Suchergebnis: Katalogdaten im Herbstsemester 2016
Biomedical Engineering Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
151-0604-00L | Microrobotics ![]() Findet dieses Semester nicht statt. | W | 4 KP | 3G | B. Nelson | |
Kurzbeschreibung | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination. | |||||
Lernziel | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||
Inhalt | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||
Skript | The powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically. | |||||
Voraussetzungen / Besonderes | The lecture will be taught in English. | |||||
151-0605-00L | Nanosystems | W | 4 KP | 4G | A. Stemmer, J.‑N. Tisserant | |
Kurzbeschreibung | From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. Special emphasis on the emerging field of molecular electronic devices. | |||||
Lernziel | Familiarize students with basic science and engineering principles governing the nano domain. | |||||
Inhalt | The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled. Topics are treated in 2 blocks: (I) From Quantum to Continuum From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. (II) Interaction Forces on the Micro and Nano Scale Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. | |||||
Literatur | - Kuhn, Hans; Försterling, H.D.: Principles of Physical Chemistry. Understanding Molecules, Molecular Assemblies, Supramolecular Machines. 1999, Wiley, ISBN: 0-471-95902-2 - Chen, Gang: Nanoscale Energy Transport and Conversion. 2005, Oxford University Press, ISBN: 978-0-19-515942-4 - Ouisse, Thierry: Electron Transport in Nanostructures and Mesoscopic Devices. 2008, Wiley, ISBN: 978-1-84821-050-9 - Wolf, Edward L.: Nanophysics and Nanotechnology. 2004, Wiley-VCH, ISBN: 3-527-40407-4 - Israelachvili, Jacob N.: Intermolecular and Surface Forces. 2nd ed., 1992, Academic Press,ISBN: 0-12-375181-0 - Evans, D.F.; Wennerstrom, H.: The Colloidal Domain. Where Physics, Chemistry, Biology, and Technology Meet. Advances in Interfacial Engineering Series. 2nd ed., 1999, Wiley, ISBN: 0-471-24247-0 - Hunter, Robert J.: Foundations of Colloid Science. 2nd ed., 2001, Oxford, ISBN: 0-19-850502-7 | |||||
Voraussetzungen / Besonderes | Course format: Lectures and Mini-Review presentations: Thursday 10-13, ML F 36 Homework: Mini-Reviews Students select a paper (list distributed in class) and expand the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. | |||||
151-0621-00L | Microsystems Technology ![]() | W | 6 KP | 4G | C. Hierold, M. Haluska | |
Kurzbeschreibung | Die Stundenten werden in die Grundlagen der Mikrosystemtechnik und der Halbleiterprozesstechnologie eingeführt und erfahren, wie die Herstellung von Mikrosystemen in einer Serie von genau definierten Prozessschritten erfolgt (Gesamtprozess und Prozessablauf). | |||||
Lernziel | Die Stundenten sind mit den Grundlagen der Mikrosystemtechnik und der Prozesstechnologie für Halbleiter vertraut und verstehen die Herstellung von Mikrosystemen durch die Kombination von Einzelprozesschritten ( = Gesamtprozess oder Prozessablauf). | |||||
Inhalt | - Einführung in die Mikrosystemtechnik (MST) und in mikroelektromechanische Systeme (MEMS) - Grundlegende Siliziumtechnologie: thermische Oxidation, Fotolithografie und Ätztechnik, Diffusion und Ionenimplantation, Dünnschichttechnik. - Besondere Mikrosystemtechnologien: Volumen- und Oberflächenmikromechanik, Trocken- und Nassätzen, isotropisches und anisotropisches Ätzen, Herstellung von Balken und Membranen, Waferbonden, mechanische und thermische Eigenschaften von Dünnschichten, piezoelektrische und piezoresitive Materialien. - Ausgewählte Mikrosysteme: Mechanische Sensoren und Aktoren, Mikroresonatoren, thermische Sensoren und Aktoren, Systemintegration und Aufbautechnik. | |||||
Skript | Handouts (online erhältlich) | |||||
Literatur | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - G. Kovacs: Micromachined Transducer Sourcebook | |||||
Voraussetzungen / Besonderes | Voraussetzung: Physik I und II | |||||
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann, M. Rudin | |
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||
227-0386-00L | Biomedical Engineering ![]() | W | 4 KP | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||
Lernziel | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | |||||
Inhalt | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | |||||
Skript | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://www1.ethz.ch/lbb/Education/BME | |||||
227-0393-10L | Bioelectronics and Biosensors New course. Not to be confounded with 227-0393-00L last offered in the Spring Semester 2015. | W | 6 KP | 2V + 2U | J. Vörös, M. F. Yanik, T. Zambelli | |
Kurzbeschreibung | The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion. | |||||
Lernziel | During this course the students will: - learn the basic concepts in biosensing and bioelectronics - be able to solve typical problems in biosensing and bioelectronics - learn about the remaining challenges in this field | |||||
Inhalt | L1. Bioelectronics history, its applications and overview of the field - Volta and Galvani dispute - BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices - Fundamentals of biosensing - Glucometer and ELISA L2. Fundamentals of quantum and classical noise in measuring biological signals L3. Biomeasurement techniques with photons L4. Acoustics sensors - Differential equation for quartz crystal resonance - Acoustic sensors and their applications L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes L6. Optical biosensors - Differential equation for optical waveguides - Optical sensors and their applications - Plasmonic sensing L7. Basic notions of molecular adsorption and electron transfer - Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands - Electron transfer: Marcus theory, Gerischer theory L8. Potentiometric sensors - Fundamentals of the electrochemical cell at equilibrium (Nernst equation) - Principles of operation of ion-selective electrodes L9. Amperometric sensors and bioelectric potentials - Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current - Principles of operation of amperometric sensors - Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation) L10. Channels, amplification, signal gating, and patch clamp Y4 L11. Action potentials and impulse propagation L12. Functional electric stimulation and recording - MEA and CMOS based recording - Applying potential in liquid - simulation of fields and relevance to electric stimulation L13. Neural networks memory and learning | |||||
Literatur | Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition) | |||||
Voraussetzungen / Besonderes | Supervised exercises solving real-world problems. Some Matlab based exercises in groups. | |||||
227-0427-00L | Signal and Information Processing: Modeling, Filtering, Learning | W | 6 KP | 4G | H.‑A. Loeliger | |
Kurzbeschreibung | Fundamentals in signal processing, detection/estimation, and machine learning. I. Linear signal representation and approximation: Hilbert spaces, LMMSE estimation, regularization and sparsity. II. Learning linear and nonlinear functions and filters: kernel methods, neural networks. III. Structured statistical models: hidden Markov models, factor graphs, Kalman filter, parameter estimation. | |||||
Lernziel | The course is an introduction to some basic topics in signal processing, detection/estimation theory, and machine learning. | |||||
Inhalt | Part I - Linear Signal Representation and Approximation: Hilbert spaces, least squares and LMMSE estimation, projection and estimation by linear filtering, learning linear functions and filters, L2 regularization, L1 regularization and sparsity, singular-value decomposition and pseudo-inverse, principal-components analysis. Part II - Learning Nonlinear Functions: fundamentals of learning, neural networks, kernel methods. Part III - Structured Statistical Models and Message Passing Algorithms: hidden Markov models, factor graphs, Gaussian message passing, Kalman filter and recursive least squares, Monte Carlo methods, parameter estimation, expectation maximisation, sparse Bayesian learning. | |||||
Skript | Lecture notes. | |||||
Voraussetzungen / Besonderes | Prerequisites: - local bachelors: course "Discrete-Time and Statistical Signal Processing" (5. Sem.) - others: solid basics in linear algebra and probability theory | |||||
227-1037-00L | Introduction to Neuroinformatics ![]() | W | 6 KP | 2V + 1U | K. A. Martin, M. Cook, V. Mante, M. Pfeiffer | |
Kurzbeschreibung | The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented. | |||||
Lernziel | Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions. | |||||
Inhalt | This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks. | |||||
376-1714-00L | Biocompatible Materials | W | 4 KP | 3G | K. Maniura, J. Möller, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||
Lernziel | The class consists of three parts: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. | |||||
Inhalt | Introduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers. | |||||
Skript | Handouts can be accessed online. | |||||
Literatur | Literatur Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts provided during the classes and references therin. | |||||
402-0674-00L | Physics in Medical Research: From Atoms to Cells ![]() | W | 6 KP | 2V + 1U | B. K. R. Müller | |
Kurzbeschreibung | Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells. | |||||
Lernziel | The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour. As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced. The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes. High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering. Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. 3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented. Visiting clinical research in a leading university hospital will show the usefulness of the lecture series. | |||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Bioelectronics besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0166-00L | Analog Integrated Circuits ![]() | W | 6 KP | 2V + 2U | Q. Huang | |
Kurzbeschreibung | This course provides a foundation in analog integrated circuit design based on bipolar and CMOS technologies. | |||||
Lernziel | Integrated circuits are responsible for much of the progress in electronics in the last 50 years, particularly the revolutions in the Information and Communications Technologies we witnessed in recent years. Analog integrated circuits play a crucial part in the highly integrated systems that power the popular electronic devices we use daily. Understanding their design is beneficial to both future designers and users of such systems. The basic elements, design issues and techniques for analog integrated circuits will be taught in this course. | |||||
Inhalt | Review of bipolar and MOS devices and their small-signal equivalent circuit models; Building blocks in analog circuits such as current sources, active load, current mirrors, supply independent biasing etc; Amplifiers: differential amplifiers, cascode amplifier, high gain structures, output stages, gain bandwidth product of op-amps; Stability; Comparators; Second-order effects in analog circuits such as mismatch, noise and offset; A/D and D/A converters; Introduction to switched capacitor circuits. The exercise sessions aim to reinforce the lecture material by well guided step-by-step design tasks. The circuit simulator SPECTRE is used to facilitate the tasks. There is also an experimental session on op-amp measurments. | |||||
Skript | Handouts of presented slides. No script but an accompanying textbook is recommended. | |||||
Literatur | Gray, Hurst, Lewis, Meyer, "Analysis and Design of Analog Integrated Circuits", 5th Ed. Wiley, 2010. | |||||
227-0447-00L | Image Analysis and Computer Vision ![]() | W | 6 KP | 3V + 1U | L. Van Gool, O. Göksel, E. Konukoglu | |
Kurzbeschreibung | Light and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. | |||||
Lernziel | Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises. | |||||
Inhalt | The first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. | |||||
Skript | Course material Script, computer demonstrations, exercises and problem solutions | |||||
Voraussetzungen / Besonderes | Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C. The course language is English. | |||||
227-0468-00L | Analog Signal Processing and Filtering ![]() Suitable for Master Students as well as Doctoral Students. | W | 6 KP | 2V + 2U | H. Schmid | |
Kurzbeschreibung | This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. | |||||
Lernziel | This lecture provides a wide overview over analog filters (continuous-time and discrete-time), signal-processing systems, and sigma-delta conversion, and gives examples with sensor interfaces and class-D audio drivers. All systems and circuits are treated using a signal-flow view. The lecture is suitable for both analog and digital designers. The way the exam is done allows for the different interests of the two groups. The learning goal is that the students can apply signal-flow graphs and can understand the signal flow in such circuits and systems (including non-ideal effects) well enough to gain an understanding of further circuits and systems by themselves. | |||||
Inhalt | At the beginning, signal-flow graphs in general and driving-point signal-flow graphs in particular are introduced. We will use them during the whole term to analyze circuits and understand how signals propagate through them. The theory and CMOS implementation of active Filters is then discussed in detail using the example of Gm-C filters and active-RC filters. The ideal and nonideal behaviour of opamps, current conveyors, and inductor simulators follows. The link to the practical design of circuits and systems is done with an overview over different quality measures and figures of merit used in scientific literature and datasheets. Finally, an introduction to discrete-time and mixed-domain filters and circuits is given, including sensor read-out amplifiers, correlated double sampling, and chopping, and an introduction to sigma-delta A/D and D/A conversion on a system level. | |||||
Skript | The base for these lectures are lecture notes and two or three published scientific papers. From these papers we will together develop the technical content. Details: https://people.ee.ethz.ch/~haschmid/asfwiki/ Some material is protected by password; students from ETHZ who are interested can write to haschmid@ethz.ch to ask for the password even if they do not attend the lecture. | |||||
Voraussetzungen / Besonderes | Prerequisites: Recommended (but not required): Stochastic models and signal processing, Communication Electronics, Analog Integrated Circuits, Transmission Lines and Filters. Knowledge of the Laplace transform and z transform and their interpretation (transfer functions, poles and zeros, bode diagrams, stability criteria ...) and of the main properties of linear systems is necessary. | |||||
227-0981-00L | Cross-Disciplinary Research and Development in Medicine and Engineering ![]() A maximum of 12 medical degree students and 12 (biomedical) engineering degree students can be admitted, their number should be equal. | W | 4 KP | 2V + 2A | V. Kurtcuoglu, D. de Julien de Zelicourt, M. Meboldt, M. Schmid Daners, O. Ullrich | |
Kurzbeschreibung | Cross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment. | |||||
Lernziel | The main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to: - Acquire a working understanding of the anatomy and physiology of the investigated system; - Identify the engineering challenges in the project and communicate them to the medical students; - Develop and implement, together with the medical students, solution strategies for the identified challenges; - Present the found solutions to a cross-disciplinary audience. | |||||
