Training TEM I - Introduction to TEM ![]() Number of participants limited to 6. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). TEM 1 registration form: Link | W | 2 credits | 3P | M. Willinger, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm | |
Abstract | The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions. | |||||
Objective | - Overview of TEM theory, instrumentation, operation and applications. - Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully. - Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras. - To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns. - Overview of techniques for specimen preparation. | |||||
Content | Using two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods. - Introduction and discussion on Electron Microscopy and instrumentation. - Lectures on electron sources, electron lenses and probe formation. - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM. - Brief description and demonstration of the TEM microscope. - Practice on beam/specimen interaction, image formation, Image contrast (and image processing). - Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM). - Student participation on sample preparation techniques. - Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities. - TEM alignment, calibration, correction to improve image contrast and quality. - Electron diffraction. - Practice on real-world samples and report results. | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
376-1306-00L | Clinical Neuroscience ![]() | W | 3 credits | 3G | G. Schratt, University lecturers | |
Abstract | The lecture series "Clinical Neuroscience" presents a comprehensive, condensed overview of the most important neurological diseases, their clinical presentation, diagnosis, therapy options and possible causes. Patient demonstrations (Übungen) follow every lecture that is dedicated to a particular disease. | |||||
Objective | By the end of this module students should be able to: - demonstrate their understanding and deep knowledge concerning the main neurological diseases - identify and explain the different clinical presentation of these diseases, the methodology of diagnosis and the current therapies available - summarize and critically review scientific literature efficiently and effectively | |||||
376-1392-00L | Mechanobiology: Implications for Development, Regeneration and Tissue Engineering | W | 3 credits | 2G | A. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong | |
Abstract | This course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs. | |||||
Objective | This course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena. | |||||
Content | Typically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include osteogenesis (bones), chondrogenesis (cartilage), and tendogenesis (tendons). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance. The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering. | |||||
Lecture notes | n/a | |||||
Literature | Topical Scientific Manuscripts | |||||
376-1624-00L | Practical Methods in Biofabrication ![]() Number of participants limited to 12. | W | 5 credits | 4P | M. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak | |
Abstract | Biofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft. | |||||
Objective | The objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project. | |||||
Prerequisites / Notice | Not recommended if passed 376-1622-00 Practical Methods in Tissue Engineering | |||||
376-1660-00L | Scientific Writing, Reporting and Communication ![]() Number of participants limited to 30. Only for Health Sciences and Technology MSc | W | 3 credits | 2V | B. Taylor | |
Abstract | This course aims to teach many of the unwritten rules on how to communicate effectively, from writing reports or manuscripts (or indeed their Master thesis!) through to improving skills in oral presentations, and presenting themselves at interview. | |||||
Objective | This course will teach students to communicate effectively in official environments, including: - writing manuscripts, theses, CVs, reports etc - presenting posters - oral presentations - critical reviews of literature | |||||
376-1724-00L | Appropriate Health System Design ![]() ![]() Number of participants limited to 42. | W | 3 credits | 2V | W. Karlen | |
Abstract | This course elaborates upon relevant aspects in the conception, implementation and distribution of health devices and systems that effectively meet peoples and societies' needs in a local context. Four key elements of appropriateness (usage, cost, durability and performance) that are integral to the engineering design process are extensively discussed and applied. | |||||
Objective | The main goals are to > Evaluate the appropriateness of health systems to the cultural, financial, environmental and medical context in which they will be applied and > Design health systems from a user's perspective for a specific context At the end of the course, students can > name, understand and describe the 4 main principles that define appropriate technology > apply these principles to critically analyze and assess health systems and technology > project him/herself into a unfamiliar person and context and create hypotheses as to that person's needs, requirements, and priorities > modify specifications of existing systems to improve appropriateness > discuss the challenges and illustrate the the ethical and societal consequences of proposed design modifications > communicate effectively the results of his/her system analysis and implementation strategies to non-specialists | |||||
Content | The course will be interactive and involve roleplay. Please do not sign up for this course if you are not ready to leave your comfort zone in class. The lectures are divided in two parts: The first part elaborates upon the important concepts of the design of health care devices and systems, and discusses implementation and dissemination strategies. We focus on communities such as low income households, the elderly, and patients with chronic illnesses that have special needs. Topics covered include point-of-care diagnostics, information and communication technologies, mobile health, user interactions, and also the social-cultural considerations. The second part consists of elaboration of an appropriate device conducted by student groups. Each group will analyse an existing product or solution, critically assess its appropriateness according to the criteria learned in class, and provide explanations as to why the system succeeds or fails. The students will also present design improvements. Grading will be based on a written case report due in the middle of the semester and a final seminar presentation in form of a poster discussion and demo. | |||||
Literature | WHO, "Medical Devices: Managing the Mismatch", 2010. http://www.who.int/medical_devices/publications/med_dev_man-mismatch/en/ PATH, "The IC2030 report. Reimagining Global Health," 2015. http://ic2030.org/report/ R. Malkin and K. Von Oldenburg Beer, "Diffusion of novel healthcare technologies to resource poor settings," Annals of Biomedical Engineering, vol. 41, no. 9, pp. 1841:50, 2013. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and doctoral students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1986-00L | Bayesian Data Analysis on Models of Behavior No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: DOEC0829 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 3 credits | 2S | R. Polania, University lecturers | |
Abstract | Making sense of the data acquired via experiments is fundamental in many fields of sciences. This course is designed for students/researchers who want to gain practical experience with data analysis based on Bayesian inference. Coursework involves practical demonstrations and discussion of solutions for data analysis problems. No advanced knowledge of statistics and probability is required. | |||||
