Suchergebnis: Katalogdaten im Herbstsemester 2017

MAS in Sustainable Water Resources Information
Das Masterprogramm (Master of Advanced Studies) in erneuerbaren Wasserressourcen ist ein vollzeitlicher Weiterbildungsdiplomlehrgang über 12 Monate. Der Fokus des Programms liegt auf der Nachhaltigkeit und Wasserressourcen in Lateinamerika, mit einem speziellen Augenmerk auf die Einflüsse von Entwicklung und Klimaveränderung auf die Wasserressourcen. Der Kurs verbindet multidisziplinäre Kursarbeit mit hochrangiger Forschung. Eine Auswahl der Forschungsthemen sind: Wasserqualität, Wasserquantität, Wasser für die Landwirtschaft, Wasser für die Umwelt, Anpassungen an die Klimaveränderung und integrierte Wasserwirtschaft. Sprache: Englisch. Kreditpunkte: 66 ECTS. Für weitere Informationen: Link
Grundlagenfächer
NummerTitelTypECTSUmfangDozierende
118-0101-00LWater Resources Seminars Belegung eingeschränkt - Details anzeigen
Number of participants limited to 16.
Automatic admittance given to the MAS students.
O3 KP3SD. Molnar, P. Burlando
KurzbeschreibungThe Seminar Series features invited experts from a wide range of disciplines, who will present their experiences working with water related topics in international settings. The students will be exposed to many different perspectives, and will be asked to apply the information they learn to specific case studies.
LernzielThe Seminar Series will provide students with background information on the wide range of topics related to water resources. The lectures will challenge the students to evaluate water resources and water resource management in new ways, using tools that have been successfully implemented in real case scenarios. The seminars will include theory, interactive discussions, and the assessment of methodologies. Student participation will be highly encouraged.
InhaltThe Seminar Series is aimed at offering students the opportunity to learn about water resources in a multi-disciplinary fashion, with a focus on international examples. Selected topics will include: Water & Sanitation, Urban Water Management, Politics & International Water Management, Water Resources & Agriculture, Water Hazards (floods), Water Resources & Ecosystem Services, Integrated Water Resource Management, and Adaptation to Climate Change. For additional details see the course website Link.
Voraussetzungen / BesonderesFor further information, contact the MAS coordinator, Darcy Molnar (Link)
Kernfächer
Foundation courses: 12 credits have to be achieved.
NummerTitelTypECTSUmfangDozierende
102-0287-00LFluvial Systems Information W3 KP2GP. Molnar
KurzbeschreibungThe course presents a view of the processes acting on and shaping the landscape and the fluvial landforms that result. The fluvial system is viewed in terms of the production and transport of sediment on hillslopes, the structure of the river network and channel morphology, fluvial processes in the river, riparian zone and floodplain, and basics of catchment and river management.
LernzielThe course has two fundamental aims: (1) it aims to provide environmental engineers with the physical process basis of fluvial system change, using the right language and terminology to describe landforms; and (2) it aims to provide quantitative skills in making simple and more complex predictions of change and the data and models required.
InhaltThe course consists of three sections: (1) Introduction to fluvial forms and processes and geomorphic concepts of landscape change, including climatic and human activities acting on the system. (2) The processes of sediment production, upland sheet-rill-gully erosion, basin sediment yield, rainfall-triggered landsliding, sediment budgets, and the modelling of the individual processes involved. (3) Processes in the river, floodplain and riparian zone, including river network topology, channel geometry, aquatic habitat, role of riparian vegetation, including basics of fluvial system management. The main focus of the course is hydrological and the scales of interest are field and catchment scales.
SkriptThere is no script.
LiteraturThe course materials consist of a series of 13 lecture presentations and notes to each lecture. The lectures were developed from textbooks, professional papers, and ongoing research activities of the instructor. All material is on the course webpage.
Voraussetzungen / BesonderesPrerequisites: Hydrology 1 and Hydrology 2 (or contact instructor).
102-0237-00LHydrology IIW3 KP2GP. Burlando, S. Fatichi
KurzbeschreibungThe course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English.
LernzielTools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples.
InhaltMonitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project.
SkriptParts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual.
LiteraturAdditional literature is presented during the course.
101-0267-01LNumerical Hydraulics Information W3 KP2GM. Holzner
KurzbeschreibungIn the course Numerical Hydraulics the basics of numerical modelling of flows are presented.
LernzielThe goal of the course is to develop the understanding of the students for numerical simulation of flows to an extent that they can later use commercial software in a responsible and critical way.
InhaltThe basic equations are derived from first principles. Possible simplifications relevant for practical problems are shown and their applicability is discussed. Using the example of non-steady state pipe flow numerical methods such as the method of characteristics and finite difference methods are introduced. The finite volume method as well as the method of characteristics are used for the solution of the shallow water equations. Special aspects such as wave propagation and turbulence modelling are also treated.