Inhalt | After a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will receive tailored lectures on the anatomy and physiology of the relevant system. They will then team up with medical students who have received a basic introduction to engineering methodology to collaborate on said project. In the process, they will be coached both by lecturers from ETH Zurich and the University of Zurich, receiving lectures customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience. | |||||
Skript | Handouts and relevant literature will be provided. | |||||
227-1033-00L | Neuromorphic Engineering I ![]() ![]() Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major. | W | 6 KP | 2V + 3U | T. Delbrück, G. Indiveri, S.‑C. Liu | |
Kurzbeschreibung | This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions. | |||||
Lernziel | Understanding of the characteristics of neuromorphic circuit elements. | |||||
Inhalt | Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems. | |||||
Literatur | S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications. | |||||
Voraussetzungen / Besonderes | Particular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools. Prerequisites: Background in basics of semiconductor physics helpful, but not required. | |||||
227-2037-00L | Physical Modelling and Simulation ![]() | W | 5 KP | 4G | C. Hafner, J. Leuthold, J. Smajic | |
Kurzbeschreibung | This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects. | |||||
Lernziel | Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained. | |||||
Inhalt | The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS. In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers. | |||||
151-0255-00L | Energy Conversion and Transport in Biosystems | W | 4 KP | 2V + 1U | D. Poulikakos, A. Ferrari | |
Kurzbeschreibung | Theorie und Anwendung von Thermodynamik und Energieerhaltung in biologischen Systemen mit Schwerpunkt auf Zellebene. | |||||
Lernziel | Theorie und Anwendung von Energieerhaltung auf Zellebene. Verständnis für die grundlegenden Stofftransport-Kreisläufe in menschlichen Zellen und die Mechanismen, welche diese Kreisläufe beeinflussen. Parallelen zu anderen Gebieten im Ingenieurswesen erkennen. Wärme- und Massentransport Prozesse in der Zelle, Kraft Entwicklung der Zelle, und die Verbindung zu modernen biomedizinischen Technologien. | |||||
Inhalt | Massentransportmodelle für den Transport von chemischen Spezies in der menschlichen Zelle. Organisation und Funktion der Zellmembran und des Zytoskeletts. Die Rolle molekularer Motoren in der Kraftentwicklung der Zelle und deren Funktion in der Fortbewegung der Zelle. Beschreibung der Funktionsweise dieser Systeme sowie der experimentellen Analyse und Simulationen um sie besser zu verstehen. Einführung in den Zell-Metabolismus, Zell-Energietransport und die Zelluläre Thermodynamik. | |||||
Skript | Kursmaterial wird in Form von Hand-outs verteilt. | |||||
Literatur | Notizen sowie Referenzen aus der Vorlesung. | |||||
151-0509-00L | Microscale Acoustofluidics ![]() Number of participants limited to 30. | W | 4 KP | 3G | J. Dual | |
Kurzbeschreibung | In this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices. | |||||
Lernziel | Understanding acoustophoresis, the design of devices and potential applications | |||||
Inhalt | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||
Skript | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||
Literatur | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||
Voraussetzungen / Besonderes | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab session and hand in homework. | |||||
376-1103-00L | Frontiers in Nanotechnology | W | 4 KP | 4V | V. Vogel, weitere Dozierende | |
Kurzbeschreibung | Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers. | |||||
Lernziel | Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies. The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries. Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations. | |||||
Inhalt | Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges. | |||||
Skript | All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics. | |||||
376-1219-00L | Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions | W | 3 KP | 2V | R. Riener, R. Gassert, L. Marchal Crespo | |
Kurzbeschreibung | Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system. | |||||
Lernziel | Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution. This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order. | |||||
Inhalt | Introduction, problem definition, overview Rehabilitation of visual function - Anatomy and physiology of the visual sense - Technical aids (glasses, sensor substitution) - Retina and cortex implants Rehabilitation of hearing function - Anatomy and physiology of the auditory sense - Hearing aids - Cochlea Implants Rehabilitation and use of kinesthetic and tactile function - Anatomy and physiology of the kinesthetic and tactile sense - Tactile/haptic displays for motion therapy (incl. electrical stimulation) - Role of displays in motor learning Rehabilitation of vestibular function - Anatomy and physiology of the vestibular sense - Rehabilitation strategies and devices (e.g. BrainPort) Rehabilitation of vegetative Functions - Cardiac Pacemaker - Phrenic stimulation, artificial breathing aids - Bladder stimulation, artificial sphincter Brain stimulation and recording - Deep brain stimulation for patients with Parkinson, epilepsy, depression - Brain-Computer Interfaces | |||||
Literatur | Introductory Books: An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007. Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000. Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS). Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008. The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Selected Journal Articles and Web Links: Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752 Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at: http://www.cim.mcgill.ca/~vleves/docs/VL-CIM-TR-05.08.pdf Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. The vOICe. http://www.seeingwithsound.com. VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html | |||||
Voraussetzungen / Besonderes | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order. | |||||
376-1351-00L | Micro/Nanotechnology and Microfluidics for Biomedical Applications | W | 2 KP | 2V | E. Delamarche | |
Kurzbeschreibung | This course is an introduction to techniques in micro/nanotechnology and to microfluidics. It reviews how many familiar devices are built and can be used for research and biomedical applications. Transistors for DNA sequencing, beamers for patterning proteins, hard-disk technology for biosensing and scanning microfluidics for analyzing tissue sections are just a few examples of the covered topics. | |||||
Lernziel | The main objective of the course is to introduce micro/nanotechnology and microfluidics to students having a background in the life sciences. The course should familiarize the students with the techniques used in micro/nanotechnology and show them how micro/nanotechnology pervades throughout life sciences. Microfluidics will be emphasized due to their increasing importance in research and medical applications. The second objective is to have life students less intimidated by micro/nanotechnology and make them able to link instruments and techniques to specific problems that they might have in their projects/studies. This will also help students getting access to the ETHZ/IBM Nanotech Center infrastructure if needed. | |||||
Inhalt | Mostly formal lectures (2 × 45 min), with a 2 hour visit and introduction to cleanroom and micro/nanotechnology instruments, last 3 sessions would be dedicated to the presentation and evaluation of projects by students (3 students per team). | |||||
Voraussetzungen / Besonderes | Nanotech center and lab visit at IBM would be mandatory, as well as attending the student project presentations. | |||||
529-0837-00L | Biomicrofluidic Engineering ![]() Number of participants limited to 30. | W | 7 KP | 3G | A. de Mello | |
Kurzbeschreibung | Microfluidics describes the behaviour, control and manipulation of fluids that are geometrically constrained within sub-microliter environments. The use of microfluidic devices offers an opportunity to control physical and chemical processes with unrivalled precision, and in turn provides a route to performing chemistry and biology in an ultra-fast and high-efficiency manner. | |||||
Lernziel | In the course students will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A design workshop will allow students to develop new microscale flow processes by appreciating the dominant physics at the microscale. The application of these basic ideas will primarily focus on biological problems and will include a treatment of diagnostic devices for use at the point-of-care, advanced functional material synthesis, DNA analysis, proteomics and cell-based assays. Lectures, assignments and the design workshop will acquaint students with the state-of-the-art in applied microfluidics. | |||||
Inhalt | Specific topics in the course include, but not limited to: 1. Theoretical Concepts Features of mass and thermal transport on the microscale Key scaling laws 2. Microfluidic Device Manufacture Conventional lithographic processing of rigid materials Soft lithographic processing of plastics and polymers Mass fabrication of polymeric devices 3. Unit operations and functional components Analytical separations (electrophoresis and chromatography) Chemical and biological synthesis Sample pre-treatment (filtration, SPE, pre-concentration) Molecular detection 4. Design Workshop Design of microfluidic architectures for PCR, distillation & mixing 5. Contemporary Applications in Biological Analysis Microarrays Cellular analyses (single cells, enzymatic assays, cell sorting) Proteomics 6. System integration Applications in radiochemistry, diagnostics and high-throughput experimentation | |||||
Skript | Lecture handouts, background literature, problem sheets and notes will be provided electronically. | |||||
636-0003-00L | Biological Engineering and Biotechnology | W | 6 KP | 3V | M. Fussenegger | |
Kurzbeschreibung | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||
Lernziel | 1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development. | |||||
Skript | Handsout during the course. | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0399-10L | Physiology and Anatomy for Biomedical Engineers I ![]() | W | 3 KP | 2G | H. Niemann | |
Kurzbeschreibung | This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging. | |||||
Lernziel | To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research. | |||||
Inhalt | - The Human Body: nomenclature, orientations, tissues - Musculoskeletal system, Muscle contraction - Blood vessels, Heart, Circulation - Blood, Immune system - Respiratory system - Acid-Base-Homeostasis | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008 Faller A., Schuenke M. The Human Body; Thieme 2004 Netter F. Atlas of human anatomy; Elsevier 2014 | |||||
227-0945-00L | Cell and Molecular Biology for Engineers I This course is part I of a two-semester course. | W | 3 KP | 3G | C. Frei | |
Kurzbeschreibung | The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology. | |||||
Lernziel | After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested. | |||||
Inhalt | Lectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells. In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade. | |||||
Skript | Scripts of all lectures will be available. | |||||
Literatur | "Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter. | |||||
227-0949-00L | Biological Methods for Engineers (Basic Lab) ![]() ![]() Limited number of participants. | W | 2 KP | 4P | C. Frei | |
Kurzbeschreibung | The course during 4 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory. | |||||
Lernziel | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Inhalt | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Voraussetzungen / Besonderes | Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann, M. Rudin | |
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||
227-0386-00L | Biomedical Engineering ![]() | W | 4 KP | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||
Lernziel | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | |||||
Inhalt | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | |||||
Skript | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://www1.ethz.ch/lbb/Education/BME | |||||
227-0447-00L | Image Analysis and Computer Vision ![]() | W | 6 KP | 3V + 1U | L. Van Gool, O. Göksel, E. Konukoglu | |
Kurzbeschreibung | Light and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. | |||||
Lernziel | Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises. | |||||
Inhalt | The first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. | |||||
Skript | Course material Script, computer demonstrations, exercises and problem solutions | |||||
Voraussetzungen / Besonderes | Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C. The course language is English. | |||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 KP | 3G | M. Stampanoni, P. A. Kaestner | |
Kurzbeschreibung | Einführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht. | |||||
Lernziel | Einführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen. | |||||
Inhalt | Synchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind. Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen. Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen. | |||||
Skript | Online verfügbar | |||||
Literatur | Wird in der Vorlesung angegeben. | |||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Bioimaging besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0389-00L | Advanced Topics in Magnetic Resonance Imaging | Z | 0 KP | 1V | K. P. Prüssmann | |
Kurzbeschreibung | Diese Vorlesung richtet sich an Masterstudierende und Doktorierende mit vertieftem Interesse an biomedizinischer Bildgebung. Sie behandelt fortgeschrittene Aspekte der Magnetresonanzbildgebung in zweijährigem Turnus, darunter die Elektrodynamik der Signaldetektion und des Signalrauschens, Bildrekonsntruktion, Radiofrequenzpulse, Pulsschemata, sowie fortgeschrittene Kontrastmechanismen. | |||||
Lernziel | siehe oben | |||||
227-0391-00L | Medical Image Analysis | W | 3 KP | 2G | P. C. Cattin, M. A. Reyes Aguirre | |
Kurzbeschreibung | It is the objective of this lecture to introduce the basic concepts used in Medical Image Analysis. In particular the lecture focuses on shape representation schemes, segmentation techniques, and the various image registration methods commonly used in Medical Image Analysis applications. | |||||
Lernziel | This lecture aims to give an overview of the basic concepts of Medical Image Analysis and its application areas. | |||||
Voraussetzungen / Besonderes | Basic knowledge of computer vision would be helpful. | |||||
227-0455-00L | Terahertz: Technology & Applications | W | 3 KP | 2V | K. Sankaran | |
Kurzbeschreibung | This course will provide a solid foundation for understanding physical principles of THz applications. We will discuss various building blocks of THz technology - components dealing with generation, manipulation, and detection of THz electromagnetic radiation. We will introduce THz applications in the domain of imaging, communications, and energy harvesting. | |||||