Objective | The overall goal of this course it that the students are able to develop both analytic and problem-solving skills that will serve to draw reasonable inferences from observations. The first objective is to make the participants familiar with the conceptual framework of Bayesian data analysis. The second goal is to introduce the ideas of modern Bayesian data analysis, including techniques such as Markov chain Monte Carlo (MCMC) techniques, alongside the introduction of programming tools that facilitate the creation of any Bayesian inference model. Throughout the course, this will involve practical demonstrations with example datasets, homework, and discussions that should convince the participants of this course that it is possible to make inference and understand the data acquired from the experiments that they usually obtain in their own research (starting from simple linear regressions all the way up to more complex models with hierarchical structures and dependencies). After working through this course, the participants should be able to build their own inference models in order to interpret meaningfully their own data. | |||||
Prerequisites / Notice | The very basics (or at least intuition) of programming in either Matlab or R | |||||
551-0140-00L | Epigenetics | W | 4 credits | 2V | A. Wutz, U. Grossniklaus, R. Paro, R. Santoro | |
Abstract | Epigenetics studies the inheritance of traits that cannot be attributed to changes in the DNA sequence. The lecture will present an overview of different epigenetic phenomena and provide detailed insight into the underlying molecular mechanisms. The role of epigenetic processes in the development of cancer and other disorders will be discussed. | |||||
Objective | The aim of the course is to gain an understanding of epigenetic mechanisms and their impact on the development of organisms, regenerative processes or manifestation of disease. | |||||
Content | Topics - historical overview, concepts and comparison Genetics vs. Epigenetics - Biology of chromatin: structure and function, organization in the nucleus and the role of histone modifications in processes like transcription and replication - DNA methylation as an epigenetic modification - Inheritance of epigenetic modifications during cell division: cellular memory - Stability and reversibility of epigenetic modifications: cellular plasticity and stem cells - Genomic imprinting in plants and mammals - X chromosome inactivation and dosis compensation - position effects, paramutations and transvection - RNA-induced gene silencing - The role of epigenetic processes in cancer development or cell aging | |||||
551-0364-00L | Functional Genomics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO 254 at UZH. Please mind the ETH enrolment deadlines for UZH students: Link | W | 3 credits | 2V | C. von Mering, C. Beyer, B. Bodenmiller, M. Gstaiger, H. Rehrauer, R. Schlapbach, K. Shimizu, N. Zamboni, further lecturers | |
Abstract | Functional genomics is key to understanding the dynamic aspects of genome function and regulation. Functional genomics approaches use the wealth of data produced by large-scale DNA sequencing, gene expression profiling, proteomics and metabolomics. Today functional genomics is becoming increasingly important for the generation and interpretation of quantitative biological data. | |||||
Objective | Functional genomics is key to understanding the dynamic aspects of genome function and regulation. Functional genomics approaches use the wealth of data produced by large-scale DNA sequencing, gene expression profiling, proteomics and metabolomics. Today functional genomics is becoming increasingly important for the generation and interpretation of quantitative biological data. Such data provide the basis for systems biology efforts to elucidate the structure, dynamics and regulation of cellular networks. | |||||
Content | The curriculum of the Functional Genomics course emphasizes an in depth understanding of new technology platforms for modern genomics and advanced genetics, including the application of functional genomics approaches such as advanced microarrays, proteomics, metabolomics, clustering and classification. Students will learn quality controls and standards (benchmarking) that apply to the generation of quantitative data and will be able to analyze and interpret these data. The training obtained in the Functional Genomics course will be immediately applicable to experimental research and design of systems biology projects. | |||||
Prerequisites / Notice | The Functional Genomics course will be taught in English. | |||||
551-0512-00L | Current Topics in Molecular and Cellular Neurobiology ![]() Does not take place this semester. Number of participants limited to 8 | W | 2 credits | 1S | U. Suter | |
Abstract | The course is a literature seminar or "journal club". Each Friday a student, or a member of the Suter Lab in the Institute of Molecular Health Sciences, will present a paper from the recent literature. | |||||
Objective | The course introduces you to recent developments in the fields of cellular and molecular neurobiology. It also supports you to develop your skills in critically reading the scientific literature. You should be able to grasp what the authors wanted to learn e.g. their goals, why the authors chose the experimental approach they used, the strengths and weaknesses of the experiments and the data presented, and how the work fits into the wider literature in the field. You will present one paper yourself, which provides you with practice in public speaking. | |||||
Content | You will present one paper yourself. Give an introduction to the field of the paper, then show and comment on the main results (all the papers we present are available online, so you can show original figures with a beamer). Finish with a summary of the main points and a discussion of their significance. You are expected to take part in the discussion and to ask questions. To prepare for this you should read all the papers beforehand (they will be announced a week in advance of the presentation). | |||||
Lecture notes | Presentations will be made available after the seminars. | |||||
Literature | We cover a range of themes related to development and neurobiology. Before starting your preparations, you are required to check with Laura Montani (laura.montani@biol.ethz.ch), who helps you with finding an appropriate paper. | |||||
Prerequisites / Notice | You must attend at least 80% of the journal clubs, and give a presentation of your own. At the end of the semester there will be a 30 minute oral exam on the material presented during the semester. The grade will be based on the exam (45%), your presentation (45%), and a contribution based on your active participation in discussion of other presentations (10%). | |||||
551-1100-00L | Infectious Agents: From Molecular Biology to Disease Number of participants limited to 22. Requires application until 2 weeks before the start of the semester; selected applicants will be notified one week before the first week of lectures. (if you missed the deadline, please come to the first date to see, if there are any slots left) | W | 4 credits | 2S | W.‑D. Hardt, L. Eberl, U. F. Greber, A. B. Hehl, M. Kopf, S. R. Leibundgut, C. Münz, A. Oxenius, P. Sander | |
Abstract | Literature seminar for students at the masters level and PhD students. Introduction to the current research topics in infectious diseases; Introduction to key pathogens which are studied as model organisms in this field; Overview over key research groups in the field of infectious diseases in Zürich. | |||||
Objective | Working with the current research literature. Getting to know the key pathogens serving as model organisms and the research technologies currently used in infection biology. | |||||
Content | for each model pathogen (or key technology): 1. introduction to the pathogen 2. Discussion of one current research paper. The paper will be provided by the respective supervisor. He/she will give advice (if required) and guide the respective literature discussion. | |||||
Lecture notes | Teachers will provide the research papers to be discussed. Students will prepare handouts for the rest of the group for their assigned seminar. | |||||
Literature | Teachers will provide the research papers to be discussed. | |||||
Prerequisites / Notice | Restricted to max 22 students. Please sign up until two weeks before the beginning of the semester via e-mail to micro_secr@micro.biol.ethz.ch and include the following information: 551-1100-00L; your name, your e-mail address, university/eth, students (specialization, semester), PhD students (research group, member of a PhD program? which program?). The 22 students admitted to this seminar will be selected and informed by e-mail in the week befor the beginning of the semester by W.-D. Hardt. The first seminar date will serve to form groups of students and assign a paper to each group. | |||||
551-1132-00L | Basic Virology ![]() Does not take place this semester. | W | 2 credits | 1V | ||