All methods discussed are applied pratically in exercises. This is done using programs in MATLAB which partially are programmed by the students themselves. Further, some generelly available softwares such as Hydraulic Systems and HEC RAS for non-steady flows are used.
SkriptLecture notes, powerpoints shown in the lecture and programs used can be downloaded. They are also available in German.
LiteraturGiven in lecture
102-0227-00LSystems Analysis and Mathematical Modeling in Urban Water Management Information W6 KP4GE. Morgenroth, M. Maurer
KurzbeschreibungSystematic introduction of material balances, transport processes, kinetics, stoichiometry and conservation. Ideal reactors, residence time distribution, heterogeneous systems, dynamic response of reactors. Parameter identification, local sensitivity, error propagation, Monte Carlo simulation. Introduction to real time control (PID controllers). Extensive coding of examples in Berkeley Madonna.
LernzielThe goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.
InhaltThe course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)
SkriptCopies of overheads will be made available.
LiteraturThere will be a required textbook that students need to purchase:
Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg
Voraussetzungen / BesonderesThis course will be offered together with the course Process Engineering Ia. It is advantageous to follow both courses simultaneously.
102-0217-00LProcess Engineering Ia Information W3 KP2GE. Morgenroth
KurzbeschreibungBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
LernzielStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
InhaltStoichiometry
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
SkriptCopies of overheads will be made available.
LiteraturThere will be a required textbook that students need to purchase (see Link for further information).
Voraussetzungen / BesonderesFor detailed information on prerequisites and information needed from Systems Analysis and Mathematical Modeling the student should consult the lecture program and important information (syllabus) of Process Engineering I that can be downloaded at Link
102-0617-00LBasics and Principles of Radar Remote Sensing for Environmental ApplicationsW3 KP2GI. Hajnsek
KurzbeschreibungThe course will provide the basics and principles of Radar Remote Sensing (specifically Synthetic Aperture Radar (SAR)) and its imaging techniques for the use of environmental parameter estimation.
LernzielThe course should provide an understanding of SAR techniques and the use of the imaging tools for bio/geophysical parameter estimation. At the end of the course the student has the understanding of
1. SAR basics and principles,
2. SAR polarimetry,
3. SAR interferometry and
4. environmental parameter estimation from multi-parametric SAR data
InhaltThe course is giving an introduction into SAR techniques, the interpretation of SAR imaging responses and the use of SAR for different environmental applications. The outline of the course is the following:
1. Introduction into SAR basics and principles
2. Introduction into electromagnetic wave theory
3. Introduction into scattering theory and decomposition techniques
4. Introduction into SAR interferometry
5. Introduction into polarimetric SAR interferometry
6. Introduction into bio/geophysical parameter estimation (classification/segmentation, soil moisture estimation, earth quake and volcano monitoring, forest height inversion, wood biomass estimation etc.)
SkriptHandouts for each topic will be provided
LiteraturFirst readings for the course:
Woodhouse, I. H., Introduction into Microwave Remote Sensing, CRC Press, Taylor & Francis Group, 2006.
Lee, J.-S., Pottier, E., Polarimetric Radar Imaging: From Basics to Applications, CRC Press, Taylor & Francis Group, 2009.
Complete literature listing will be provided during the course.
102-0215-00LSiedlungswasserwirtschaft II Information W4 KP2GM. Maurer, P. Staufer
KurzbeschreibungTechnische Netzwerke in der Siedlungswasserwirtschaft. Wasserverteilung: Optimierung, Druckstoss, Korrosion und Hygiene. Siedlungsentwässerung: Siedlungshydrologie, instationäre Strömung, Schmutzstofftransport, Versickerung von Regenwasser, Gewässerschutz bei Regen. Generelle Entwässerungsplanung (GEP).
LernzielVertiefung der Grundlagen für die Gestaltung und den Betrieb der technischen Netzwerke der Siedlungswasserwirtschaft.
InhaltDemand Side Management versus Supply Side Management
Optimierung von Wasserverteilnetzen
Druckstösse
Kalkausfällung, Korrosion von Leitungen
Hygiene in Verteilsystemen
Siedlungshydrologie: Niederschlag, Abflussbildung
Instationäre Strömungen in Kanalisationen
Stofftransport in der Kanalisation
Einleitbedingungen bei Regenwetter
Versickerung von Regenwasser
Generelle Entwässerungsplanung (GEP)
SkriptEs werden schriftliche Unterlagen abgegeben. Die Folien werden als Kopien zur Verfügung gestellt.
Voraussetzungen / BesonderesVoraussetzung: Siedlungswasserwirtschaft GZ
Wahlfächer
Electives: 6 credits has to be achieved.
NummerTitelTypECTSUmfangDozierende
401-6215-00LUsing R for Data Analysis and Graphics (Part I) Information W1.5 KP1GA. Drewek, M. Mächler
KurzbeschreibungThe course provides the first part an introduction to the statistical software R for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects.
LernzielThe students will be able to use the software R for simple data analysis.
InhaltThe course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part I of the course covers the following topics:
- What is R?
- R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics;
- Types of data: numeric, character, logical and categorical data, missing values;
- Simple (statistical) functions: summary, mean, var, etc., simple statistical tests;
- Writing simple functions;
- Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots.