Lernziel | This is an introductory course on Terahertz (THz) technology and applications. Devices operating in THz frequency range (0.1 to 10 THz) have been increasingly studied in the recent years. Progress in nonlinear optical materials, ultrafast optical and electronic techniques has strengthened research in THz application developments. Due to unique interaction of THz waves with materials, applications with new capabilities can be developed. In theory, they can penetrate somewhat like X-rays, but are not considered harmful radiation, because THz energy level is low. They should be able to provide resolution as good or better than magnetic resonance imaging (MRI), possibly with simpler equipment. Imaging, very-high bandwidth communication, and energy harvesting are the most widely explored THz application areas. We will study the basics of THz generation, manipulation, and detection. Our emphasis will be on the physical principles and applications of THz in the domain of imaging, communication and energy harvesting. | |||||
Inhalt | INTRODUCTION Chapter 1: Introduction to THz Physics Chapter 2: Components of THz Technology THz TECHNOLOGY MODULES Chapter 3: THz Generation Chapter 4: THz Detection Chapter 5: THz Manipulation APPLICATIONS Chapter 6: THz Imaging Chapter 7: THz Communication Chapter 8: THz Energy Harvesting | |||||
Literatur | - Yun-Shik Lee, Principles of Terahertz Science and Technology, Springer 2009 - Ali Rostami, Hassan Rasooli, and Hamed Baghban, Terahertz Technology: Fundamentals and Applications, Springer 2010 Whenever we deviate from the main material discussed in these books, softcopy of lectures notes will be provided. | |||||
Voraussetzungen / Besonderes | Good foundation in electromagnetics & knowledge of microwave or optical communication is helpful. | |||||
227-0967-00L | Computational Neuroimaging Clinic ![]() Voraussetzung: Erfolgreiche Abschluss der Lehrveranstaltung "Methods & Models for fMRI Data Analysis" (227-0969-00L). | W | 3 KP | 2V | K. Stephan | |
Kurzbeschreibung | This seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data. | |||||
Lernziel | 1. Consolidation of theoretical knowledge (obtained in the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry') in a practical setting. 2. Acquisition of practical problem solving strategies for computational modeling of neuroimaging data. | |||||
Inhalt | This seminar teaches problem solving skills for computational neuroimaging, based on joint analyses of neuroimaging and behavioural data. It deals with a wide variety of real-life problems that are brought to this meeting from the neuroimaging community at Zurich, e.g. mass-univariate and multivariate analyses of fMRI/EEG data, or generative models of fMRI, EEG, or behavioural data. | |||||
Voraussetzungen / Besonderes | The participants are expected to have successfully completed at least one of the following courses: 'Methods & models for fMRI data analysis', 'Translational Neuromodeling', 'Computational Psychiatry' | |||||
227-0969-00L | Methods & Models for fMRI Data Analysis ![]() | W | 6 KP | 4V | K. Stephan | |
Kurzbeschreibung | This course teaches methods and models for fMRI data analysis, covering all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, statistical inference, multiple comparison corrections, event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. | |||||
Lernziel | To obtain in-depth knowledge of the theoretical foundations of SPM and DCM and of their application to empirical fMRI data. | |||||
Inhalt | This course teaches state-of-the-art methods and models for fMRI data analysis. It covers all aspects of statistical parametric mapping (SPM), incl. preprocessing, the general linear model, frequentist and Bayesian inference, multiple comparison corrections, and event-related designs, and Dynamic Causal Modelling (DCM), a Bayesian framework for identification of nonlinear neuronal systems from neurophysiological data. A particular emphasis of the course will be on methodological questions arising in the context of studies in psychiatry, neurology and neuroeconomics. | |||||
227-0971-00L | Computational Psychiatry ![]() | W | 3 KP | 4S | K. Stephan | |
Kurzbeschreibung | This five-day course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) of relevance for psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples. | |||||
Lernziel | This course aims at bridging the gap between mathematical modelers and clinical neuroscientists by teaching computational techniques in the context of clinical applications. The hope is that the acquisition of a joint language and tool-kit will enable more effective communication and joint translational research between fields that are usually worlds apart. | |||||
Inhalt | This five-day course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) of relevance for psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples. | |||||
227-2037-00L | Physical Modelling and Simulation ![]() | W | 5 KP | 4G | C. Hafner, J. Leuthold, J. Smajic | |
Kurzbeschreibung | This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects. | |||||
Lernziel | Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained. | |||||
Inhalt | The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS. In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers. | |||||
151-0105-00L | Quantitative Flow Visualization | W | 4 KP | 2V + 1U | T. Rösgen | |
Kurzbeschreibung | The course provides an introduction to digital image analysis in modern flow diagnostics. Different techniques which are discussed include image velocimetry, laser induced fluorescence, liquid crystal thermography and interferometry. The physical foundations and measurement configurations are explained. Image analysis algorithms are presented in detail and programmed during the exercises. | |||||
Lernziel | Introduction to modern imaging techniques and post processing algorithms with special emphasis on flow analysis and visualization. Understanding of hardware and software requirements and solutions. Development of basic programming skills for (generic) imaging applications. | |||||
Inhalt | Fundamentals of optics, flow visualization and electronic image acquisition. Frequently used mage processing techniques (filtering, correlation processing, FFTs, color space transforms). Image Velocimetry (tracking, pattern matching, Doppler imaging). Surface pressure and temperature measurements (fluorescent paints, liquid crystal imaging, infrared thermography). Laser induced fluorescence. (Digital) Schlieren techniques, phase contrast imaging, interferometry, phase unwrapping. Wall shear and heat transfer measurements. Pattern recognition and feature extraction, proper orthogonal decomposition. | |||||
Skript | available | |||||
Voraussetzungen / Besonderes | Prerequisites: Fluiddynamics I, Numerical Mathematics, programming skills. Language: German on request. | |||||
376-1279-00L | Virtual Reality in Medicine ![]() Findet dieses Semester nicht statt. | W | 3 KP | 2V | R. Riener | |
Kurzbeschreibung | Virtual Reality has the potential to support medical training and therapy. This lecture will derive the technical principles of multi-modal (audiovisual, haptic, tactile etc.) input devices, displays and rendering techniques. Examples are presented in the fields of surgical training, intra-operative augmentation, and rehabilitation. The lecture is accompanied by practical courses and excursions. | |||||
Lernziel | Provide theoretical and practical knowledge of new principles and applications of multi-modal simulation and interface technologies in medical education, therapy, and rehabilitation. | |||||
Inhalt | Virtual Reality has the potential to provide descriptive and practical information for medical training and therapy while relieving the patient and/or the physician. Multi-modal interactions between the user and the virtual environment facilitate the generation of high-fidelity sensory impressions, by using not only visual and auditory modalities, but also kinesthetic, tactile, and even olfactory feedback. On the basis of the existing physiological constraints, this lecture will derive the technical requirements and principles of multi-modal input devices, displays, and rendering techniques. Several examples are presented that are currently being developed or already applied for surgical training, intra-operative augmentation, and rehabilitation. The lecture will be accompanied by several practical courses on graphical and haptic display devices as well as excursions to facilities equipped with large-scale VR equipment. Target Group: Students of higher semesters and PhD students of - D-HEST, D-MAVT, D-ITET, D-INFK, D-PHYS - Robotics, Systems and Control Master - Biomedical Engineering/Movement Science and Sport - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome! | |||||
Literatur | Book: Virtual Reality in Medicine. Riener, Robert; Harders, Matthias; 2012 Springer. | |||||
Voraussetzungen / Besonderes | The course language is English. Basic experience in Information Technology and Computer Science will be of advantage More details will be announced in the lecture. | |||||
151-0605-00L | Nanosystems | W | 4 KP | 4G | A. Stemmer, J.‑N. Tisserant | |
Kurzbeschreibung | From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. Special emphasis on the emerging field of molecular electronic devices. | |||||
Lernziel | Familiarize students with basic science and engineering principles governing the nano domain. | |||||
Inhalt | The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled. Topics are treated in 2 blocks: (I) From Quantum to Continuum From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. (II) Interaction Forces on the Micro and Nano Scale Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. | |||||
Literatur | - Kuhn, Hans; Försterling, H.D.: Principles of Physical Chemistry. Understanding Molecules, Molecular Assemblies, Supramolecular Machines. 1999, Wiley, ISBN: 0-471-95902-2 - Chen, Gang: Nanoscale Energy Transport and Conversion. 2005, Oxford University Press, ISBN: 978-0-19-515942-4 - Ouisse, Thierry: Electron Transport in Nanostructures and Mesoscopic Devices. 2008, Wiley, ISBN: 978-1-84821-050-9 - Wolf, Edward L.: Nanophysics and Nanotechnology. 2004, Wiley-VCH, ISBN: 3-527-40407-4 - Israelachvili, Jacob N.: Intermolecular and Surface Forces. 2nd ed., 1992, Academic Press,ISBN: 0-12-375181-0 - Evans, D.F.; Wennerstrom, H.: The Colloidal Domain. Where Physics, Chemistry, Biology, and Technology Meet. Advances in Interfacial Engineering Series. 2nd ed., 1999, Wiley, ISBN: 0-471-24247-0 - Hunter, Robert J.: Foundations of Colloid Science. 2nd ed., 2001, Oxford, ISBN: 0-19-850502-7 | |||||
Voraussetzungen / Besonderes | Course format: Lectures and Mini-Review presentations: Thursday 10-13, ML F 36 Homework: Mini-Reviews Students select a paper (list distributed in class) and expand the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. | |||||
252-0543-01L | Computer Graphics ![]() | W | 6 KP | 3V + 2U | M. Gross, J. Novak | |
Kurzbeschreibung | This course covers some of the fundamental concepts of computer graphics, namely 3D object representations and generation of photorealistic images from digital representations of 3D scenes. | |||||
Lernziel | At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own. | |||||
Inhalt | This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling and representation, texture mapping and ray-tracing, we will move on to acceleration structures, the physics of light transport, appearance modeling and global illumination principles and algorithms. We will end with an overview of modern image-based image synthesis techniques, covering topics such as lightfields and depth-image based rendering. | |||||
Skript | no | |||||
Voraussetzungen / Besonderes | Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended. The programming assignments will be in C++. This will not be taught in the class. | |||||
402-0674-00L | Physics in Medical Research: From Atoms to Cells ![]() | W | 6 KP | 2V + 1U | B. K. R. Müller | |
Kurzbeschreibung | Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells. | |||||
Lernziel | The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour. As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced. The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes. High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering. Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. 3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented. Visiting clinical research in a leading university hospital will show the usefulness of the lecture series. | |||||
227-1033-00L | Neuromorphic Engineering I ![]() ![]() Registration in this class requires the permission of the instructors. Class size will be limited to available lab spots. Preference is given to students that require this class as part of their major. | W | 6 KP | 2V + 3U | T. Delbrück, G. Indiveri, S.‑C. Liu | |
Kurzbeschreibung | This course covers analog circuits with emphasis on neuromorphic engineering: MOS transistors in CMOS technology, static circuits, dynamic circuits, systems (silicon neuron, silicon retina, silicon cochlea) with an introduction to multi-chip systems. The lectures are accompanied by weekly laboratory sessions. | |||||
Lernziel | Understanding of the characteristics of neuromorphic circuit elements. | |||||
Inhalt | Neuromorphic circuits are inspired by the organizing principles of biological neural circuits. Their computational primitives are based on physics of semiconductor devices. Neuromorphic architectures often rely on collective computation in parallel networks. Adaptation, learning and memory are implemented locally within the individual computational elements. Transistors are often operated in weak inversion (below threshold), where they exhibit exponential I-V characteristics and low currents. These properties lead to the feasibility of high-density, low-power implementations of functions that are computationally intensive in other paradigms. Application domains of neuromorphic circuits include silicon retinas and cochleas for machine vision and audition, real-time emulations of networks of biological neurons, and the development of autonomous robotic systems. This course covers devices in CMOS technology (MOS transistor below and above threshold, floating-gate MOS transistor, phototransducers), static circuits (differential pair, current mirror, transconductance amplifiers, etc.), dynamic circuits (linear and nonlinear filters, adaptive circuits), systems (silicon neuron, silicon retina and cochlea) and an introduction to multi-chip systems that communicate events analogous to spikes. The lectures are accompanied by weekly laboratory sessions on the characterization of neuromorphic circuits, from elementary devices to systems. | |||||
Literatur | S.-C. Liu et al.: Analog VLSI Circuits and Principles; various publications. | |||||
Voraussetzungen / Besonderes | Particular: The course is highly recommended for those who intend to take the spring semester course 'Neuromorphic Engineering II', that teaches the conception, simulation, and physical layout of such circuits with chip design tools. Prerequisites: Background in basics of semiconductor physics helpful, but not required. | |||||
227-1037-00L | Introduction to Neuroinformatics ![]() | W | 6 KP | 2V + 1U | K. A. Martin, M. Cook, V. Mante, M. Pfeiffer | |
Kurzbeschreibung | The course provides an introduction to the functional properties of neurons. Particularly the description of membrane electrical properties (action potentials, channels), neuronal anatomy, synaptic structures, and neuronal networks. Simple models of computation, learning, and behavior will be explained. Some artificial systems (robot, chip) are presented. | |||||
Lernziel | Understanding computation by neurons and neuronal circuits is one of the great challenges of science. Many different disciplines can contribute their tools and concepts to solving mysteries of neural computation. The goal of this introductory course is to introduce the monocultures of physics, maths, computer science, engineering, biology, psychology, and even philosophy and history, to discover the enchantments and challenges that we all face in taking on this major 21st century problem and how each discipline can contribute to discovering solutions. | |||||