Abstract | Introduction into the basics of virology, including characterization of viruses, virus-cell interactions, virus-host interactions, virus-host population interactions, basics of prevention and prophylaxis as well as diagnostics. | |||||
Objective | Introduction into the basics of virology. | |||||
Content | Basics in virology. Characterization of viruses, virus-cell interactions, virus-host interactions, virus-host population interactions, basics of prevention and prophylaxis as well as diagnostics. | |||||
Lecture notes | The lecture uses the lecturer's 'Allgemeine Virologie' as a basis. The lecturer's slides as well as selected primary literature will be provided 24-48 hrs prior to the lecture in pdf format. | |||||
Literature | Flint et al., 2009. Principles of Virology, 3rd Edition. ASM Press, Washington, DC, USA. Vol I. ISBN 978-1-55581-479-3 Vol II. ISBN 978-1-55581-480-9 | |||||
Prerequisites / Notice | Basic knowledge in molecular biology, cell biology, immunology. | |||||
551-1310-00L | A Problem-Based Approach to Cellular Biochemistry ![]() Number of participants limited to 15. | W | 6 credits | 2G | M. Peter, E. Dultz, M. Gstaiger, V. Korkhov, V. Panse, A. E. Smith | |
Abstract | Independent, guided acquisition of an overview over a defined area of research, identification of important open questions, development of an experimental strategy to address a defined question, and formulation of this strategy within the framework of a research grant. | |||||
Objective | The students will learn to acquire independently an overview over a defined area of research, and to identify important open questions. In addition, they will learn to develop an experimental strategy to address a defined question, and to formulate this strategy within the framework of a research grant. | |||||
Content | The students will work in groups of two to three, in close contact with a tutor (ETH Prof or senior scientist). A research overview with open questions and a research grant will be developed independently by the students, with guidance from the tutor through regular mandatory meetings. The students will write both the research overview with open questions and the grant in short reports, and present them to their colleagues. | |||||
Literature | The identification of appropriate literature is a component of the course. | |||||
Prerequisites / Notice | This course will be taught in english, and requires extensive independent work. | |||||
636-0111-00L | Synthetic Biology I Attention: This course was offered in previous semesters with the number: 636-0002-00L "Synthetic Biology I". Students that already passed course 636-0002-00L cannot receive credits for course 636-0111-00L. | W | 4 credits | 3G | S. Panke, J. Stelling | |
Abstract | Theoretical & practical introduction into the design of dynamic biological systems at different levels of abstraction, ranging from biological fundamentals of systems design (introduction to bacterial gene regulation, elements of transcriptional & translational control, advanced genetic engineering) to engineering design principles (standards, abstractions) mathematical modelling & systems desig | |||||
Objective | After the course, students will be able to theoretically master the biological and engineering fundamentals required for biological design to be able to participate in the international iGEM competition (see www.syntheticbiology.ethz.ch). | |||||
Content | The overall goal of the course is to familiarize the students with the potential, the requirements and the problems of designing dynamic biological elements that are of central importance for manipulating biological systems, primarily (but not exclusively) prokaryotic systems. Next, the students will be taken through a number of successful examples of biological design, such as toggle switches, pulse generators, and oscillating systems, and apply the biological and engineering fundamentals to these examples, so that they get hands-on experience on how to integrate the various disciplines on their way to designing biological systems. | |||||
Lecture notes | Handouts during classes. | |||||
Literature | Mark Ptashne, A Genetic Switch (3rd ed), Cold Spring Haror Laboratory Press Uri Alon, An Introduction to Systems Biology, Chapman & Hall | |||||
Prerequisites / Notice | 1) Though we do not place a formal requirement for previous participation in particular courses, we expect all participants to be familiar with a certain level of biology and of mathematics. Specifically, there will be material for self study available on http://www.bsse.ethz.ch/bpl/education/index as of mid January, and everybody is expected to be fully familiar with this material BEFORE THE CLASS BEGINS to be able to follow the different lectures. Please contact sven.panke@bsse.ethz.ch for access to material 2) The course is also thought as a preparation for the participation in the international iGEM synthetic biology summer competition (www.syntheticbiology.ethz.ch, http://www.igem.org). This competition is also the contents of the course Synthetic Biology II. http://www.bsse.ethz.ch/bpl/education/index | |||||
701-1350-00L | Case Studies in Environment and Health | W | 4 credits | 2V | K. McNeill, N. Borduas-Dedekind, T. Julian | |
Abstract | This course will focus on a few individual chemicals and pathogens from different standpoints: their basic chemistry or biology, their environmental behavior, (eco)toxicology, and human health impacts. The course will draw out the common points in each chemical or pathogen's history. | |||||
Objective | This course aims to illustrate how the individual properties of chemicals and pathogens along with societal pressures lead to environmental and human health crises. The ultimate goal of the course is to identify common aspects that will improve prediction of environmental crises before they occur. Students are expected to participate actively in the course, which includes the critical reading of the pertinent literature and class presentations. | |||||
Content | Each semester will feature case studies of chemicals and pathogens that have had a profound effect on human health and the environment. The instructors will present eight of these and the students will present approx. six in groups of three or four. Students will be expected to contribute to the discussion and, on selected topics, to lead the discussion. | |||||
Lecture notes | Handouts will be provided as needed. | |||||
Literature | Handouts will be provided as needed. | |||||
752-1300-00L | Introduction to Toxicology | W | 3 credits | 2V | R. Eggen, S. J. Sturla | |
Abstract | Introduction to how chemical properties and biological interactions govern the disposition and influences of toxicants. | |||||
Objective | The objectives are for the student to establish a framework for examining adverse effects resulting from exposures to toxicants by understanding key mechanisms that give rise to toxic responses and disease processes. | |||||
Content | This course will introduce mechanisms governing the chemical disposition and biological influences of toxicants. The course is geared toward advanced bachelors students in food science, environmental science, and related disciplines, such as chemistry, biology and pharmaceutical sciences. Examples of topics include: dose-response relationships and risk assessment, absorption, transport, and biotransformation of xenobiotic chemicals; Carcinogenesis; DNA damage, repair, and mutation; Immunotoxicity; Neurotoxicity; and modern toxicity testing strategies. These fundamental concepts in Mechanistic Toxicology will be integrated with examples of toxicants relevant to food, drugs and the environment. | |||||
Literature | Casarett & Doull's Toxicology, The Basic Science of Poisons. Seventh Edition. Editor: Curtis D. Klaassen, 2008, McGraw-Hill. (available on-line) | |||||
Prerequisites / Notice | Basic knowledge of organic chemistry and biochemistry is required. | |||||
![]() | ||||||
![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-0302-00L | Practicing Translational Science ![]() Only for Health Sciences and Technology MSc. | O | 2 credits | 4A | J. Goldhahn, S. Ben-Menahem, C. Ewald, W. Karlen | |
Abstract | Translational Science is a cross disciplinary scientific research that is motivated by the need for practical applications that help patients. The students should apply knowledge they gained in the prior course during a team approach focused on one topic provided by the supervisor. Each student has to take a role in the team and label clear responsibility and contribution. | |||||