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: Link

Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I.
SkriptAn Introduction to R. Link
Voraussetzungen / BesonderesThe course resources will be provided via the Moodle web learning platform
Please login (with your ETH (or other University) username+password) at
Link
Choose the course "Using R for Data Analysis and Graphics" and follow the instructions for registration.
651-4077-00LQuantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: GEO815

Beachten Sie die Einschreibungstermine an der UZH: Link
W3 KP1VUni-Dozierende
KurzbeschreibungÜbersicht über die wichtigsten formbildenden Prozesse und Landschaftsformen in kalten Regionen der Erde (Gletschergebiete und Gebiete intensiven Bodenfrostes) mit Schwerpunkt Hochgebirge. Diskussion aktueller Forschungsfragen.
LernzielKenntnis der wichtigsten klimarelevanten geomorphologischen Prozesse und Phänomene im Hochgebirge, Verständnis für aktuelle Forschungsfragen.
InhaltErosion und Sedimentation durch Gletscher in Abhängigkeit von Klima, Topographie, Eistemperatur, Sedimentbilanz, Gleitbewegung und Schmelzwasserabfluss. Prozesse und Formen im Bereich des jahreszeitlichen und ganzjährigen Bodenfrostes (Frostverwitterung, Felsstürze, Schutthalden, Solifluktion, Permafrostkriechen/Blockgletscher, Murgänge).
SkriptGlacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 Seiten.
Literaturreferences in skript
Voraussetzungen / BesonderesGrundkenntisse über Geomorphologie und Gletscher und Permafrost aus dem Kursangebot von ETH/UZH oder entsprechenden Vorlesungsskripten
701-1341-00LWater Resources and Drinking Water
Findet dieses Semester nicht statt.
W3 KP2GS. Hug, M. Berg, F. Hammes, U. von Gunten
KurzbeschreibungThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.
LernzielThe goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.
InhaltThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.
SkriptHandouts will be distributed
LiteraturWill be mentioned in handouts
651-4101-00LPhysics of Glaciers Information W3 KP3GM. Lüthi, G. Jouvet, F. T. Walter, M. Werder
KurzbeschreibungUnderstanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of Greenland and Antarctica.
LernzielAfter the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work.
InhaltThe dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate).
SkriptLink
LiteraturA list of relevant literature is available on the class web site.
Voraussetzungen / BesonderesGood high school mathematics and physics knowledge required.
701-1631-00LFoundations of Ecosystem Management Information W5 KP3GJ. Ghazoul, C. Garcia
KurzbeschreibungThis course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake.
LernzielStudents should be able to
a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales.
b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management.
InhaltTraditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ‘ecosystem management’ approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability.

