Search result: Catalogue data in Autumn Semester 2016

Biomedical Engineering Master Information
Track Courses
Molecular Bioengineering
Recommended Elective Courses
These courses are particularly recommended for the Molecular Bioengineering track. Please consult your track advisor if you wish to select other subjects.
NumberTitleTypeECTSHoursLecturers
376-1622-00LPractical Methods in Tissue Engineering Restricted registration - show details
Number of participants limited to 12.
W5 credits4PK. Würtz-Kozak, M. Zenobi-Wong
AbstractThe goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine.
ObjectivePractical exercises and demonstrations on topics including sterile cell culture, light microscopy and histology, protein and gene expression analysis, and viability assays are covered. The advantages of 3D cell cultures will be discussed and practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis.
402-0341-00LMedical Physics IW6 credits2V + 1UP. Manser
AbstractIntroduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations.
ObjectiveUnderstanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society.
ContentThe lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications.
Lecture notesA script will be provided.
535-0423-00LDrug Delivery and Drug TargetingW2 credits2VJ.‑C. Leroux, D. Brambilla
AbstractThe students gain an overview on current principles, methodologies and systems for controlled delivery and targeting of drugs. This enables the students to understand and evaluate the field in terms of scientific criteria.
ObjectiveThe students dispose of an overview on current principles and systems for the controlled delivery and targeting of drugs. The focus of the course lies on developing a capacity to understand the involved technologies and methods, as well as an appreciation of the chances and constraints of their therapeutic usage, with prime attention on anticancer drugs, therapeutic peptides, proteins, nucleic acids and vaccines.
ContentThe course covers the following topics: drug targeting and delivery principles, radiopharmaceuticals, macromolecular drug carriers, liposomes, micelles, micro/nanoparticles, gels and implants, administration of vaccines, delivery of active agents in tissue engineeering, targeting at the gastrointestinal level, synthetic carriers for nucleic acid drugs, ophthalmic devices and novel trends in transdermal and nasal drug delivery.
Lecture notesSelected lecture notes, documents and supporting material will be directly provided or may be downloaded using

Link

The website also displays additional information on peroral delivery systems, transdermal systems and systems for alternative routes (nasal, pulmonary) of delivery. These fields are covered in detail in the course Galenische Pharmazie II (Galenical Pharmacy II).
LiteratureY. Perrie, T. Rhades. Pharmaceutics - Drug Delivery and Targeting, second edition, Pharmaceutical Press, London and Chicago, 2012.

Further references will be provided in the course.
636-0507-00LSynthetic Biology II Restricted registration - show details W4 credits4AS. Panke, Y. Benenson, J. Stelling
Abstract7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).
ObjectiveThe students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.
ContentPresentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external,) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (Link).
Lecture notesHandouts during course
Prerequisites / NoticeThe final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton Universtiy, CalTech, etc.

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.
Other Elective Courses
These courses may be suitable for the Molecular Bioengineering track. Please consult your track advisor.
NumberTitleTypeECTSHoursLecturers
551-0313-00LMicrobiology (Part I) Information W3 credits2VW.‑D. Hardt, L. Eberl, H.‑M. Fischer, J. Piel, M. Pilhofer
AbstractAdvanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
ObjectiveThis concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
ContentAdvanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
Lecture notesUpdated handouts will be provided during the class.
LiteratureCurrent literature references will be provided during the lectures.
Prerequisites / NoticeEnglish
The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture.
551-1103-00LMicrobial Biochemistry Information W4 credits2VJ. Vorholt-Zambelli, J. Piel
AbstractThe lecture course aims at providing an advanced understanding of the physiology and metabolism of microorganisms. Emphasis is on processes that are specific to bacteria and archaea and that contribute to the widespread occurrence of prokaryotes. Applied aspects of microbial biochemistry will be pointed out as well as research fields of current scientific interest.
ObjectiveThe lecture course aims at providing an advanced understanding of the physiology and metabolism of microorganisms.
ContentImportant biochemical processes specific to bacteria and archaea will be presented that contribute to the widespread occurrence of prokaryotes. Applied aspects of microbial biochemistry will be pointed out as well as research fields of current scientific interest. Emphasis is on concepts of energy generation and assimilation.

List of topics:
Eating sugars and letting them in
Challenging: Aromatics, xenobiotics, and oil
Complex: (Ligno-)Cellulose and in demand for bioenergy
Living on a diet and the anaplerotic provocation
Of climate relevance: The microbial C1 cycle
What are AMO and Anammox?
20 amino acids: the making of
Extending the genetic code
The 21st and 22nd amino acid
Some exotic biochemistry: nucleotides, cofactors
Ancient biochemistry? Iron-sulfur clusters, polymers
Secondary metabolites: playground of evolution
Lecture notesA script will be provided during the course.
Biology Courses
NumberTitleTypeECTSHoursLecturers
227-0399-10LPhysiology and Anatomy for Biomedical Engineers I Information W3 credits2GH. Niemann
AbstractThis course offers an introduction into the structure and function of the human body, and how these are interlinked with one another. Focusing on physiology, the visualization of anatomy is supported by 3D-animation, Computed Tomography and Magnetic Resonance imaging.
ObjectiveTo understand basic principles and structure of the human body in consideration of the clinical relevance and the medical terminology used in medical work and research.
Content- The Human Body: nomenclature, orientations, tissues
- Musculoskeletal system, Muscle contraction
- Blood vessels, Heart, Circulation
- Blood, Immune system
- Respiratory system
- Acid-Base-Homeostasis
Lecture notesLecture notes and handouts
LiteratureSilbernagl S., Despopoulos A. Color Atlas of Physiology; Thieme 2008
Faller A., Schuenke M. The Human Body; Thieme 2004
Netter F. Atlas of human anatomy; Elsevier 2014
227-0945-00LCell and Molecular Biology for Engineers I
This course is part I of a two-semester course.
W3 credits3GC. Frei
AbstractThe course gives an introduction into cellular and molecular biology, specifically for students with a background in engineering. The focus will be on the basic organization of eukaryotic cells, molecular mechanisms and cellular functions. Textbook knowledge will be combined with results from recent research and technological innovations in biology.
ObjectiveAfter completing this course, engineering students will be able to apply their previous training in the quantitative and physical sciences to modern biology. Students will also learn the principles how biological models are established, and how these models can be tested.
ContentLectures will include the following topics: DNA, chromosomes, RNA, protein, genetics, gene expression, membrane structure and function, vesicular traffic, cellular communication, energy conversion, cytoskeleton, cell cycle, cellular growth, apoptosis, autophagy, cancer, development and stem cells.