Objective | After completing this course, students will be able to apply: a) Principles of translational science (including project planning, ethics application, basics of resource management and interdisciplinary communication) b) The use of a translational approach in project planning and management | |||||
Prerequisites / Notice | Prerequisite: lecture 376-0300-00 "Translational Science for Health and Medicine" passed. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-0202-00L | Neural Control of Movement and Motor Learning | W | 4 credits | 3G | N. Wenderoth | |
Abstract | This course extends the students' knowledge regarding the neural control of movement and motor learning. Particular emphasis will be put on those methods and experimental findings that have shaped current knowledge of this area. | |||||
Objective | Knowledge of the physiological and anatomic basis underlying the neural control of movement and motor learning. One central element is that students have first hands-on experience in the lab where small experiments are independently executed, analysed and interpreted. | |||||
376-1306-00L | Clinical Neuroscience ![]() | W | 3 credits | 3G | G. Schratt, University lecturers | |
Abstract | The lecture series "Clinical Neuroscience" presents a comprehensive, condensed overview of the most important neurological diseases, their clinical presentation, diagnosis, therapy options and possible causes. Patient demonstrations (Übungen) follow every lecture that is dedicated to a particular disease. | |||||
Objective | By the end of this module students should be able to: - demonstrate their understanding and deep knowledge concerning the main neurological diseases - identify and explain the different clinical presentation of these diseases, the methodology of diagnosis and the current therapies available - summarize and critically review scientific literature efficiently and effectively | |||||
551-0326-00L | Cell Biology ![]() | W | 6 credits | 4V | S. Werner, M. Bordoli, R. Henneberger, W. Kovacs, M. Schäfer, U. Suter, A. Wutz | |
Abstract | This Course introduces principle concepts, techniques, and experimental strategies used in modern Cell Biology. Major topics include: neuron-glia interactions in health and disease; mitochondrial dynamics; stem cell biology; growth factor action in development, tissue repair and disease; cell metabolism, in particular sensing and signaling mechanisms, cell organelles, and lipid metabolism. | |||||
Objective | -To prepare the students for successful and efficient lab work by learning how to ask the right questions and to use the appropriate techniques in a research project. -To convey knowledge about neuron-glia interactions in health and disease. - To provide information on different types of stem cells and their function in health and disease -To provide information on growth factor signaling in development, repair and disease and on the use of growth factors or their receptors as drug targets for major human diseases -To convey knowledge on the mechanisms underlying repair of injured tissues -To provide the students with an overview of mitochondrial dynamics. -Providing an understanding of RNA processing reactions and their regulations. -To provide a comprehensive understanding of metabolic sensing mechanisms occurring in different cell types and organelles in response to glucose, hormones, oxygen, nutrients as well as lipids, and to discuss downstream signaling pathways and cellular responses. -To provide models explaining how disturbances in complex metabolic control networks and bioenergetics can lead to disease and to highlight latest experimental approaches to uncover the intricacies of metabolic control at the cellular and organismal level. -Providing the background and context that foster cross-disciplinary scientific thinking. | |||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
227-0390-00L | Elements of Microscopy | W | 4 credits | 3G | M. Stampanoni, G. Csúcs, A. Sologubenko | |
Abstract | The lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging. | |||||
Objective | Solid introduction to the basics of microscopy, either with visible light, electrons or X-rays. | |||||
Content | It would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level. The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy. During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated. | |||||
Literature | Available Online. | |||||
227-0395-00L | Neural Systems | W | 6 credits | 2V + 1U + 1A | R. Hahnloser, M. F. Yanik, B. Grewe | |
Abstract | This course introduces principles of information processing in neural systems. It covers basic neuroscience for engineering students, experimental techniques used in studies of animal behavior and underlying neural mechanisms. Students learn about neural information processing and basic principles of natural intelligence and their impact on efforts to design artificially intelligent systems. | |||||
Objective | This course introduces - Methods for monitoring of animal behaviors in complex environments - Information-theoretic principles of behavior - Methods for performing neurophysiological recordings in intact nervous systems - Methods for manipulating the state and activity in selective neuron types - Methods for reconstructing the synaptic networks among neurons - Information decoding from neural populations, - Sensorimotor learning, and - Neurobiological principles for machine learning. | |||||
Content | From active membranes to propagation of action potentials. From synaptic physiology to synaptic learning rules. From receptive fields to neural population decoding. From fluorescence imaging to connectomics. Methods for reading and manipulation neural ensembles. From classical conditioning to reinforcement learning. From the visual system to deep convolutional networks. Brain architectures for learning and memory. From birdsong to computational linguistics. | |||||
Prerequisites / Notice | Before taking this course, students are encouraged to complete "Bioelectronics and Biosensors" (227-0393-10L). As part of the exercises for this class, students are expected to complete a (python) programming project to be defined at the beginning of the semester. | |||||
227-1034-00L | Computational Vision (University of Zurich) ![]() No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: INI402 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 6 credits | 2V + 1U | D. Kiper | |
Abstract | This course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision. | |||||
Objective | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Content | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Literature | Books: (recommended references, not required) 1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997. 2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995. | |||||
227-1046-00L | Computer Simulations of Sensory Systems ![]() | W | 3 credits | 2V + 1U | T. Haslwanter | |
Abstract | This course deals with computer simulations of the human auditory, visual, and balance system. The lecture will cover the physiological and mechanical mechanisms of these sensory systems. And in the exercises, the simulations will be implemented with Python (or Matlab). The simulations will be such that their output could be used as input for actual neuro-sensory prostheses. | |||||
Objective | Our sensory systems provide us with information about what is happening in the world surrounding us. Thereby they transform incoming mechanical, electromagnetic, and chemical signals into “action potentials”, the language of the central nervous system. The main goal of this lecture is to describe how our sensors achieve these transformations, how they can be reproduced with computational tools. For example, our auditory system performs approximately a “Fourier transformation” of the incoming sound waves; our early visual system is optimized for finding edges in images that are projected onto our retina; and our balance system can be well described with a “control system” that transforms linear and rotational movements into nerve impulses. In the exercises that go with this lecture, we will use Python to reproduce the transformations achieved by our sensory systems. The goal is to write programs whose output could be used as input for actual neurosensory prostheses: such prostheses have become commonplace for the auditory system, and are under development for the visual and the balance system. For the corresponding exercises, at least some basic programing experience is required!! | |||||