Inhalt | This course considers the structure and function of biological neural networks at different levels. The function of neural networks lies fundamentally in their wiring and in the electro-chemical properties of nerve cell membranes. Thus, the biological structure of the nerve cell needs to be understood if biologically-realistic models are to be constructed. These simpler models are used to estimate the electrical current flow through dendritic cables and explore how a more complex geometry of neurons influences this current flow. The active properties of nerves are studied to understand both sensory transduction and the generation and transmission of nerve impulses along axons. The concept of local neuronal circuits arises in the context of the rules governing the formation of nerve connections and topographic projections within the nervous system. Communication between neurons in the network can be thought of as information flow across synapses, which can be modified by experience. We need an understanding of the action of inhibitory and excitatory neurotransmitters and neuromodulators, so that the dynamics and logic of synapses can be interpreted. Finally, the neural architectures of feedforward and recurrent networks will be discussed in the context of co-ordination, control, and integration of sensory and motor information in neural networks. | |||||
465-0953-00L | Biostatistics | W | 4 KP | 2V + 1U | B. Sick | |
Kurzbeschreibung | Der Kurs behandelt einfache quantitative und graphische als auch komplexere Methoden der Biostatistik. Inhalt: Deskriptive Statistik, Wahrscheinlichkeitsrechnung und Versuchsplanung, Prüfung von Hypothesen, Konfidenzintervalle, Korrelation, einfache und multiple lineare Regression, Klassifikation und Prognose, Diagnostische Tests, Bestimmung der Zuverlässigkeit von Messungen | |||||
Lernziel | ||||||
551-1295-00L | Introduction to Bioinformatics: Concepts and Applications ![]() | W | 6 KP | 4G | W. Gruissem, K. Bärenfaller, A. Caflisch, G. Capitani, J. Fütterer, M. Robinson, A. Wagner | |
Kurzbeschreibung | Storage, handling and analysis of large datasets have become essential in biological research. The course will introduce students to a number of applications of bioinformatics in biology. Freely accessible software tools and databases will be explained and explored in theory and praxis. | |||||
Lernziel | Introduction to Bioinformatics I: Concepts and Applications (formerly Bioinformatics I) will provide students with the theoretical background of approaches to store and retrieve information from large databases. Concepts will be developed how DNA sequence information can be used to understand phylogentic relationships, how RNA sequence relates to structure, and how protein sequence information can be used for genome annotation and to predict protein folding and structure. Students will be introduced to quantitative methods for measuring gene expression and how this information can be used to model gene networks. Methods will be discussed to construct protein interaction maps and how this information can be used to simulate dynamic molecular networks. In addition to the theoretical background, the students will develop hands-on experiences with the bioinformatics methods through guided exercises. The course provides students from different backgrounds with basic training in bioinformatics approaches that have impact on biological, chemical and physics experimentation. Bioinformatics approaches draw significant expertise from mathematics, statistics and computational science. Although "Intoduction to Bioinformatics I" will focus on theory and praxis of bioinformatics approaches, the course provides an important foundation for the course "Introduction to Bioinformatics II: Fundamentals of computer science, modeling and algorithms" that will be offered in the following semester. | |||||
Inhalt | Bioinformatics I will cover the following topics: From genes to databases and information BLAST searches Prediction of gene function and regulation RNA structure prediction Gene expression analysis using microarrays Protein sequence and structure databases WWW for bioinformatics Protein sequence comparisons Proteomics and de novo protein sequencing Protein structure prediction Cellular and protein interaction networks Molecular dynamics simulation | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0399-10L | Physiology and Anatomy for Biomedical Engineers I ![]() | W | 3 KP | 2G | H. Niemann | |
Kurzbeschreibung | This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging. | |||||
Lernziel | To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research. | |||||
Inhalt | - The Human Body: nomenclature, orientations, tissues - Musculoskeletal system, Muscle contraction - Blood vessels, Heart, Circulation - Blood, Immune system - Respiratory system - Acid-Base-Homeostasis | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008 Faller A., Schuenke M. The Human Body; Thieme 2004 Netter F. Atlas of human anatomy; Elsevier 2014 | |||||
227-0945-00L | Cell and Molecular Biology for Engineers I This course is part I of a two-semester course. | W | 3 KP | 3G | C. Frei | |
Kurzbeschreibung | The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology. | |||||
Lernziel | After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested. | |||||
Inhalt | Lectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells. In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade. | |||||
Skript | Scripts of all lectures will be available. | |||||
Literatur | "Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter. | |||||
227-0949-00L | Biological Methods for Engineers (Basic Lab) ![]() ![]() Limited number of participants. | W | 2 KP | 4P | C. Frei | |
Kurzbeschreibung | The course during 4 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory. | |||||
Lernziel | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Inhalt | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Voraussetzungen / Besonderes | Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann, M. Rudin | |
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||
227-0386-00L | Biomedical Engineering ![]() | W | 4 KP | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||
Lernziel | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | |||||
Inhalt | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | |||||
Skript | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://www1.ethz.ch/lbb/Education/BME | |||||
227-0447-00L | Image Analysis and Computer Vision ![]() | W | 6 KP | 3V + 1U | L. Van Gool, O. Göksel, E. Konukoglu | |
Kurzbeschreibung | Light and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. | |||||
Lernziel | Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises. | |||||
Inhalt | The first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. | |||||
Skript | Course material Script, computer demonstrations, exercises and problem solutions | |||||
Voraussetzungen / Besonderes | Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C. The course language is English. | |||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 KP | 3G | M. Stampanoni, P. A. Kaestner | |
Kurzbeschreibung | Einführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht. | |||||
Lernziel | Einführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen. | |||||
Inhalt | Synchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind. Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen. Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen. | |||||
Skript | Online verfügbar | |||||
Literatur | Wird in der Vorlesung angegeben. | |||||
376-1651-00L | Clinical and Movement Biomechanics | W | 4 KP | 3G | S. Lorenzetti, R. List, N. Singh | |
Kurzbeschreibung | Measurement and modeling of the human movement during daily activities and in a clinical environment. | |||||
Lernziel | The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application. | |||||
Inhalt | This course includes study design, measurement techniques, clinical testing, accessing movement data and anysis as well as modeling with regards to human movement. | |||||
376-1985-00L | Trauma Biomechanics | W | 4 KP | 2V + 1U | K.‑U. Schmitt, M. H. Muser | |
Kurzbeschreibung | Trauma-Biomechanik ist ein interdiszipliäres Fach, das sich mit der Biomechanik von Verletzungen sowie Möglichkeiten zur Prävention von Verletzungen beschäftigt. Die Vorlesung stellt die Grundlagen der Trauma-Biomechanik dar. | |||||
Lernziel | Vermittlung von Grundlagen der Trauma-Biomechanik. | |||||
Inhalt | Die Vorlesung beschäftigt sich mit Verletzungen des menschlichen Körpers und den zugrunde liegenden Verletzungsmechanismen. Hierbei bilden Verletzungen, die im Strassenverkehr erlitten werden, den Schwerpunkt. Weitere Vorlesungsthemen sind: Crash-Tests und die dazugehörige Messtechnik (z. B. Dummys), sowie aktuelle Themen der Trauma-Biomechanik wie z.B. Fussgänger-Kollisionen, Kinderrückhaltesysteme und Fahrzeugsitze. | |||||
Skript | Unterlagen werden zur Verfügung gestellt. | |||||
Literatur | Schmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics" bzw. "Trauma-Biomechanik - Einführung in die Biomechanik von Verletzungen", beide Springer Verlag. | |||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Biomechanics besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
151-0255-00L | Energy Conversion and Transport in Biosystems | W | 4 KP | 2V + 1U | D. Poulikakos, A. Ferrari | |
Kurzbeschreibung | Theorie und Anwendung von Thermodynamik und Energieerhaltung in biologischen Systemen mit Schwerpunkt auf Zellebene. | |||||
Lernziel | Theorie und Anwendung von Energieerhaltung auf Zellebene. Verständnis für die grundlegenden Stofftransport-Kreisläufe in menschlichen Zellen und die Mechanismen, welche diese Kreisläufe beeinflussen. Parallelen zu anderen Gebieten im Ingenieurswesen erkennen. Wärme- und Massentransport Prozesse in der Zelle, Kraft Entwicklung der Zelle, und die Verbindung zu modernen biomedizinischen Technologien. | |||||
Inhalt | Massentransportmodelle für den Transport von chemischen Spezies in der menschlichen Zelle. Organisation und Funktion der Zellmembran und des Zytoskeletts. Die Rolle molekularer Motoren in der Kraftentwicklung der Zelle und deren Funktion in der Fortbewegung der Zelle. Beschreibung der Funktionsweise dieser Systeme sowie der experimentellen Analyse und Simulationen um sie besser zu verstehen. Einführung in den Zell-Metabolismus, Zell-Energietransport und die Zelluläre Thermodynamik. | |||||
Skript | Kursmaterial wird in Form von Hand-outs verteilt. | |||||
Literatur | Notizen sowie Referenzen aus der Vorlesung. | |||||
151-0524-00L | Continuum Mechanics I | W | 4 KP | 2V + 1U | E. Mazza | |
Kurzbeschreibung | Konstitutive Gleichungen für strukturmechanische Berechnungen werden behandelt. Dies beinhaltet anisotrope lineare Elastizität, lineare Viskoelastizität, Plastizität und Viscoplastizität. Es werden die Grundlagen der Mikro-Makro Modellierung und der Laminattheorie eingeführt. Die theoretischen Ausführungen werden durch Beispiele aus Ingenieuranwendungen und Experimente ergänzt. | |||||
Lernziel | Behandlung von Grundlagen zur Lösung kontinuumsmechanischer Probleme der Anwendung, mit besonderem Fokus auf konstitutive Gesetze. | |||||
Inhalt | Anisotrope Elastizität, Linearelastisches und linearviskoses Stoffverhalten, Viskoelastizität, mikro-makro Modellierung, Laminattheorie, Plastizität, Viscoplastizität, Beispiele aus der Ingenieuranwendung, Vergleich mit Experimenten. | |||||
Skript | ja | |||||
151-0604-00L | Microrobotics ![]() Findet dieses Semester nicht statt. | W | 4 KP | 3G | B. Nelson | |
Kurzbeschreibung | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination. | |||||
Lernziel | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||
Inhalt | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||
Skript | The powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically. | |||||
Voraussetzungen / Besonderes | The lecture will be taught in English. | |||||
151-0605-00L | Nanosystems | W | 4 KP | 4G | A. Stemmer, J.‑N. Tisserant | |
Kurzbeschreibung | From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. Special emphasis on the emerging field of molecular electronic devices. | |||||
Lernziel | Familiarize students with basic science and engineering principles governing the nano domain. | |||||
Inhalt | The course addresses basic science and engineering principles ruling the nano domain. We particularly work out the links between topics that are traditionally taught separately. Special emphasis is placed on the emerging field of molecular electronic devices, their working principles, applications, and how they may be assembled. Topics are treated in 2 blocks: (I) From Quantum to Continuum From atoms to molecules to condensed matter: characteristic properties of simple nanosystems and how they evolve when moving towards complex ensembles. (II) Interaction Forces on the Micro and Nano Scale Intermolecular forces, their macroscopic manifestations, and ways to control such interactions. Self-assembly and directed assembly of 2D and 3D structures. | |||||
Literatur | - Kuhn, Hans; Försterling, H.D.: Principles of Physical Chemistry. Understanding Molecules, Molecular Assemblies, Supramolecular Machines. 1999, Wiley, ISBN: 0-471-95902-2 - Chen, Gang: Nanoscale Energy Transport and Conversion. 2005, Oxford University Press, ISBN: 978-0-19-515942-4 - Ouisse, Thierry: Electron Transport in Nanostructures and Mesoscopic Devices. 2008, Wiley, ISBN: 978-1-84821-050-9 - Wolf, Edward L.: Nanophysics and Nanotechnology. 2004, Wiley-VCH, ISBN: 3-527-40407-4 - Israelachvili, Jacob N.: Intermolecular and Surface Forces. 2nd ed., 1992, Academic Press,ISBN: 0-12-375181-0 - Evans, D.F.; Wennerstrom, H.: The Colloidal Domain. Where Physics, Chemistry, Biology, and Technology Meet. Advances in Interfacial Engineering Series. 2nd ed., 1999, Wiley, ISBN: 0-471-24247-0 - Hunter, Robert J.: Foundations of Colloid Science. 2nd ed., 2001, Oxford, ISBN: 0-19-850502-7 | |||||
Voraussetzungen / Besonderes | Course format: Lectures and Mini-Review presentations: Thursday 10-13, ML F 36 Homework: Mini-Reviews Students select a paper (list distributed in class) and expand the topic into a Mini-Review that illuminates the particular field beyond the immediate results reported in the paper. | |||||
227-2037-00L | Physical Modelling and Simulation ![]() | W | 5 KP | 4G | C. Hafner, J. Leuthold, J. Smajic | |
Kurzbeschreibung | This module consists of (a) an introduction to fundamental equations of electromagnetics, mechanics and heat transfer, (b) a detailed overview of numerical methods for field simulations, and (c) practical examples solved in form of small projects. | |||||
Lernziel | Basic knowledge of the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. Knowledge of the main concepts of numerical methods for physical modelling and simulation. Ability (a) to develop own simple field simulation programs, (b) to select an appropriate field solver for a given problem, (c) to perform field simulations, (d) to evaluate the obtained results, and (e) to interactively improve the models until sufficiently accurate results are obtained. | |||||