In addition, three journal clubs will be held, where one/two publictions will be discussed (part I: 1 Journal club, part II: 2 Journal Clubs). For each journal club, students (alone or in groups of up to three students) have to write a summary and discussion of the publication. These written documents will be graded and count as 25% for the final grade.
Lecture notesScripts of all lectures will be available.
Literature"Molecular Biology of the Cell" (6th edition) by Alberts, Johnson, Lewis, Raff, Roberts, and Walter.
227-0949-00LBiological Methods for Engineers (Basic Lab) Information Restricted registration - show details
Limited number of participants.
W2 credits4PC. Frei
AbstractThe course during 4 afternoons (13h to 18h) covers basic laboratory skills and safety, cell culture, protein analysis, RNA/DNA Isolation and RT-PCR. Each topic will be introduced, followed by practical work at the bench. Presence during the course is mandatory.
ObjectiveThe goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.
ContentThe goal of this laboratory course is to give students practical exposure to basic techniques of cell and molecular biology.
Prerequisites / NoticeEnrollment is limited and students from the Master's programme in Biomedical Engineering (BME) have priority.
Semester Project
NumberTitleTypeECTSHoursLecturers
227-1101-00LHow to Write Scientific Texts in Engineering Sciences
Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).
E-0 creditsJ. Leuthold
AbstractThe 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.
The lecture will be thought on two afternoons. Some exercises will be built into the lecture.
ObjectiveKnowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.
Content* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).

* Topic 2: Power Point Presentations.

* Topic 3: Citation Rules and Citation Software.

* Topic 4: Guidelines for Research Integrity.
LiteratureETH "Citation Etiquette", see Link.

ETH Guidlines on "Guidelines for Research Integrity", see Link > Education > > Contacts, links & documents > Forms and documents > Brochures / guides.
Prerequisites / NoticeStudents should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.
227-1772-10LSemester Project Restricted registration - show details
Registration in mystudies required!
O8 credits20AProfessors
AbstractThe semester project is designed to train the students in solving specific biomedical engineering problems. This project uses the technical and social skills acquired during the master's program. The semester project ist advised by a professor.
Objectivesee above
Master's Thesis
NumberTitleTypeECTSHoursLecturers
227-1101-00LHow to Write Scientific Texts in Engineering Sciences
Strongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST).
E-0 creditsJ. Leuthold
AbstractThe 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training.
The lecture will be thought on two afternoons. Some exercises will be built into the lecture.
ObjectiveKnowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations.
Content* Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures).

* Topic 2: Power Point Presentations.

* Topic 3: Citation Rules and Citation Software.

* Topic 4: Guidelines for Research Integrity.
LiteratureETH "Citation Etiquette", see Link.

ETH Guidlines on "Guidelines for Research Integrity", see Link > Education > > Contacts, links & documents > Forms and documents > Brochures / guides.
Prerequisites / NoticeStudents should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future.
227-1700-00LMaster's Thesis Restricted registration - show details
Admission only if all of the following apply:
a. bachelor program successfully completed;
b. successfull completion of the track core courses, the biology laboratory and the semester project;
c. acquired (if applicable) all credits from additional requirements for admission to master program.

Registration in mystudies required!
O30 credits40DProfessors
AbstractThe masters program culminates in a six months research project which adresses a scientific research questions on one's chosen area of spezialization. The masters thesis is supervised by a program-affiliated faculty member and the topic must be approved by the track advisor.
Objectivesee above
GESS Science in Perspective
» Recommended GESS Science in Perspective (Type B) for D-ITET.
» see GESS Science in Perspective: Type A: Enhancement of Reflection Capability
» see GESS Science in Perspective: Language Courses ETH/UZH
Generally Accessible Seminars and Colloquia
NumberTitleTypeECTSHoursLecturers
227-0970-00LResearch Topics in Biomedical Engineering Information Z0 credits2KM. Rudin, S. Kozerke, K. P. Prüssmann, M. Stampanoni, K. Stephan, J. Vörös
AbstractCurrent topics in Biomedical Engineering presented by speakers from academia and industry.
ObjectiveGetting insight into actual areas and problems of Biomedical Engineering an Health Care.
227-0980-00LSeminar on Biomedical Magnetic Resonance Information Z0 credits2KK. P. Prüssmann, S. Kozerke, M. Rudin
AbstractActuel developments and problems of magnetic resonance imaging (MRI)
ObjectiveGetting insight to advanced topics in Magnetic Resonance Imaging
  • First page Previous page Page  6  of  6     All