Content | The following topics will be covered: • Introduction into the signal processing in nerve cells. • Introduction into Python. • Simplified simulation of nerve cells (Hodgkins-Huxley model). • Description of the auditory system, including the application of Fourier transforms on recorded sounds. • Description of the visual system, including the retina and the information processing in the visual cortex. The corresponding exercises will provide an introduction to digital image processing. • Description of the mechanics of our balance system, and the “Control System”-language that can be used for an efficient description of the corresponding signal processing (essentially Laplace transforms and control systems). | |||||
Lecture notes | For each module additional material will be provided on the e-learning platform "moodle". The main content of the lecture is also available as a wikibook, under http://en.wikibooks.org/wiki/Sensory_Systems | |||||
Literature | Open source information is available as wikibook http://en.wikibooks.org/wiki/Sensory_Systems For good overviews I recommend: • L. R. Squire, D. Berg, F. E. Bloom, Lac S. du, A. Ghosh, and N. C. Spitzer. Fundamental Neuroscience, Academic Press - Elsevier, 2012 [ISBN: 9780123858702]. This book covers the biological components, from the functioning of an individual ion channels through the various senses, all the way to consciousness. And while it does not cover the computational aspects, it nevertheless provides an excellent overview of the underlying neural processes of sensory systems. • Principles of Neural Science (5th Ed, 2012), by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, A.J. Hudspeth ISBN 0071390111 / 9780071390118 THE standard textbook on neuroscience. • P Wallisch, M Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey, and N. G. Hatsopoulos. MATLAB for Neuroscientists, Academic Press, 2009. Compactly written, it provides a short introduction to MATLAB, as well as a very good overview of MATLAB’s functionality, focusing on applications in different areas of neuroscience. • G. Mather. Foundations of Sensation and Perception, 2nd Ed Psychology Press, 2009 [ISBN: 978-1-84169-698-0 (hardcover), oder 978-1-84169-699-7 (paperback)] A coherent, up-to-date introduction to the basic facts and theories concerning human sensory perception. | |||||
Prerequisites / Notice | Since I have to gravel from Linz, Austria, to Zurich to give this lecture, I plan to hold this lecture in blocks (every 2nd week). | |||||
327-2125-00L | Microscopy Training SEM I - Introduction to SEM ![]() Limited number of participants. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). | W | 2 credits | 3P | K. Kunze, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, J. Reuteler | |
Abstract | The introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using 2 SEM instruments, students have the opportunity to study their own samples, or standard test samples, as well as solving exercises provided by ScopeM scientists. | |||||
Objective | - Set-up, align and operate a SEM successfully and safely. - Accomplish imaging tasks successfully and optimize microscope performances. - Master the operation of a low-vacuum and field-emission SEM and EDX instrument. - Perform sample preparation with corresponding techniques and equipment for imaging and analysis - Acquire techniques in obtaining secondary electron and backscatter electron micrographs - Perform EDX qualitative and semi-quantitative analysis | |||||
Content | During the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications. This course gives basic skills for students new to SEM. At the end of the course, students with no prior experience are able to align a SEM, to obtain secondary electron (SE) and backscatter electron (BSE) micrographs and to perform energy dispersive X-ray spectroscopy (EDX) qualitative and semi-quantitative analysis. The procedures to better utilize SEM to solve practical problems and to optimize SEM analysis for a wide range of materials will be emphasized. - Discussion of students' sample/interest - Introduction and discussion on Electron Microscopy and instrumentation - Lectures on electron sources, electron lenses and probe formation - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM - Brief description and demonstration of the SEM microscope - Practice on beam/specimen interaction, image formation, image contrast (and image processing) - Student participation on sample preparation techniques - Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities - Lecture and demonstrations on X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescans and spectral mapping - Practice on real-world samples and report results | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
327-2126-00L | Microscopy Training TEM I - Introduction to TEM ![]() Number of participants limited to 6. Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html). TEM 1 registration form: Link | W | 2 credits | 3P | M. Willinger, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm | |
Abstract | The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions. | |||||
Objective | - Overview of TEM theory, instrumentation, operation and applications. - Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully. - Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras. - To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns. - Overview of techniques for specimen preparation. | |||||
Content | Using two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods. - Introduction and discussion on Electron Microscopy and instrumentation. - Lectures on electron sources, electron lenses and probe formation. - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM. - Brief description and demonstration of the TEM microscope. - Practice on beam/specimen interaction, image formation, Image contrast (and image processing). - Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM). - Student participation on sample preparation techniques. - Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities. - TEM alignment, calibration, correction to improve image contrast and quality. - Electron diffraction. - Practice on real-world samples and report results. | |||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | |||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. | |||||
376-1150-00L | Clinical Challenges in Musculoskeletal Disorders ![]() | W | 2 credits | 2G | M. Leunig, S. J. Ferguson, A. Müller | |
Abstract | This course reviews musculoskeletal disorders focusing on the clinical presentation, current treatment approaches and future challenges and opportunities to overcome failures. | |||||
Objective | Appreciation of the surgical and technical challenges, and future perspectives offered through advances in surgical technique, new biomaterials and advanced medical device construction methods. | |||||
Content | Foot deformities, knee injuries, knee OA, hip disorders in the child and adolescent, hip OA, spine deformities, degenerative spine disease, shoulder in-stability, hand, rheumatoid diseases, neuromuscular diseases, sport injuries and prevention | |||||
376-1178-00L | Human Factors II | W | 3 credits | 2V | M. Menozzi Jäckli, R. Huang, M. Siegrist | |
Abstract | Strategies, abilities and needs of human at work as well as properties of products and systems are factors controlling quality and performance in everyday interactions. In Human Factors II (HF II), cognitive aspects are in focus therefore complementing the more physical oriented approach in HF I. A basic scientific approach is adopted and relevant links to practice are illustrated. | |||||
Objective | The goal of the lecture is to empower students in designing products and systems enabling an efficient and qualitatively high standing interaction between human and the environment, considering costs, benefits, health, well-being, and safety as well. The goal is achieved in addressing a broad variety of topics and embedding the discussion in macroscopic factors such as the behavior of consumers and objectives of economy. | |||||
Content | Cognitive factors in perception, information processing and action. Experimental techniques in assessing human performance and well-being, human factors and ergonomics in development of products and complex systems, innovation, decision taking, consumer behavior. | |||||