Inhalt | The module begins with an introduction to the fundamental equations and effects of electromagnetics, mechanics, and heat transfer. After the introduction follows a detailed overview of the available numerical methods for solving electromagnetic, thermal and mechanical boundary value problems. This part of the course contains a general introduction into numerical methods, differential and integral forms, linear equation systems, Finite Difference Method (FDM), Boundary Element Method (BEM), Method of Moments (MoM), Multiple Multipole Program (MMP) and Finite Element Method (FEM). The theoretical part of the course finishes with a presentation of multiphysics simulations through several practical examples of HF-engineering such as coupled electromagnetic-mechanical and electromagnetic-thermal analysis of MEMS. In the second part of the course the students will work in small groups on practical simulation problems. For solving practical problems the students can develop and use own simulation programs or chose an appropriate commercial field solver for their specific problem. This practical simulation work of the students is supervised by the lecturers. | |||||
263-5001-00L | Introduction to Finite Elements and Sparse Linear System Solving ![]() | W | 4 KP | 2V + 1U | P. Arbenz | |
Kurzbeschreibung | The finite element (FE) method is the method of choice for (approximately) solving partial differential equations on complicated domains. In the first third of the lecture, we give an introduction to the method. The rest of the lecture will be devoted to methods for solving the large sparse linear systems of equation that a typical for the FE method. We will consider direct and iterative methods. | |||||
Lernziel | Students will know the most important direct and iterative solvers for sparse linear systems. They will be able to determine which solver to choose in particular situations. | |||||
Inhalt | I. THE FINITE ELEMENT METHOD (1) Introduction, model problems. (2) 1D problems. Piecewise polynomials in 1D. (3) 2D problems. Triangulations. Piecewise polynomials in 2D. (4) Variational formulations. Galerkin finite element method. (5) Implementation aspects. II. DIRECT SOLUTION METHODS (6) LU and Cholesky decomposition. (7) Sparse matrices. (8) Fill-reducing orderings. III. ITERATIVE SOLUTION METHODS (9) Stationary iterative methods, preconditioning. (10) Preconditioned conjugate gradient method (PCG). (11) Incomplete factorization preconditioning. (12) Multigrid preconditioning. (13) Nonsymmetric problems (GMRES, BiCGstab). (14) Indefinite problems (SYMMLQ, MINRES). | |||||
Literatur | [1] M. G. Larson, F. Bengzon: The Finite Element Method: Theory, Implementation, and Applications. Springer, Heidelberg, 2013. [2] H. Elman, D. Sylvester, A. Wathen: Finite elements and fast iterative solvers. OUP, Oxford, 2005. [3] Y. Saad: Iterative methods for sparse linear systems (2nd ed.). SIAM, Philadelphia, 2003. [4] T. Davis: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006. [5] H.R. Schwarz: Die Methode der finiten Elemente (3rd ed.). Teubner, Stuttgart, 1991. | |||||
Voraussetzungen / Besonderes | Prerequisites: Linear Algebra, Analysis, Computational Science. The exercises are made with Matlab. | |||||
376-1103-00L | Frontiers in Nanotechnology | W | 4 KP | 4V | V. Vogel, weitere Dozierende | |
Kurzbeschreibung | Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers. | |||||
Lernziel | Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies. The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries. Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations. | |||||
Inhalt | Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges. | |||||
Skript | All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics. | |||||
376-1219-00L | Rehabilitation Engineering II: Rehabilitation of Sensory and Vegetative Functions | W | 3 KP | 2V | R. Riener, R. Gassert, L. Marchal Crespo | |
Kurzbeschreibung | Rehabilitation Engng is the application of science and technology to ameliorate the handicaps of individuals with disabilities to reintegrate them into society.The goal is to present classical and new rehabilitation engineering principles applied to compensate or enhance motor, sensory, and cognitive deficits. Focus is on the restoration and treatment of the human sensory and vegetative system. | |||||
Lernziel | Provide knowledge on the anatomy and physiology of the human sensory system, related dysfunctions and pathologies, and how rehabilitation engineering can provide sensory restoration and substitution. This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order. | |||||
Inhalt | Introduction, problem definition, overview Rehabilitation of visual function - Anatomy and physiology of the visual sense - Technical aids (glasses, sensor substitution) - Retina and cortex implants Rehabilitation of hearing function - Anatomy and physiology of the auditory sense - Hearing aids - Cochlea Implants Rehabilitation and use of kinesthetic and tactile function - Anatomy and physiology of the kinesthetic and tactile sense - Tactile/haptic displays for motion therapy (incl. electrical stimulation) - Role of displays in motor learning Rehabilitation of vestibular function - Anatomy and physiology of the vestibular sense - Rehabilitation strategies and devices (e.g. BrainPort) Rehabilitation of vegetative Functions - Cardiac Pacemaker - Phrenic stimulation, artificial breathing aids - Bladder stimulation, artificial sphincter Brain stimulation and recording - Deep brain stimulation for patients with Parkinson, epilepsy, depression - Brain-Computer Interfaces | |||||
Literatur | Introductory Books: An Introduction to Rehabilitation Engineering. R. A. Cooper, H. Ohnabe, D. A. Hobson (Eds.). Taylor & Francis, 2007. Principles of Neural Science. E. R. Kandel, J. H. Schwartz, T. M Jessell (Eds.). Mc Graw Hill, New York, 2000. Force and Touch Feedback for Virtual Reality. G. C. Burdea (Ed.). Wiley, New York, 1996 (available on NEBIS). Human Haptic Perception, Basics and Applications. M. Grunwald (Ed.). Birkhäuser, Basel, 2008. The Sense of Touch and Its Rendering, Springer Tracts in Advanced Robotics 45, A. Bicchi et al.(Eds). Springer-Verlag Berlin, 2008. Interaktive und autonome Systeme der Medizintechnik - Funktionswiederherstellung und Organersatz. Herausgeber: J. Werner, Oldenbourg Wissenschaftsverlag 2005. Neural prostheses - replacing motor function after desease or disability. Eds.: R. Stein, H. Peckham, D. Popovic. New York and Oxford: Oxford University Press. Advances in Rehabilitation Robotics - Human-Friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Eds: Z.Z. Bien, D. Stefanov (Lecture Notes in Control and Information Science, No. 306). Springer Verlag Berlin 2004. Intelligent Systems and Technologies in Rehabilitation Engineering. Eds: H.N.L. Teodorescu, L.C. Jain (International Series on Computational Intelligence). CRC Press Boca Raton, 2001. Selected Journal Articles and Web Links: Abbas, J., Riener, R. (2001) Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function. Neuromodulation 4, pp. 187-195. Bach-y-Rita P., Tyler M., and Kaczmarek K (2003). Seeing with the brain. International journal of human-computer-interaction, 15(2):285-295. Burdea, G., Popescu, V., Hentz, V., and Colbert, K. (2000): Virtual reality-based orthopedic telerehabilitation, IEEE Trans. Rehab. Eng., 8, pp. 430-432 Colombo, G., Jörg, M., Schreier, R., Dietz, V. (2000) Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, vol. 37, pp. 693-700. Hayward, V. (2008): A Brief Taxonomy of Tactile Illusions and Demonstrations That Can Be Done In a Hardware Store. Brain Research Bulletin, Vol 75, No 6, pp 742-752 Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T. (1998): Robot-aided neurorehabilitation, IEEE Trans. Rehab. Eng., 6, pp. 75-87 Levesque. V. (2005). Blindness, technology and haptics. Technical report, McGill University. Available at: http://www.cim.mcgill.ca/~vleves/docs/VL-CIM-TR-05.08.pdf Quintern, J. (1998) Application of functional electrical stimulation in paraplegic patients. NeuroRehabilitation 10, pp. 205-250. Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10. Riener, R. (1999) Model-based development of neuroprostheses for paraplegic patients. Royal Philosophical Transactions: Biological Sciences 354, pp. 877-894. The vOICe. http://www.seeingwithsound.com. VideoTact, ForeThought Development, LLC. http://my.execpc.com/?dwysocki/videotac.html | |||||
Voraussetzungen / Besonderes | Target Group: Students of higher semesters and PhD students of - D-MAVT, D-ITET, D-INFK, D-HEST - Biomedical Engineering, Robotics, Systems and Control - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome This lecture is independent from Rehabilitation Engineering I. Thus, both lectures can be visited in arbitrary order. | |||||
376-1279-00L | Virtual Reality in Medicine ![]() Findet dieses Semester nicht statt. | W | 3 KP | 2V | R. Riener | |
Kurzbeschreibung | Virtual Reality has the potential to support medical training and therapy. This lecture will derive the technical principles of multi-modal (audiovisual, haptic, tactile etc.) input devices, displays and rendering techniques. Examples are presented in the fields of surgical training, intra-operative augmentation, and rehabilitation. The lecture is accompanied by practical courses and excursions. | |||||
Lernziel | Provide theoretical and practical knowledge of new principles and applications of multi-modal simulation and interface technologies in medical education, therapy, and rehabilitation. | |||||
Inhalt | Virtual Reality has the potential to provide descriptive and practical information for medical training and therapy while relieving the patient and/or the physician. Multi-modal interactions between the user and the virtual environment facilitate the generation of high-fidelity sensory impressions, by using not only visual and auditory modalities, but also kinesthetic, tactile, and even olfactory feedback. On the basis of the existing physiological constraints, this lecture will derive the technical requirements and principles of multi-modal input devices, displays, and rendering techniques. Several examples are presented that are currently being developed or already applied for surgical training, intra-operative augmentation, and rehabilitation. The lecture will be accompanied by several practical courses on graphical and haptic display devices as well as excursions to facilities equipped with large-scale VR equipment. Target Group: Students of higher semesters and PhD students of - D-HEST, D-MAVT, D-ITET, D-INFK, D-PHYS - Robotics, Systems and Control Master - Biomedical Engineering/Movement Science and Sport - Medical Faculty, University of Zurich Students of other departments, faculties, courses are also welcome! | |||||
Literatur | Book: Virtual Reality in Medicine. Riener, Robert; Harders, Matthias; 2012 Springer. | |||||
Voraussetzungen / Besonderes | The course language is English. Basic experience in Information Technology and Computer Science will be of advantage More details will be announced in the lecture. | |||||
376-1714-00L | Biocompatible Materials | W | 4 KP | 3G | K. Maniura, J. Möller, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||
Lernziel | The class consists of three parts: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. | |||||
Inhalt | Introduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers. | |||||
Skript | Handouts can be accessed online. | |||||
Literatur | Literatur Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts provided during the classes and references therin. | |||||
376-1351-00L | Micro/Nanotechnology and Microfluidics for Biomedical Applications | W | 2 KP | 2V | E. Delamarche | |
Kurzbeschreibung | This course is an introduction to techniques in micro/nanotechnology and to microfluidics. It reviews how many familiar devices are built and can be used for research and biomedical applications. Transistors for DNA sequencing, beamers for patterning proteins, hard-disk technology for biosensing and scanning microfluidics for analyzing tissue sections are just a few examples of the covered topics. | |||||
Lernziel | The main objective of the course is to introduce micro/nanotechnology and microfluidics to students having a background in the life sciences. The course should familiarize the students with the techniques used in micro/nanotechnology and show them how micro/nanotechnology pervades throughout life sciences. Microfluidics will be emphasized due to their increasing importance in research and medical applications. The second objective is to have life students less intimidated by micro/nanotechnology and make them able to link instruments and techniques to specific problems that they might have in their projects/studies. This will also help students getting access to the ETHZ/IBM Nanotech Center infrastructure if needed. | |||||
Inhalt | Mostly formal lectures (2 × 45 min), with a 2 hour visit and introduction to cleanroom and micro/nanotechnology instruments, last 3 sessions would be dedicated to the presentation and evaluation of projects by students (3 students per team). | |||||
Voraussetzungen / Besonderes | Nanotech center and lab visit at IBM would be mandatory, as well as attending the student project presentations. | |||||
376-1720-00L | Application of MATLAB in the Human Movement Sciences | W | 2 KP | 2G | R. van de Langenberg | |
Kurzbeschreibung | Basierend auf bewegungstypischen Messungen (Kinematik, Kinetik, Muskelaktivität, etc.) werden die Grundzüge der Datenverarbeitung und Datendarstellung mittels MATLAB vermittelt. | |||||
Lernziel | Selbstständiges Einlesen, Darstellen und Weiterverarbeiten von für die Bewegungs-wissenschaften typischen Messdaten in MATLAB. | |||||
Inhalt | Grenzen von Excel; Möglichkeiten von MATLAB; Einlesen diverses Datentypen, Darstellen eines und mehrerer Signale; Beseitigen eines Offsets und Filtern der Daten anhand von selbstgeschriebenen Funktionen; Normieren und Parametrisieren von Daten; Reliabilität; Interpolieren, Differenzieren und Integrieren in MATLAB. | |||||
Literatur | In der Vorlesung wird auf diverse elektronische Einführungen in MATLAB aufmerksam gemacht. Jede Vorlesung wird den Studenten in Skript-Form zur Verfügung gestellt. | |||||
Voraussetzungen / Besonderes | Laptop samt installiertem WLAN und MATLAB (Version 2009 oder höher) sind mitzubringen. Gegebenenfalls kann zu zweit an einem Laptop gearbeitet werden. Eine MATLAB-Studentenversion kann gratis über Stud-IDES bezogen werden. | |||||
376-1974-00L | Colloquium in Biomechanics ![]() | W | 2 KP | 2K | B. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, B. Taylor, K. Würtz-Kozak, M. Zenobi-Wong | |
Kurzbeschreibung | Current topics in biomechanics presented by speakers from academia and industry. | |||||
Lernziel | Getting insight into actual areas and problems of biomechanics. | |||||
376-2017-00L | Biomechanik von Sportverletzungen und Rehabilitation | W | 3 KP | 2V | K.‑U. Schmitt, J. Goldhahn | |
Kurzbeschreibung | Die Veranstaltung vermittelt die Grundlagen der Verletzungsbiomechanik. Sportverletzungen und deren Rehabilitation bilden dabei den Schwerpunkt der Vorlesung. | |||||
Lernziel | In dieser Veranstaltung sollen Sie Grundlagen der Traumabiomechanik erlernen. Anhand von Beispielen aus dem Sport lernen Sie verschiedene Mechanismen, die zu Verletzungen des menschlichen Körpers führen können, kennen. Sie sollen ein Verständnis für das Entstehen von Verletzungen entwickeln, das Sie in die Lage versetzt Verletzungspotentiale abzuschätzen und präventive Massnahmen zu entwickeln. | |||||
Inhalt | Die Veranstaltung beschäftigt sich mit den Grundlagen der Verletzungsmechanik und der Rehabilitation. Es wird untersucht, wie Verletzungen entstehen und wie sie verhindert werden können. Die Vorlesung konzentriert sich dabei auf Verletzungen, die im Sport erlitten werden. | |||||
Skript | Unterlagen werden zur Verfügung gestellt. | |||||
Literatur | Schmitt K-U, Niederer P, M. Muser, Walz F: "Trauma Biomechanics - An Introduction to Injury Biomechanics" bzw. "Trauma-Biomechanik - Einführung in die Biomechanik von Verletzungen", beide Springer Verlag | |||||