This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources.
SkriptNo Script
LiteraturChichilnisky, G. and Heal, G. (1998) Economic returns from the biosphere. Nature, 391: 629-630.
Daily, G.C. (1997) Nature’s Services: Societal dependence on natural ecosystems. Island Press. Washington DC.
Hindmarch, C. and Pienkowski, M. (2000) Land Management: The Hidden Costs. Blackwell Science.
Millenium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC.
Milner-Gulland, E.J. and Mace, R. (1998) Conservation of Biological Resources. Blackwell Science.
Gunderson, L.H. and Holling, C.S. (2002) Panarchy: understanding transformations in human and natural systems. Island Press.
701-0727-00LPolitics of Environmental Problem Solving in Developing CountriesW2 KP2GU. Scheidegger
KurzbeschreibungThe course focuses on processes and drivers of decision-making on natural resources management issues in developing countries. It gives insights into the relevance of ecological aspects in developing countries. It covers concepts, instruments, processes and actors in environmental politics at the example of specific environmental challenges of global importance.
LernzielAfter completion of the module, students will be able to:
- Identify and appraise ecological aspects in development cooperation, development policies and developing countries' realities
- Analyze the forces, components and processes, which influence the design, the implementation and the outcome of ecological measures
- Characterize concepts, instruments and drivers of environmental politics and understand, how policies are shaped, both at national level and in multilateral negotiations
- Study changes (improvements) in environmental politics over time as the result of the interaction of processes and actors, including international development organizations
- Analyze politics and design approaches to influence them, looking among others at governance, social organization, legal issues and institutions
InhaltKey issues and basic concepts related to environmental politics are introduced. Then the course predominantly builds on case studies, providing information on the context, specifying problems and potentials, describing processes, illustrating the change management, discussing experiences and outcomes, successes and failures. The analysis of the cases elucidates factors for success and pitfalls in terms of processes, key elements and intervention strategies.

Different cases not only deal with different environmental problems, but also focus on different levels and degrees of formality. This ranges from local interventions with resource user groups as key stakeholders, to country level policies, to multi- and international initiatives and conventions. Linkages and interaction of the different system levels are highlighted. Special emphasis is given to natural resources management.

The cases address the following issues:
- Land use and soil fertility enhancement: From degradation to sustainable use
- Common property resource management (forest and pasture): Collective action and property rights, community-based management
- Ecosystem health (integrated pest management, soil and water conservation)
- Payment for environmental services: Successes in natural resources management
- Climate change and agriculture: Adaptation and mitigation possibilities
- Biodiversity Convention: Implications for conservations and access to genetic resources
- Biodiversity as a means for more secure livelihoods: Agroforestry and intercropping
- The Millennium Development Goals: Interactions between poverty and the environment
- Poverty and natural resources management: Poverty reduction strategies, the view of the poor themselves
- Food security: Policies, causes for insecurity, the role of land grabbing
- Biofuels and food security: Did politics misfire?
- Strategy development at global level: IAASTD and World Development Report 2008
SkriptInformation concerning the case studies and specific issues illustrated therein will be provided during the course (uploaded on Moodle)
LiteraturRobbins P, 2004. Political ecology: a critical introduction. Blackwell Publishing, Oxford, UK, 242 p.

Peet R, Robbins P, Watts M, 2011. Global political ecology. Routledge, New York, 450 p.

Keeley J, Scoones I, 2000. Knowledge, power and politics: the environmental policy-making process in Ethiopia. The Journal of Modern African Studies, 38(1), 89-120.
Voraussetzungen / BesonderesThe performance assessment will consist of an individual essay to be written by each student based on at least five references in addition to the sources provided in the course. Students can choose from a list of topics. Criteria for assessment will be communicated at the beginning of the course.
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 KP2G + 2UD. Or
KurzbeschreibungThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
LernzielStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
InhaltWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
SkriptClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
Link
LiteraturSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
401-0649-00LApplied Statistical RegressionW5 KP2V + 1UM. Dettling
KurzbeschreibungThis course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis.
LernzielThe students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling.
InhaltThe course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies.

The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data.
SkriptA script will be available.
LiteraturFaraway (2005): Linear Models with R
Faraway (2006): Extending the Linear Model with R
Draper & Smith (1998): Applied Regression Analysis
Fox (2008): Applied Regression Analysis and GLMs
Montgomery et al. (2006): Introduction to Linear Regression Analysis
Voraussetzungen / BesonderesThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held.

In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Regression" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit.
701-1251-00LLand-Climate Dynamics Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 36.
W3 KP2GS. I. Seneviratne, E. L. Davin
KurzbeschreibungThe purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises.
LernzielThe students can understand the role of land processes and associated feedbacks in the climate system.
SkriptPowerpoint slides will be made available
Voraussetzungen / BesonderesPrerequisites: Introductory lectures in atmospheric and climate science
Atmospheric physics -> Link
and/or
Climate systems -> Link
701-1551-00LSustainability AssessmentW3 KP2GP. Krütli, C. E. Pohl
KurzbeschreibungThe course deals with the concepts and methodologies for the analysis and assessment of sustainable development. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability as well as to trade-offs between the three dimensions of sustainability.

The course is seminar-like, interactive.
LernzielAt the end of the course students should

Know:
- core concepts of sustainable development, and;
- the concept of social justice as a core element of social sustainability;
- important empirical methods for the analysis and assessment of local / regional sustainability issues.