Literature | Salvendy G. (ed), Handbook of Human Factors, Wiley & Sons, 2012 | |||||
376-1400-00L | Transfer of Technologies into Neurorehabilitation ![]() | W | 3 credits | 2V | C. Müller, R. Gassert, R. Riener, H. Van Hedel, N. Wenderoth | |
Abstract | The course focuses on clinical as well as industrial aspects of advanced technologies and their transfer into neurorehabilitation from both theoretical and practical perspectives. The students will learn the basics of neurorehabilitation and the linkage to technologies, gain insight into the development within the medtech field and learn applications of technologies in clinical settings. | |||||
Objective | The students will: - Learn basics and principles of clinical neuroscience and neurorehabilitation. - Gain insight into the technical basics of advanced technologies and the transfer into product development processes. - Gain insight into the application, the development and integration of advanced technologies in clinical settings. This includes the advantages and limitations according to different pathologies and therapy goals. - Get the opportunity to test advanced technologies in practical settings. - Learn how to transfer theoretical concepts to actual settings in different working fields. | |||||
Content | Main focus: - Neurobiological principles applied to the field of neurorehabilitation. - Clinical applications of advanced rehabilitation technologies. - Visit medical technology companies, rehabilitation centers and labs to gain deeper insight into the development, application and evaluation of advanced technologie | |||||
Lecture notes | Teaching materials will be provided for the individual events and lectures. - Slides (pdf files) - Information sheets and flyers of the visited companies, labs and clinics | |||||
376-1414-01L | Current Topics in Brain Research (FS) | W | 1 credit | 1.5K | I. Mansuy, F. Helmchen, further lecturers | |
Abstract | Different national and international scientific guests are invited to present and discuss their most recent scientific results. | |||||
Objective | The aim is to exchange scientific knowledge and data as well as to promote communication and collaborations amongst researchers. Students taking the course participate in all seminars within one semester and write a critical report about one seminar of their choice. Prof. Isabelle / Dr. Silvia Schelbert will send instructions for this report to students who have registered for the course. | |||||
Content | Different scientific guests working in the field of molecular cognition, neurochemistry, neuromorphology and neurophysiology present their latest scientific results. | |||||
Lecture notes | no handout | |||||
Literature | no literature | |||||
376-1624-00L | Practical Methods in Biofabrication ![]() Number of participants limited to 12. | W | 5 credits | 4P | M. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak | |
Abstract | Biofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft. | |||||
Objective | The objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project. | |||||
Prerequisites / Notice | Not recommended if passed 376-1622-00 Practical Methods in Tissue Engineering | |||||
376-1660-00L | Scientific Writing, Reporting and Communication ![]() Number of participants limited to 30. Only for Health Sciences and Technology MSc | W | 3 credits | 2V | B. Taylor | |
Abstract | This course aims to teach many of the unwritten rules on how to communicate effectively, from writing reports or manuscripts (or indeed their Master thesis!) through to improving skills in oral presentations, and presenting themselves at interview. | |||||
Objective | This course will teach students to communicate effectively in official environments, including: - writing manuscripts, theses, CVs, reports etc - presenting posters - oral presentations - critical reviews of literature | |||||
376-1724-00L | Appropriate Health System Design ![]() ![]() Number of participants limited to 42. | W | 3 credits | 2V | W. Karlen | |
Abstract | This course elaborates upon relevant aspects in the conception, implementation and distribution of health devices and systems that effectively meet peoples and societies' needs in a local context. Four key elements of appropriateness (usage, cost, durability and performance) that are integral to the engineering design process are extensively discussed and applied. | |||||
Objective | The main goals are to > Evaluate the appropriateness of health systems to the cultural, financial, environmental and medical context in which they will be applied and > Design health systems from a user's perspective for a specific context At the end of the course, students can > name, understand and describe the 4 main principles that define appropriate technology > apply these principles to critically analyze and assess health systems and technology > project him/herself into a unfamiliar person and context and create hypotheses as to that person's needs, requirements, and priorities > modify specifications of existing systems to improve appropriateness > discuss the challenges and illustrate the the ethical and societal consequences of proposed design modifications > communicate effectively the results of his/her system analysis and implementation strategies to non-specialists | |||||
Content | The course will be interactive and involve roleplay. Please do not sign up for this course if you are not ready to leave your comfort zone in class. The lectures are divided in two parts: The first part elaborates upon the important concepts of the design of health care devices and systems, and discusses implementation and dissemination strategies. We focus on communities such as low income households, the elderly, and patients with chronic illnesses that have special needs. Topics covered include point-of-care diagnostics, information and communication technologies, mobile health, user interactions, and also the social-cultural considerations. The second part consists of elaboration of an appropriate device conducted by student groups. Each group will analyse an existing product or solution, critically assess its appropriateness according to the criteria learned in class, and provide explanations as to why the system succeeds or fails. The students will also present design improvements. Grading will be based on a written case report due in the middle of the semester and a final seminar presentation in form of a poster discussion and demo. | |||||
Literature | WHO, "Medical Devices: Managing the Mismatch", 2010. http://www.who.int/medical_devices/publications/med_dev_man-mismatch/en/ PATH, "The IC2030 report. Reimagining Global Health," 2015. http://ic2030.org/report/ R. Malkin and K. Von Oldenburg Beer, "Diffusion of novel healthcare technologies to resource poor settings," Annals of Biomedical Engineering, vol. 41, no. 9, pp. 1841:50, 2013. | |||||
Prerequisites / Notice | Target Group: Students of higher semesters and doctoral students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome | |||||
376-1986-00L | Bayesian Data Analysis on Models of Behavior No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: DOEC0829 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 3 credits | 2S | R. Polania, University lecturers | |
Abstract | Making sense of the data acquired via experiments is fundamental in many fields of sciences. This course is designed for students/researchers who want to gain practical experience with data analysis based on Bayesian inference. Coursework involves practical demonstrations and discussion of solutions for data analysis problems. No advanced knowledge of statistics and probability is required. | |||||
Objective | The overall goal of this course it that the students are able to develop both analytic and problem-solving skills that will serve to draw reasonable inferences from observations. The first objective is to make the participants familiar with the conceptual framework of Bayesian data analysis. The second goal is to introduce the ideas of modern Bayesian data analysis, including techniques such as Markov chain Monte Carlo (MCMC) techniques, alongside the introduction of programming tools that facilitate the creation of any Bayesian inference model. Throughout the course, this will involve practical demonstrations with example datasets, homework, and discussions that should convince the participants of this course that it is possible to make inference and understand the data acquired from the experiments that they usually obtain in their own research (starting from simple linear regressions all the way up to more complex models with hierarchical structures and dependencies). After working through this course, the participants should be able to build their own inference models in order to interpret meaningfully their own data. | |||||