Voraussetzungen / Besonderes | Die Mitarbeit an einer Gruppenarbeit ist fester Bestandteil der Veranstaltung. Die Gruppenarbeit wird benotet und zählt somit zur Gesamtnote der Vorlesung hinzu. Nähere Informationen werden in der ersten Vorlesung gegeben. | |||||
402-0341-00L | Medical Physics I | W | 6 KP | 2V + 1U | P. Manser | |
Kurzbeschreibung | Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations. | |||||
Lernziel | Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society. | |||||
Inhalt | The lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications. | |||||
Skript | A script will be provided. | |||||
402-0674-00L | Physics in Medical Research: From Atoms to Cells ![]() | W | 6 KP | 2V + 1U | B. K. R. Müller | |
Kurzbeschreibung | Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells. | |||||
Lernziel | The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour. As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced. The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes. High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering. Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. 3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented. Visiting clinical research in a leading university hospital will show the usefulness of the lecture series. | |||||
465-0953-00L | Biostatistics | W | 4 KP | 2V + 1U | B. Sick | |
Kurzbeschreibung | Der Kurs behandelt einfache quantitative und graphische als auch komplexere Methoden der Biostatistik. Inhalt: Deskriptive Statistik, Wahrscheinlichkeitsrechnung und Versuchsplanung, Prüfung von Hypothesen, Konfidenzintervalle, Korrelation, einfache und multiple lineare Regression, Klassifikation und Prognose, Diagnostische Tests, Bestimmung der Zuverlässigkeit von Messungen | |||||
Lernziel | ||||||
551-1295-00L | Introduction to Bioinformatics: Concepts and Applications ![]() | W | 6 KP | 4G | W. Gruissem, K. Bärenfaller, A. Caflisch, G. Capitani, J. Fütterer, M. Robinson, A. Wagner | |
Kurzbeschreibung | Storage, handling and analysis of large datasets have become essential in biological research. The course will introduce students to a number of applications of bioinformatics in biology. Freely accessible software tools and databases will be explained and explored in theory and praxis. | |||||
Lernziel | Introduction to Bioinformatics I: Concepts and Applications (formerly Bioinformatics I) will provide students with the theoretical background of approaches to store and retrieve information from large databases. Concepts will be developed how DNA sequence information can be used to understand phylogentic relationships, how RNA sequence relates to structure, and how protein sequence information can be used for genome annotation and to predict protein folding and structure. Students will be introduced to quantitative methods for measuring gene expression and how this information can be used to model gene networks. Methods will be discussed to construct protein interaction maps and how this information can be used to simulate dynamic molecular networks. In addition to the theoretical background, the students will develop hands-on experiences with the bioinformatics methods through guided exercises. The course provides students from different backgrounds with basic training in bioinformatics approaches that have impact on biological, chemical and physics experimentation. Bioinformatics approaches draw significant expertise from mathematics, statistics and computational science. Although "Intoduction to Bioinformatics I" will focus on theory and praxis of bioinformatics approaches, the course provides an important foundation for the course "Introduction to Bioinformatics II: Fundamentals of computer science, modeling and algorithms" that will be offered in the following semester. | |||||
Inhalt | Bioinformatics I will cover the following topics: From genes to databases and information BLAST searches Prediction of gene function and regulation RNA structure prediction Gene expression analysis using microarrays Protein sequence and structure databases WWW for bioinformatics Protein sequence comparisons Proteomics and de novo protein sequencing Protein structure prediction Cellular and protein interaction networks Molecular dynamics simulation | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0399-10L | Physiology and Anatomy for Biomedical Engineers I ![]() | W | 3 KP | 2G | H. Niemann | |
Kurzbeschreibung | This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging. | |||||
Lernziel | To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research. | |||||
Inhalt | - The Human Body: nomenclature, orientations, tissues - Musculoskeletal system, Muscle contraction - Blood vessels, Heart, Circulation - Blood, Immune system - Respiratory system - Acid-Base-Homeostasis | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008 Faller A., Schuenke M. The Human Body; Thieme 2004 Netter F. Atlas of human anatomy; Elsevier 2014 | |||||
227-0945-00L | Cell and Molecular Biology for Engineers I This course is part I of a two-semester course. | W | 3 KP | 3G | C. Frei | |
Kurzbeschreibung | The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology. | |||||
Lernziel | After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested. | |||||
Inhalt | Lectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells. In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade. | |||||
Skript | Scripts of all lectures will be available. | |||||
Literatur | "Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter. | |||||
227-0949-00L | Biological Methods for Engineers (Basic Lab) ![]() ![]() Limited number of participants. | W | 2 KP | 4P | C. Frei | |
Kurzbeschreibung | The course during 4 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory. | |||||
Lernziel | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Inhalt | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Voraussetzungen / Besonderes | Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann, M. Rudin | |
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||
402-0341-00L | Medical Physics I | W | 6 KP | 2V + 1U | P. Manser | |
Kurzbeschreibung | Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations. | |||||
Lernziel | Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society. | |||||
Inhalt | The lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications. | |||||
Skript | A script will be provided. | |||||
402-0345-00L | Introduction to Medical Physics Findet dieses Semester nicht statt. | W | 4 KP | 2V | A. J. Lomax | |
Kurzbeschreibung | Medical physics is a fascinating and worthwhile scientific discipline, providing many professional opportunities to apply physics to the care of patients, either in the clinic or in industry. It is also an area allowing for exciting, interesting and fulfilling areas of research. | |||||
Lernziel | It is the aim of this course to give bachelor and master level students an insight into the wide spectrum of medical applications of physics, and to provide some insight into the work of the medical physicist in clinics, industry and research. | |||||
Inhalt | The lecture series will begin with a short historical overview of medical physics and an overview of the lecture series (lecture 1). This will be followed by two lectures on the physics of medical imaging. Medical imaging is one of the most important areas of preventative medicine and diagnostics, and in these two lectures, we will summarise the physics aspects of all the most important medical imaging modalities (X-ray, nuclear medicine, CT, MRI, Ultrasound imaging etc.). With lectures 4 and 5, we will move onto one of the other major areas of physics applied to medicine, radiotherapy. As the name implies, this is a physics 'heavy' discipline, being dependent as it is on both accelerator and particle physics. However, what is less well known is that this is also the second most successfu l treatment of cancer after surgery and a great success story for the application of physics to medicine. In lectures 6 and 7 will then move on to a very different area, that of bio-photonics and bio-physics. Here we will look into the applications of lasers in medicine, from therapy to their use in particle acceleration for medical applications, as well as a variety of optical techniques for studying biological tissues, cells and structures. In the second half of the lecture series (lectures 8-13) the style changes somewhat, and we will concentrate on professional aspects of medical physics and the role of the medical physicist in various professional scenarios. As such, lectures 8-11 will cover the role of the clinical medical physicist in diagnostic radiology, MRI, nuclear medicine and radiotherapy, whilst the last two lectures will concentrate on their role in industry and research. For many of this second set of lectures, external experts in the various areas will be invited in order to give the student the best possible insight into the life of a professional medical physicist. | |||||
227-0943-00L | Radiobiology | W | 2 KP | 2V | M. Pruschy | |
Kurzbeschreibung | The purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk. | |||||
Lernziel | By the end of this course the participants will be able to: a) interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer b) understand factors which underpin the differing radiosensitivities of different tumors c) follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents d) understand differences in the radiation response of normal tissue versus tumor tissue e) understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.). | |||||
Inhalt | Einführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenwirkung auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlenzytogenetik: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenrisiko: Strahlensyndrome, Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung. | |||||
Skript | Beilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben | |||||
Literatur | Literaturliste wird abgegeben. Für NDS-Absolventen empfohlen: Hall EJ; Giacchia A: Radiobiology for the Radiologist, 7th Edition, 2011 | |||||
Voraussetzungen / Besonderes | The former number of this course unit is 465-0951-00L. | |||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Biomechanics besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
402-0674-00L | Physics in Medical Research: From Atoms to Cells ![]() | W | 6 KP | 2V + 1U | B. K. R. Müller | |
Kurzbeschreibung | Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells. | |||||
Lernziel | The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour. As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced. The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes. High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering. Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. 3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented. Visiting clinical research in a leading university hospital will show the usefulness of the lecture series. | |||||
![]() ![]() ![]() Diese Fächer können für die Vertiefung in Medical Physics geeignet sein. Bitte konsultieren Sie Ihren Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0447-00L | Image Analysis and Computer Vision ![]() | W | 6 KP | 3V + 1U | L. Van Gool, O. Göksel, E. Konukoglu | |
Kurzbeschreibung | Light and perception. Digital image formation. Image enhancement and feature extraction. Unitary transformations. Color and texture. Image segmentation and deformable shape matching. Motion extraction and tracking. 3D data extraction. Invariant features. Specific object recognition and object class recognition. | |||||
Lernziel | Overview of the most important concepts of image formation, perception and analysis, and Computer Vision. Gaining own experience through practical computer and programming exercises. | |||||
Inhalt | The first part of the course starts off from an overview of existing and emerging applications that need computer vision. It shows that the realm of image processing is no longer restricted to the factory floor, but is entering several fields of our daily life. First it is investigated how the parameters of the electromagnetic waves are related to our perception. Also the interaction of light with matter is considered. The most important hardware components of technical vision systems, such as cameras, optical devices and illumination sources are discussed. The course then turns to the steps that are necessary to arrive at the discrete images that serve as input to algorithms. The next part describes necessary preprocessing steps of image analysis, that enhance image quality and/or detect specific features. Linear and non-linear filters are introduced for that purpose. The course will continue by analyzing procedures allowing to extract additional types of basic information from multiple images, with motion and depth as two important examples. The estimation of image velocities (optical flow) will get due attention and methods for object tracking will be presented. Several techniques are discussed to extract three-dimensional information about objects and scenes. Finally, approaches for the recognition of specific objects as well as object classes will be discussed and analyzed. | |||||
Skript | Course material Script, computer demonstrations, exercises and problem solutions | |||||
Voraussetzungen / Besonderes | Prerequisites: Basic concepts of mathematical analysis and linear algebra. The computer exercises are based on Linux and C. The course language is English. | |||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 KP | 3G | M. Stampanoni, P. A. Kaestner | |
Kurzbeschreibung | Einführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht. | |||||
Lernziel | Einführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen. | |||||
Inhalt | Synchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind. Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen. Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen. | |||||
Skript | Online verfügbar | |||||
Literatur | Wird in der Vorlesung angegeben. | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0399-10L | Physiology and Anatomy for Biomedical Engineers I ![]() | W | 3 KP | 2G | H. Niemann | |
Kurzbeschreibung | This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging. | |||||
Lernziel | To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research. | |||||
Inhalt | - The Human Body: nomenclature, orientations, tissues - Musculoskeletal system, Muscle contraction - Blood vessels, Heart, Circulation - Blood, Immune system - Respiratory system - Acid-Base-Homeostasis | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008 Faller A., Schuenke M. The Human Body; Thieme 2004 Netter F. Atlas of human anatomy; Elsevier 2014 | |||||
227-0945-00L | Cell and Molecular Biology for Engineers I This course is part I of a two-semester course. | W | 3 KP | 3G | C. Frei | |
Kurzbeschreibung | The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology. | |||||
Lernziel | After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested. | |||||
Inhalt | Lectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells. In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade. | |||||
Skript | Scripts of all lectures will be available. | |||||
Literatur | "Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter. | |||||
![]() ![]() | ||||||
![]() ![]() ![]() Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
376-1103-00L | Frontiers in Nanotechnology | W | 4 KP | 4V | V. Vogel, weitere Dozierende | |
Kurzbeschreibung | Many disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers. | |||||
Lernziel | Building upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies. The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries. Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations. | |||||