Understand and reflect on:
- the challenges of trade-offs between the different goals of sustainable development;
- and the respective impacts on individual and societal decision-making.
InhaltThe course is structured as follows:
- Overview of rationale, objectives, concepts and origins of sustainable development;
- Importance and application of sustainability in science, politics, society, and economy;
- Sustainable (local / regional) development in different national / international contexts;
- Analysis and evaluation methods of sustainable development with a focus on social justice;
- Trade-offs in selected examples.
SkriptHandouts.
LiteraturSelected scientific articles & book chapters
701-0015-00LTransdisciplinary Research: Challenges of Interdisciplinarity and Stakeholder EngagementW2 KP2SM. Stauffacher, C. E. Pohl
KurzbeschreibungThis seminar is designed for PhD students and PostDoc researchers from all departments involved in inter- or transdisciplinary research. It addresses challenges of this kind of research and discusses these using scientific literature presenting case studies, concepts, theories, methods and tools. It concludes with a 10-step approach to make participants' research projects more societally relevant.
LernzielParticipants know specific challenges of inter- and transdisciplinary research. They know concepts and methods to tackle questions like: how to integrate knowledge from different disciplines, how to engage with other societal actors, how to secure broader impact of research? They learn to critically reflect their research project in its societal context and on their role as scientists.
InhaltThe seminar covers the following topics:
(1) Theories and concepts of inter- and transdisciplinary research
(2) The specific challenges of inter- and transdisciplinary research
(3) Collaborating disciplines
(4) Engaging with stakeholders
(5) Exploration of tools and methods
(6) 10 steps to make participants' research projects more societally relevant
LiteraturLiterature will be made available to the participants
Voraussetzungen / BesonderesParticipation in the course requires participants to be working on their own research project.
701-1644-00LMountain Forest HydrologyW5 KP3GJ. W. Kirchner
KurzbeschreibungThis course presents a process-based view of the hydrology, biogeochemistry, and geomorphology of mountain streams. Students learn how to integrate process knowledge, data, and models to understand how landscapes regulate the fluxes of water, sediment, nutrients, and pollutants in streams, and to anticipate how streams will respond to changes in land use, atmospheric deposition, and climate.
LernzielStudents will have a broad understanding of the hydrological, biogeochemical, and geomorphological functioning of mountain catchments. They will practice using data and models to frame and test hypotheses about connections between streams and landscapes.
InhaltStreams are integrated monitors of the health and functioning of their surrounding landscapes. Streams integrate the fluxes of water, solutes, and sediment from their contributing catchment area; thus they reflect the spatially integrated hydrological, ecophysiological, biogeochemical, and geomorphological processes in the surrounding landscape. At a practical level, there is a significant public interest in managing forested upland landscapes to provide a reliable supply of high-quality surface water and to minimize the risk of catastrophic flooding and debris flows, but the scientific background for such management advice is still evolving.

Using a combination of lectures, field exercises, and data analysis, we explore the processes controlling the delivery of water, solutes, and sediment to streams, and how those processes are affected by changes in land cover, land use, and climate. We review the connections between process understanding and predictive modeling in these complex environmental systems. How well can we understand the processes controlling watershed-scale phenomena, and what uncertainties are unavoidable? What are the relative advantages of top-down versus bottom-up approaches? How much can "black box" analyses reveal about what is happening inside the black box? Conversely, can small-scale, micro-mechanistic approaches be successfully "scaled up" to predict whole-watershed behavior? Practical problems to be considered include the effects of land use, atmospheric deposition, and climate on streamflow, water quality, and sediment dynamics, illustrated with data from experimental watersheds in North America, Scandinavia, and Europe.
SkriptHandouts will be available as they are developed.
LiteraturRecommended and required reading will be specified at the first class session (with possible modifications as the semester proceeds).
Master-Arbeit
NummerTitelTypECTSUmfangDozierende
118-0121-00LMaster's Thesis Belegung eingeschränkt - Details anzeigen O24 KP51DDozent/innen
KurzbeschreibungStudents propose relevant research topics from their home countries or from ongoing research projects at ETH, around which individual study programmes are devised, and on which they write their thesis. The Master thesis is supervised by scientific staff at ETH and collaborating institutions, and is based on the student's academic or professional experience.
LernzielThe Master Thesis research takes place throughout the duration of the MAS Programme (12 months), complimented by Master level coursework and seminars focusing on water resources and sustainability. Students become familiar with new research techniques and receive guidance from experts. The topic of the research should address a current water resources challenge in the student's home country or in Switzerland, and is aimed at enhancing collaboration between academics and professionals in Switzerland and abroad.