Prerequisites / Notice | The very basics (or at least intuition) of programming in either Matlab or R | |||||
535-0534-00L | Drug, Society and Public Health | W | 1 credit | 1V | J. Steurer, R. Heusser | |
Abstract | Introduction of basic concepts and methods in Public Health, epidemiology, and Evidence Based Medicine. An overview on concepts and principles of clinical trials on efficacy of drugs | |||||
Objective | Students know the concepts and principles of epidemiological and clinical research, they are informed about the principles of evidence based medicine and know how and where to search for evidence. | |||||
Content | Einführung in Epidemiologie / Pharmakoepidemiologie / Evidence-based Medicine: Grundbegriffe, Studiendesigns, object-design, statistische Grundlagen, Kausalität in der Pharmako-Epidemiologie, Methoden und Konzepte, Fallbeispiele. | |||||
Lecture notes | Wird abgegeben | |||||
Literature | - F. Gutzwiller/ F. Paccaud (Hrsg.): Sozial- und Präventivmedizin - Public Health. 4. Aufl. 2011, Verlag Hans Huber, Bern - R. Beaglehole, R. Bonita, T. Kjellström: Einführung in die Epidemiologie. 1997, Verlag Hans Huber, Bern - L. Gordis: Epidemiology, 4 th Ed. 2009, W.B. Saunders Comp. - K.J. Rothman, S. Greenland: Modern Epidemiology, 2. Ed. 1998, Lippincott Williams & Wilkins - A.G. Hartzema, M. Porta, H.H. Tilson (Eds.): Pharmacoepidemiology - An Introduction. 3. Ed. Harvey Whitney Comp., Cincinnati - R. Bonita, R. Beaglehole. Einführung in die Epidemiologie, 2. überarbeitete Auflage, 2008 Huber Verlag. - B.L. Strom (Eds.): Pharmacoepidemiology. 3. Ed. 2000, Wiley & Sons Ltd., Chichester - S.E. Straus, W.S. Richardson, P.Glasziou, R.B. Haynes: Evidence-based Medicine. 2005, Churchill Livingstone, London - U. Jaehde, R.Radziwill, S. Mühlebach, W. Schnack (Hrsg): Lehrbuch der Klinischen Pharmazie - L.M. Bachmann, M.A. Puhan, J.Steurer (Eds.): Patientenorientierte Forschung. EInführung in die Planung und Durchführung einer Studie. Verlag Hans Huber, 2008 | |||||
551-0318-00L | Immunology II | W | 3 credits | 2V | A. Oxenius, M. Kopf, S. R. Leibundgut, E. Wetter Slack, further lecturers | |
Abstract | Introduction into the cellular and molecular basis of the immune system and immune responses against diverse pathogens, tumors, transplants, and self (autoimmunity) | |||||
Objective | The lectures will provide a detailed understanding: - how innate and adaptive immune responses interact at the cellular and molecular level. - how the immune system recognizes and fights against pathogenic microorganisms including viruses, bacteria, and parasites. - why lymphocytes tolerate self molecules. - about function and dysfunction the intestinal immune system. - immunopathology and inflammatory diseases. | |||||
Content | The aim of lecture is to understand: > How pathogens are recognized by the innate immune system > Immune defense against various pathogens > Immunology of the skin, lung and intestines > Tumor immunology > Migration and homing of immune cells > tolerance and autoimmunity > T cell memory | |||||
Lecture notes | Presentations of the lecturers are available at the Moodle link | |||||
Literature | Recommended: Kuby Immunology (Freeman) | |||||
551-0320-00L | Cellular Biochemistry (Part II) | W | 3 credits | 2V | Y. Barral, R. Kroschewski, A. E. Smith | |
Abstract | This course will focus on molecular mechanisms and concepts underlying cellular biochemistry, providing advanced insights into the structural and functional details of individual cell components, and the complex regulation of their interactions. Particular emphasis will be on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes. | |||||
Objective | The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterization of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain how different molecules and signaling pathways can be integrated during complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, and cell division. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer or during cellular infection. | |||||
Content | Spatial and temporal integration of different molecules and signaling pathways into global cellular processes, such as cell division, cell infection and cell motility. Emphasis is also put on the understanding of pathologies associated with defective cell physiology, such as cancer or during cellular infection. | |||||
Literature | Recommended supplementary literature (review articles and selected primary literature) will be provided during the course. | |||||
Prerequisites / Notice | To attend this course the students must have a solid basic knowledge in chemistry, biochemistry, cell biology and general biology. Biology students have in general already attended the first part of the "Cellular Biochemistry" concept course (551-0319-00). The course will be taught in English. In addition, the course will be based on a blended-learning scenario, where frontal lectures will be complemented with carefully chosen web-based teaching elements that students access through the ETH Moodle platform. | |||||
701-1704-01L | Health Impact Assessment: Concepts and Case Studies | W | 3 credits | 2V | M. Winkler, C. Guéladio, M. Röösli, J. M. Utzinger | |
Abstract | This course introduces the concept of health impact assessment (HIA) and discusses a suite of case studies in industrialised and developing countries. HIA pursues an inter- and multidisciplinary approach, employs qualitative and quantitative methods with the overarching goal to influence decision-making. | |||||
Objective | After successful completion of the course, students should be able to: o critically reflect on the concept of HIA and the different steps from screening to implementation and monitoring; and o apply specific tools and methodologies for HIA of policies, programmes and projects in different social, ecological and epidemiological settings. | |||||
Content | The course will present a broad set of tools and methods for the systematic and evidence-based judgment of potential health effects related to policies, programmes and projects. Methodological features will be introduced and applied to a variety of case studies in the public sector (e.g. traffic-related air pollution, passive smoking and waste water management) and private sector (e.g. water resource developments and extractive industries) all over the world. | |||||
Lecture notes | Handouts will be distributed. | |||||
Literature | Whenever possible, at least one peer-reviewed paper will be made available for each session. | |||||
701-1708-00L | Infectious Disease Dynamics | W | 4 credits | 2V | S. Bonhoeffer, R. D. Kouyos, R. R. Regös, T. Stadler | |
Abstract | This course introduces into current research on the population biology of infectious diseases. The course discusses the most important mathematical tools and their application to relevant diseases of human, natural or managed populations. | |||||
Objective | Attendees will learn about: * the impact of important infectious pathogens and their evolution on human, natural and managed populations * the population biological impact of interventions such as treatment or vaccination * the impact of population structure on disease transmission Attendees will learn how: * the emergence spread of infectious diseases is described mathematically * the impact of interventions can be predicted and optimized with mathematical models * population biological models are parameterized from empirical data * genetic information can be used to infer the population biology of the infectious disease The course will focus on how the formal methods ("how") can be used to derive biological insights about the host-pathogen system ("about"). | |||||
Content | After an introduction into the history of infectious diseases and epidemiology the course will discuss basic epidemiological models and the mathematical methods of their analysis. We will then discuss the population dynamical effects of intervention strategies such as vaccination and treatment. In the second part of the course we will introduce into more advanced topics such as the effect of spatial population structure, explicit contact structure, host heterogeneity, and stochasticity. In the final part of the course we will introduce basic concepts of phylogenetic analysis in the context of infectious diseases. | |||||