Inhalt | Starting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges. | |||||
Skript | All the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics. | |||||
376-1714-00L | Biocompatible Materials | W | 4 KP | 3G | K. Maniura, J. Möller, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||
Lernziel | The class consists of three parts: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. | |||||
Inhalt | Introduction into native and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering and drug delivery are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. In addition, a link between academic research and industrial entrepreneurship is established by external guest speakers. | |||||
Skript | Handouts can be accessed online. | |||||
Literatur | Literatur Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts provided during the classes and references therin. | |||||
402-0674-00L | Physics in Medical Research: From Atoms to Cells ![]() | W | 6 KP | 2V + 1U | B. K. R. Müller | |
Kurzbeschreibung | Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells. | |||||
Lernziel | The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour. As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced. The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes. High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering. Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. These characterization techniques are vital for optimizing the preparation of medical implants and the determination of tissue's anisotropies within the human body. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. 3D scaffolds are important for tissue augmentation and engineering. Design, preparation methods, and characterization of these highly porous 3D microstructures are also presented. Visiting clinical research in a leading university hospital will show the usefulness of the lecture series. | |||||
465-0953-00L | Biostatistics | W | 4 KP | 2V + 1U | B. Sick | |
Kurzbeschreibung | Der Kurs behandelt einfache quantitative und graphische als auch komplexere Methoden der Biostatistik. Inhalt: Deskriptive Statistik, Wahrscheinlichkeitsrechnung und Versuchsplanung, Prüfung von Hypothesen, Konfidenzintervalle, Korrelation, einfache und multiple lineare Regression, Klassifikation und Prognose, Diagnostische Tests, Bestimmung der Zuverlässigkeit von Messungen | |||||
Lernziel | ||||||
551-0103-00L | Grundlagen der Biologie II: Zellbiologie | W | 5 KP | 5V | E. Hafen, J. Fernandes de Matos, U. Kutay, G. Schertler, U. Suter, S. Werner | |
Kurzbeschreibung | Ziel dieses Kurses ist ein breites Grundverständnis für die Zellbiologie zu vermitteln. Dieses Basiswissen wird den Studenten ermöglichen, sich in die Zellbiologie sowie in verwandte Gebiete wie Biochemie, Mikrobiologie, Pharmazie, Molekularbiologie und andere zu vertiefen. | |||||
Lernziel | Ziel dieses Kurses ist ein breites Grundverständnis für die Zellbiologie zu vermitteln. Dieses Basiswissen wird den Studenten ermöglichen, sich in die Zellbiologie sowie in verwandte Gebiete wie Biochemie, Mikrobiologie, Pharmazie, Molekularbiologie und andere zu vertiefen. | |||||
Inhalt | Das Hauptaugenmerk liegt auf der Biologie von Säugerzellen und der Entwicklung multizellulärer Organismen mit Schwerpunkt auf molekularen Mechanismen, die zellulären Strukturen und Phänomenen zugrunde liegen. Die behandelten Themen umfassen biologische Membranen, das Zytoskelett, Protein Sorting, Energiemetabolismus, Zellzyklus und Zellteilung, Viren, die extrazelluläre Matrix, Signaltransduktion, Entwicklungsbiologie und Krebsforschung. | |||||
Skript | Die Vorlesungsinhalte werden mithilfe von Powerpoint präsentiert. Die Präsentationen können von ETH Studenten heruntergeladen werden (Moodle). Ausgewählte Vorlesungen können auf dem ETH Netz im live Format (Livestream) angehört werden. | |||||
Literatur | Die Vorlesung folgt Alberts et al. `Molecular Biology of the Cell' 6th Auflage, 2014, ISBN 9780815344322 (gebunden) und ISBN 9780815345244 (Taschenbuchausgabe). | |||||
Voraussetzungen / Besonderes | Einige Vorlesungseinheiten werden in englischer Sprache gehalten. Einzelne Teile des Inhalts des Lehrbuchs müssen im Selbststudium erarbeitet werden. | |||||
551-1295-00L | Introduction to Bioinformatics: Concepts and Applications ![]() | W | 6 KP | 4G | W. Gruissem, K. Bärenfaller, A. Caflisch, G. Capitani, J. Fütterer, M. Robinson, A. Wagner | |
Kurzbeschreibung | Storage, handling and analysis of large datasets have become essential in biological research. The course will introduce students to a number of applications of bioinformatics in biology. Freely accessible software tools and databases will be explained and explored in theory and praxis. | |||||
Lernziel | Introduction to Bioinformatics I: Concepts and Applications (formerly Bioinformatics I) will provide students with the theoretical background of approaches to store and retrieve information from large databases. Concepts will be developed how DNA sequence information can be used to understand phylogentic relationships, how RNA sequence relates to structure, and how protein sequence information can be used for genome annotation and to predict protein folding and structure. Students will be introduced to quantitative methods for measuring gene expression and how this information can be used to model gene networks. Methods will be discussed to construct protein interaction maps and how this information can be used to simulate dynamic molecular networks. In addition to the theoretical background, the students will develop hands-on experiences with the bioinformatics methods through guided exercises. The course provides students from different backgrounds with basic training in bioinformatics approaches that have impact on biological, chemical and physics experimentation. Bioinformatics approaches draw significant expertise from mathematics, statistics and computational science. Although "Intoduction to Bioinformatics I" will focus on theory and praxis of bioinformatics approaches, the course provides an important foundation for the course "Introduction to Bioinformatics II: Fundamentals of computer science, modeling and algorithms" that will be offered in the following semester. | |||||
Inhalt | Bioinformatics I will cover the following topics: From genes to databases and information BLAST searches Prediction of gene function and regulation RNA structure prediction Gene expression analysis using microarrays Protein sequence and structure databases WWW for bioinformatics Protein sequence comparisons Proteomics and de novo protein sequencing Protein structure prediction Cellular and protein interaction networks Molecular dynamics simulation | |||||
636-0003-00L | Biological Engineering and Biotechnology | W | 6 KP | 3V | M. Fussenegger | |
Kurzbeschreibung | Biological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market. | |||||
Lernziel | 1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development. | |||||
Skript | Handsout during the course. | |||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Molecular Bioengineering besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
151-0604-00L | Microrobotics ![]() Findet dieses Semester nicht statt. | W | 4 KP | 3G | B. Nelson | |
Kurzbeschreibung | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course students are expected to submit assignments. The course concludes with an end-of-semester examination. | |||||
Lernziel | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||
Inhalt | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||
Skript | The powerpoint slides presented in the lectures will be made available in hardcopy and as pdf files. Several readings will also be made available electronically. | |||||
Voraussetzungen / Besonderes | The lecture will be taught in English. | |||||
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann, M. Rudin | |
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||
227-0386-00L | Biomedical Engineering ![]() | W | 4 KP | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, U. Moser, M. Rudin, M. P. Wolf, M. Zenobi-Wong | |
Kurzbeschreibung | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the concepts that govern common medical instruments and the most important organs from an engineering point of view. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||
Lernziel | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. | |||||
Inhalt | Introduction into neuro- and electrophysiology. Functional analysis of peripheral nerves, muscles, sensory organs and the central nervous system. Electrograms, evoked potentials. Audiometry, optometry. Functional electrostimulation: Cardiac pacemakers. Function of the heart and the circulatory system, transport and exchange of substances in the human body, pharmacokinetics. Endoscopy, medical television technology. Lithotripsy. Electrical Safety. Orthopaedic biomechanics. Lung function. Bioinformatics and Bioelectronics. Biomaterials. Biosensors. Microcirculation.Metabolism. Practical and theoretical exercises in small groups in the laboratory. | |||||
Skript | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND https://www1.ethz.ch/lbb/Education/BME | |||||
227-0393-10L | Bioelectronics and Biosensors New course. Not to be confounded with 227-0393-00L last offered in the Spring Semester 2015. | W | 6 KP | 2V + 2U | J. Vörös, M. F. Yanik, T. Zambelli | |
Kurzbeschreibung | The course introduces the concepts of bioelectricity and biosensing. The sources and use of electrical fields and currents in the context of biological systems and problems are discussed. The fundamental challenges of measuring biological signals are introduced. The most important biosensing techniques and their physical concepts are introduced in a quantitative fashion. | |||||
Lernziel | During this course the students will: - learn the basic concepts in biosensing and bioelectronics - be able to solve typical problems in biosensing and bioelectronics - learn about the remaining challenges in this field | |||||
Inhalt | L1. Bioelectronics history, its applications and overview of the field - Volta and Galvani dispute - BMI, pacemaker, cochlear implant, retinal implant, limb replacement devices - Fundamentals of biosensing - Glucometer and ELISA L2. Fundamentals of quantum and classical noise in measuring biological signals L3. Biomeasurement techniques with photons L4. Acoustics sensors - Differential equation for quartz crystal resonance - Acoustic sensors and their applications L5. Engineering principles of optical probes for measuring and manipulating molecular and cellular processes L6. Optical biosensors - Differential equation for optical waveguides - Optical sensors and their applications - Plasmonic sensing L7. Basic notions of molecular adsorption and electron transfer - Quantum mechanics: Schrödinger equation energy levels from H atom to crystals, energy bands - Electron transfer: Marcus theory, Gerischer theory L8. Potentiometric sensors - Fundamentals of the electrochemical cell at equilibrium (Nernst equation) - Principles of operation of ion-selective electrodes L9. Amperometric sensors and bioelectric potentials - Fundamentals of the electrochemical cell with an applied overpotential to generate a faraday current - Principles of operation of amperometric sensors - Ion flow through a membrane (Fick equation, Nernst equation, Donnan equilibrium, Goldman equation) L10. Channels, amplification, signal gating, and patch clamp Y4 L11. Action potentials and impulse propagation L12. Functional electric stimulation and recording - MEA and CMOS based recording - Applying potential in liquid - simulation of fields and relevance to electric stimulation L13. Neural networks memory and learning | |||||
Literatur | Plonsey and Barr, Bioelectricity: A Quantitative Approach (Third edition) | |||||
Voraussetzungen / Besonderes | Supervised exercises solving real-world problems. Some Matlab based exercises in groups. | |||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 KP | 3G | M. Stampanoni, P. A. Kaestner | |
Kurzbeschreibung | Einführung in die physikalischen und technischen Grundkenntnisse der tomographischen Röntgenmikroskopie. Verschiedene Röntgenbasierten-Abbildungsmechanismen (Absorptions-, Phasen- und Dunkelfeld-Kontrast) werden erklärt und deren Einsatz in der aktuellen Forschung vorgestellt, insbesondere in der Biologie. Die quantitative Auswertung tomographische Datensätzen wird ausführlich beigebracht. | |||||
Lernziel | Einführung in die Grundlagen der Röntgentomographie auf der Mikrometer- und Nanometerskala, sowie in die entsprechenden Bildbearbeitungs- und Quantifizierungsmethoden, unter besonderer Berücksichtigung von biologischen Anwendungen. | |||||
Inhalt | Synchrotron basierte Röntgenmikro- und Nanotomographie ist heutzutage eine leistungsfähige Technik für die hochaufgelösten zerstörungsfreien Untersuchungen einer Vielfalt von Materialien. Die aussergewöhnlichen Stärke und Kohärenz der Strahlung einer Synchrotronquelle der dritten Generation erlauben quantitative drei-dimensionale Aufnahmen auf der Mikro- und Nanometerskala und erweitern die klassischen Absorption-basierten Verfahrensweisen auf die kontrastreicheren kantenverstärkten und phasenempfindlichen Methoden, die für die Analyse von biologischen Proben besonders geeignet sind. Die Vorlesung umfasst eine allgemeine Einführung in die Grundsätze der Röntgentomographie, von der Bildentstehung bis zur 3D Bildrekonstruktion. Sie liefert die physikalischen und technischen Grundkentnisse über die bildgebenden Synchrotronstrahllinien, vertieft die neusten Phasenkontrastmethoden und beschreibt die ersten Anwendungen nanotomographischer Röntgenuntersuchungen. Schliesslich liefert der Kurs den notwendigen Hintergrund, um die quantitative Auswertung tomographischer Daten zu verstehen, von der grundlegenden Bildanalyse bis zur komplexen morphometrischen Berechnung und zur 3D-Visualisierung, unter besonderer Berücksichtigung von biomedizinischen Anwendungen. | |||||
Skript | Online verfügbar | |||||
Literatur | Wird in der Vorlesung angegeben. | |||||
227-0981-00L | Cross-Disciplinary Research and Development in Medicine and Engineering ![]() A maximum of 12 medical degree students and 12 (biomedical) engineering degree students can be admitted, their number should be equal. | W | 4 KP | 2V + 2A | V. Kurtcuoglu, D. de Julien de Zelicourt, M. Meboldt, M. Schmid Daners, O. Ullrich | |
Kurzbeschreibung | Cross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment. | |||||
Lernziel | The main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to: - Acquire a working understanding of the anatomy and physiology of the investigated system; - Identify the engineering challenges in the project and communicate them to the medical students; - Develop and implement, together with the medical students, solution strategies for the identified challenges; - Present the found solutions to a cross-disciplinary audience. | |||||
Inhalt | After a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will receive tailored lectures on the anatomy and physiology of the relevant system. They will then team up with medical students who have received a basic introduction to engineering methodology to collaborate on said project. In the process, they will be coached both by lecturers from ETH Zurich and the University of Zurich, receiving lectures customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience. | |||||
Skript | Handouts and relevant literature will be provided. | |||||
327-0505-00L | Surfaces, Interfaces and their Applications I ![]() | W | 3 KP | 2V + 1U | N. Spencer, M. P. Heuberger, L. Isa | |
Kurzbeschreibung | After being introduced to the physical/chemical principles and importance of surfaces and interfaces, the student is introduced to the most important techniques that can be used to characterize surfaces. Later, liquid interfaces are treated, followed by an introduction to the fields of tribology (friction, lubrication, and wear) and corrosion. | |||||
Lernziel | To gain an understanding of the physical and chemical principles, as well as the tools and applications of surface science, and to be able to choose appropriate surface-analytical approaches for solving problems. | |||||
Inhalt | Introduction to Surface Science Physical Structure of Surfaces Surface Forces (static and dynamic) Adsorbates on Surfaces Surface Thermodynamics and Kinetics The Solid-Liquid Interface Electron Spectroscopy Vibrational Spectroscopy on Surfaces Scanning Probe Microscopy Introduction to Tribology Introduction to Corrosion Science | |||||
Skript | Script Download: Link | |||||
Literatur | Script (20 CHF) Book: "Surface Analysis--The Principal Techniques", Ed. J.C. Vickerman, Wiley, ISBN 0-471-97292 | |||||
Voraussetzungen / Besonderes | Chemistry: General undergraduate chemistry including basic chemical kinetics and thermodynamics Physics: General undergraduate physics including basic theory of diffraction and basic knowledge of crystal structures | |||||
327-1101-00L | Biomineralization ![]() | W | 2 KP | 2G | K.‑H. Ernst | |
Kurzbeschreibung | The course addresses undergraduate and graduate students interested in getting introduced into the basic concepts of biomineralization. | |||||
Lernziel | The course aims to introduce the basic concepts of biomineralization and the underlying principles, such as supersaturation, nucleation and growth of minerals, the interaction of biomolecules with mineral surfaces, and cell biology of inorganic materials creation. An important part of this class is the independent study and the presentation of original literature from the field. | |||||
Inhalt | Biomineralization is a multidisciplinary field. Topics dealing with biology, molecular and cell biology, solid state physics, mineralogy, crystallography, organic and physical chemistry, biochemistry, dentistry, oceanography, geology, etc. are addressed. The course covers definition and general concepts of biomineralization (BM)/ types of biominerals and their function / crystal nucleation and growth / biological induction of BM / control of crystal morphology, habit, shape and orientation by organisms / strategies of compartmentalization / the interface between biomolecules (peptides, polysaccharides) and the mineral phase / modern experimental methods for studying BM phenomena / inter-, intra, extra- and epicellular BM / organic templates and matrices for BM / structure of bone, teeth (vertebrates and invertebrates) and mollusk shells / calcification / silification in diatoms, radiolaria and plants / calcium and iron storage / impact of BM on lithosphere and atmosphere/ evolution / taxonomy of organisms. 1. Introduction and overview 2. Biominerals and their functions 3. Chemical control of biomineralization 4. Control of morphology: Organic templates and additives 5. Modern methods of investigation of BM 6. BM in matrices: bone and nacre 7. Vertebrate teeth 8. Invertebrate teeth 9. BM within vesicles: calcite of coccoliths 10. Silica 11. Iron storage and mineralization | |||||
Skript | Script with more than 600 pages with many illustrations will be distributed free of charge. | |||||
Literatur | 1) S. Mann, Biomineralization, Oxford University Press, 2001, Oxford, New York 2) H. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, 1989, Oxford 3) P. M. Dove, J. J. DeYoreo, S. Weiner (Eds.) Biomineralization, Reviews in Mineralogoy & Geochemistry Vol. 54, 2003 | |||||
Voraussetzungen / Besonderes | Each attendee is required to present a publication from the field. The selection of key papers is provided by the lecturer. No special requirements are needed for attending. Basic knowledge in chemistry and cell biology is expected. | |||||
376-1622-00L | Practical Methods in Tissue Engineering ![]() Number of participants limited to 12. | W | 5 KP | 4P | K. Würtz-Kozak, M. Zenobi-Wong | |
Kurzbeschreibung | The goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine. | |||||
Lernziel | Practical exercises and demonstrations on topics including sterile cell culture, light microscopy and histology, protein and gene expression analysis, and viability assays are covered. The advantages of 3D cell cultures will be discussed and practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis. | |||||
402-0341-00L | Medical Physics I | W | 6 KP | 2V + 1U | P. Manser | |
Kurzbeschreibung | Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations. | |||||
Lernziel | Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society. | |||||
Inhalt | The lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications. | |||||
Skript | A script will be provided. | |||||
535-0423-00L | Drug Delivery and Drug Targeting | W | 2 KP | 2V | J.‑C. Leroux, D. Brambilla | |
Kurzbeschreibung | Die Studierenden erwerben einen Überblick über derzeit aktuelle Prinzipien, Methoden und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Damit sind die Studierenden in der Lage, das Gebiet gemäss wissenschaftlichen Kriterien zu verstehen und zu beurteilen. | |||||
Lernziel | Die Studierenden verfügen über einen Überblick über derzeit aktuelle Prinzipien und Systeme zur kontrollierten Abgabe und zum Targeting von Arzneistoffen. Im Vordergrund der Lehrveranstaltung steht die Entwicklung von Fähigkeiten zum Verständnis der betreffenden Technologien und Methoden, ebenso wie der Möglichkeiten und Grenzen ihres therapeutischen Einsatzes. Im Zentrum stehen therapeutische Peptide, Proteine, Nukleinsäuren und Impfstoffe. | |||||
Inhalt | Der Kurs behandelt folgende Themen: Arzneistoff-targeting und Freigabeprinzipien, Radiopharmaka, makromolekulare Arzneistofftransporter, Liposomen, Mizellen, Mikro/Nanopartikel, Gele und Implantate, Anwendung von Impfstoffen, Abgabe von Wirkstoffen im Rahmen von Tissue engineering, Abgabe im Gastrointestinaltrakt, synthetische Transporter für Arzneistoffe auf Nukleinsäurebasis, ophthalmische Vehikel und neue Trends in transdermaler und nasaler Arzneistofffreigabe. | |||||
Skript | Ausgewählte Skripten, Vorlesungsunterlagen und unterstützendes Material werden entweder direkt an der Vorlesung ausgegeben oder sind über das Web zugänglich: http://www.galenik.ethz.ch/teaching/drug_del_drug_targ Diese Website enthält auch zusätzliche Unterlagen zu peroralen Abgabesystemen, zur gastrointestinalen Passage von Arzneiformen, transdermalen Systemen und über Abgabesysteme für alternative Absorptionswege. Diese Stoffgebiete werden speziell in der Vorlesung Galenische Pharmazie II behandelt. | |||||
Literatur | Y. Perrie, T. Rhades. Pharmaceutics - Drug Delivery and Targeting, second edition, Pharmaceutical Press, London and Chicago, 2012. Weitere Literatur in der Vorlesung. | |||||
636-0507-00L | Synthetic Biology II ![]() | W | 4 KP | 4A | S. Panke, Y. Benenson, J. Stelling | |
Kurzbeschreibung | 7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge). | |||||
Lernziel | The students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems. | |||||
Inhalt | Presentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external,) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org). | |||||
Skript | Handouts during course | |||||
Voraussetzungen / Besonderes | The final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton Universtiy, CalTech, etc. This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April. Please note that the number of ECTS credits and the actual work load are disconnected. | |||||
![]() ![]() ![]() Diese Fächer können für die Vertiefung in Molecular Bioengineering geeignet sein. Bitte konsultieren Sie Ihren Track Adviser. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
551-0313-00L | Microbiology (Part I) ![]() | W | 3 KP | 2V | W.‑D. Hardt, L. Eberl, H.‑M. Fischer, J. Piel, M. Pilhofer | |
Kurzbeschreibung | Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||
Lernziel | This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||
Inhalt | Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||
Skript | Updated handouts will be provided during the class. | |||||
Literatur | Current literature references will be provided during the lectures. | |||||
Voraussetzungen / Besonderes | English The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture. | |||||
551-1103-00L | Microbial Biochemistry ![]() | W | 4 KP | 2V | J. Vorholt-Zambelli, J. Piel | |
Kurzbeschreibung | The lecture course aims at providing an advanced understanding of the physiology and metabolism of microorganisms. Emphasis is on processes that are specific to bacteria and archaea and that contribute to the widespread occurrence of prokaryotes. Applied aspects of microbial biochemistry will be pointed out as well as research fields of current scientific interest. | |||||
Lernziel | The lecture course aims at providing an advanced understanding of the physiology and metabolism of microorganisms. | |||||
Inhalt | Important biochemical processes specific to bacteria and archaea will be presented that contribute to the widespread occurrence of prokaryotes. Applied aspects of microbial biochemistry will be pointed out as well as research fields of current scientific interest. Emphasis is on concepts of energy generation and assimilation. List of topics: Eating sugars and letting them in Challenging: Aromatics, xenobiotics, and oil Complex: (Ligno-)Cellulose and in demand for bioenergy Living on a diet and the anaplerotic provocation Of climate relevance: The microbial C1 cycle What are AMO and Anammox? 20 amino acids: the making of Extending the genetic code The 21st and 22nd amino acid Some exotic biochemistry: nucleotides, cofactors Ancient biochemistry? Iron-sulfur clusters, polymers Secondary metabolites: playground of evolution | |||||
Skript | A script will be provided during the course. | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0399-10L | Physiology and Anatomy for Biomedical Engineers I ![]() | W | 3 KP | 2G | H. Niemann | |
Kurzbeschreibung | This course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging. | |||||
Lernziel | To understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research. | |||||
Inhalt | - The Human Body: nomenclature, orientations, tissues - Musculoskeletal system, Muscle contraction - Blood vessels, Heart, Circulation - Blood, Immune system - Respiratory system - Acid-Base-Homeostasis | |||||
Skript | Lecture notes and handouts | |||||
Literatur | Silbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008 Faller A., Schuenke M. The Human Body; Thieme 2004 Netter F. Atlas of human anatomy; Elsevier 2014 | |||||
227-0945-00L | Cell and Molecular Biology for Engineers I This course is part I of a two-semester course. | W | 3 KP | 3G | C. Frei | |
Kurzbeschreibung | The course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology. | |||||
Lernziel | After completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested. | |||||
Inhalt | Lectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells. In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade. | |||||
Skript | Scripts of all lectures will be available. | |||||
Literatur | "Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter. | |||||
227-0949-00L | Biological Methods for Engineers (Basic Lab) ![]() ![]() Limited number of participants. | W | 2 KP | 4P | C. Frei | |
Kurzbeschreibung | The course during 4 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory. | |||||
Lernziel | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Inhalt | The goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology. | |||||
Voraussetzungen / Besonderes | Enrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority. | |||||
![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-1101-00L | How to Write Scientific Texts in Engineering Sciences Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST). | E- | 0 KP | J. Leuthold | ||
Kurzbeschreibung | The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture. | |||||
Lernziel | Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations. | |||||
Inhalt | * Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures). * Topic 2: Power Point Presentations. * Topic 3: Citation Rules and Citation Software. * Topic 4: Guidelines for Research Integrity. | |||||
Literatur | ETH "Citation Etiquette", see www.plagiate.ethz.ch. ETH Guidlines on "Guidelines for Research Integrity", see www.ee.ethz.ch > Education > > Contacts, links & documents > Forms and documents > Brochures / guides. | |||||
Voraussetzungen / Besonderes | Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future. | |||||
227-1772-10L | Semester Project ![]() Registration in mystudies required! | O | 8 KP | 20A | Professor/innen | |
Kurzbeschreibung | The semester project is designed to train the students in solving specific biomedical engineering problems. This project uses the technical and social skills acquired during the master's program. The semester project ist advised by a professor. | |||||
Lernziel | see above | |||||
![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-1101-00L | How to Write Scientific Texts in Engineering Sciences Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST). | E- | 0 KP | J. Leuthold | ||
Kurzbeschreibung | The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture. | |||||
Lernziel | Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations. | |||||
Inhalt | * Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures). * Topic 2: Power Point Presentations. * Topic 3: Citation Rules and Citation Software. * Topic 4: Guidelines for Research Integrity. | |||||
Literatur | ETH "Citation Etiquette", see www.plagiate.ethz.ch. ETH Guidlines on "Guidelines for Research Integrity", see www.ee.ethz.ch > Education > > Contacts, links & documents > Forms and documents > Brochures / guides. | |||||
Voraussetzungen / Besonderes | Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future. | |||||
227-1700-00L | Master's Thesis ![]() Admission only if all of the following apply: a. bachelor program successfully completed; b. successfull completion of the track core courses, the biology laboratory and the semester project; c. acquired (if applicable) all credits from additional requirements for admission to master program. Registration in mystudies required! | O | 30 KP | 40D | Professor/innen | |
Kurzbeschreibung | The masters program culminates in a six months research project which adresses a scientific research questions on one's chosen area of spezialization. The masters thesis is supervised by a program-affiliated faculty member and the topic must be approved by the track advisor. | |||||
Lernziel | see above | |||||
![]() | ||||||
» Empfehlungen aus dem Bereich GESS Wissenschaft im Kontext (Typ B) für das D-ITET. | ||||||
» siehe Studiengang GESS Wissenschaft im Kontext: Typ A: Förderung allgemeiner Reflexionsfähigkeiten | ||||||
» siehe Studiengang GESS Wissenschaft im Kontext: Sprachkurse ETH/UZH | ||||||
![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0970-00L | Research Topics in Biomedical Engineering ![]() | Z | 0 KP | 2K | M. Rudin, S. Kozerke, K. P. Prüssmann, M. Stampanoni, K. Stephan, J. Vörös | |
Kurzbeschreibung | Current topics in Biomedical Engineering presented by speakers from academia and industry. | |||||
Lernziel | Getting insight into actual areas and problems of Biomedical Engineering an Health Care. | |||||
227-0980-00L | Seminar on Biomedical Magnetic Resonance ![]() | Z | 0 KP | 2K | K. P. Prüssmann, S. Kozerke, M. Rudin | |
Kurzbeschreibung | Actuel developments and problems of magnetic resonance imaging (MRI) | |||||
Lernziel | Getting insight to advanced topics in Magnetic Resonance Imaging |