Lecture notes | Slides and script of the lecture will be available online. | |||||
Literature | The course is not based on any of the textbooks below, but they are excellent choices as accompanying material: * Keeling & Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton Univ Press 2008 * Anderson & May, Infectious Diseases in Humans, Oxford Univ Press 1990 * Murray, Mathematical Biology, Springer 2002/3 * Nowak & May, Virus Dynamics, Oxford Univ Press 2000 * Holmes, The Evolution and Emergence of RNA Viruses, Oxford Univ Press 2009 | |||||
Prerequisites / Notice | Basic knowledge of population dynamics and population genetics as well as linear algebra and analysis will be an advantage. | |||||
![]() Practical Training and Semesterproject only for majors below-mentioned: -Human Movement Science and Sport -Health Technologies -Molecular Health Sciences -Neurosciences | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-2110-00L | Internship 12 Weeks (Research or Job Oriented) ![]() | W | 15 credits | 34P | Lecturers | |
Abstract | Practical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school). | |||||
Objective | Students should exercise scientific working and/or get realistic insights into future jobs. | |||||
Prerequisites / Notice | This version of internships lasts for at least 12 weeks full time equivalent. | |||||
376-2111-00L | Internship 8 Weeks (Research or Job Oriented) ![]() | W | 10 credits | 23P | Lecturers | |
Abstract | Practical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school). | |||||
Objective | Students should exercise scientific working and/or get realistic insights into future jobs. | |||||
Prerequisites / Notice | This version of internships lasts for at least 8 weeks full time equivalent. | |||||
376-2112-00L | Internship 4 Weeks (Research or Job Oriented) ![]() | W | 5 credits | 11P | Lecturers | |
Abstract | Practical Training Internships are either research-oriented for exercising scientific (laboratory) methods or job-related for giving insight into the future world of work (industry, services, school). | |||||
Objective | Students should exercise scientific working and/or get realistic insights into future jobs. | |||||
Prerequisites / Notice | This version of internships lasts for at least 4 weeks full time equivalent. | |||||
![]() | ||||||
» see Science in Perspective: Language Courses ETH/UZH | ||||||
» see Science in Perspective: Type A: Enhancement of Reflection Capability | ||||||
» Recommended Science in Perspective (Type B) for D-HEST | ||||||
![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-2100-00L | Research Internship ![]() | O | 15 credits | 36A | Professors | |
Abstract | 12-week internship intended for exercising (independent) scientific working. | |||||
Objective | Students shall exercise scientific working as preparation for their master thesis. | |||||
Prerequisites / Notice | The Research Internship lasts for at least 12 weeks full time equivalent. It can be combined with the Master Thesis. | |||||
![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
376-2000-00L | Master's Thesis ![]() Only students fulfilling the following criteria can start with their master thesis: a. successful completion of the bachelor programme; b. fulfillment of any additional requirements necessary to gain admission to the master programme. | O | 30 credits | 71D | Supervisors | |
Abstract | 6-months research study with topics from the chosen major within the field of Health Sciences and Technology. In general, it includes the study of existing literature, the specification of the research question, the choice of the methodological approach, the collection, analysis and interpretation of data, and the written and oral reporting of the findings. | |||||
Objective | The students shall demonstrate their ability to carry out a structured, scientific piece of work independently. | |||||
Prerequisites / Notice | The Master Thesis can only be started after the Bachelor Degree was obtained and/or master admission requirements have been fulfilled. | |||||
![]() The courses below are only for MSc students with additional admission requirements | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
406-0253-AAL | Mathematics I & II ![]() Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 13 credits | 28R | A. Cannas da Silva | |
Abstract | Mathematics I covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. Main focus of Mathematics II: multivariable calculus and partial differential equations. | |||||
Objective | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | |||||
Content | 1. Linear Algebra and Complex Numbers: systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra. 2. Single-Variable Calculus: review of differentiation, linearisation, Taylor polynomials, maxima and minima, fundamental theorem of calculus, antiderivative, integration methods, improper integrals. 3. Ordinary Differential Equations: variation of parameters, separable equations, integration by substitution, systems of linear equations with constant coefficients, 1st and higher order equations, introduction to dynamical systems. 4. Multivariable Differential Calculus: functions of several variables, partial differentiation, curves and surfaces in space, scalar and vector fields, gradient, curl and divergence. 5. Multivariable Integral Calculus: multiple integrals, line and surface integrals, work and flow, Gauss and Stokes theorems, applications. 6. Partial Differential Equations: separation of variables, Fourier series, heat equation, wave equation, Laplace equation, Fourier transform. | |||||
Literature | - Bretscher, O.: Linear Algebra with Applications, Pearson Prentice Hall. - Thomas, G. B.: Thomas' Calculus, Part 1, Pearson Addison-Wesley. - Thomas, G. B.: Thomas' Calculus, Part 2, Pearson Addison-Wesley. - Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & Sons. | |||||
376-0203-AAL | Movement and Sport Biomechanics Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course. | E- | 4 credits | 3R | N. Singh, B. Taylor | |
Abstract | Learning to view the human body as a (bio-) mechanical system. Making the connections between everyday movements and sports activity with injury, discomfort, prevention and rehabilitation. | |||||
Objective | "Students are able to describe the human body as a mechanical system. They analyse and describe human movement according to the laws of mechanics." | |||||
Content | Movement- and sports biomechanics deals with the attributes of the human body and their link to mechanics. The course includes topics such as functional anatomy, biomechanics of daily activities (gait, running, etc.) and looks at movement in sport from a mechanical point of view. Furthermore, simple reflections on the loading analysis of joints in various situations are discussed. Additionally, questions covering the statics and dynamics of rigid bodies, and inverse dynamics, relevant to biomechanics are investigated. | |||||
406-0063-AAL | Physics II Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | E- | 5 credits | 11R | A. Refregier | |
Abstract | Introduction to the "way of thinking" and the methodology in Physics. The Chapters treated are Magnetism, Refraction and Diffraction of Waves, Elements of Quantum Mechanics with applications to Spectroscopy, Thermodynamics, Phase Transitions, Transport Phenomena. | |||||
Objective | Introduction to the scientific methodology. The student should develop his/her capability to turn physical observations into mathematical models, and to solve the latter. The student should acquire an overview over the basic concepts used in the theory of heat and electricity. | |||||
Content | Book: Physics for Scientists and Engineers, Douglas C. Giancoli, Pearson Education (2009), ISBN: 978-0-13-157849-4 Chapters: 17 (without 17-5, 17-10), 18 (without 18-5, 18-6, 18-7), 19, 20 (without 20-7, 20-8, 20-9, 20-10, 20-11), 21 (without 21-12), 23, 25 (without 25-9, 25-10), 26 (without 26-4, 26-5, 26-7), 27, 28 (without 28-4, 28-5, 28-8. 28-9, 28-10), 29 (without 29-5, 29-8), 32 (without 32-8), 33 (without 33-4, 33-5, 33-9, 33-10), 34 (without 34-4, 34-6, 34-7), 35 (without 35-2, 35-3, 35-9, 35-11, 35-12, 35-13). | |||||
Literature | see "Content" Friedhelm Kuypers Physik für Ingenieure und Naturwissenschaftler Band 2 Elektrizität, Optik, Wellen Verlag Wiley-VCH, 2003, Fr. 77.- |