Search result: Catalogue data in Autumn Semester 2017

Geomatic Engineering Master Information
Major Courses
Major in GIS and Cartography
NumberTitleTypeECTSHoursLecturers
103-0687-00LCadastral SystemsW2 credits2GD. M. Steudler
AbstractNature, role and importance of cadastral systems and related concepts such as land administration, land registration and spatial data infrastructures (SDIs).
ObjectiveThe students will get an understanding of the nature, role and importance of cadastral systems and related concepts such as land administration, land registration and spatial data infrastructures (SDIs). The Swiss cadastral system as well as a range of international approaches both in developed and developing countries will be reviewed.
ContentOrigins and purposes of cadastral systems
Importance of documentation
Basic concepts of cadastral systems (real estate, legal basis, conceptual
principles, property-ownership, property types)
Swiss cadastral system:
- legal basis
- organization
- technical elements
- methods of data acquisition and maintenance
- profession
- quality assurance
Digital revolution, access to data
Benchmarking and evaluation of cadastral systems
International trends, developments and initiatives
Lecture notessee: Link
LiteratureLarsson, G. (1991). Land Registration and Cadastral Systems: Tools for Land
Information and Management. Harlow, Essex, England: Longman Scientific and
Technical, New York: Wiley, ISBN 0-582-08952-2, 175 p.

see also: Link
851-0724-00LProperty Law for Geometers: Land Registry and Geoinformation Law
Particularly suitable for students of D-ARCH, D-BAUG, D-USYS
W2 credits2VM. Huser
AbstractFundamental concepts of Land Register Law and Land Surveying Law (substantive and procedural rules of Land Register Law, the parts and the relevance of the Land Register, process of registration with the Land Register, legal problems of land surveying, reform of the official land surveying).
ObjectiveOverview of the legal norms of land registry and surveying law.
ContentBasic principles of material and formal land registry law, components of the land register, consequences of the land register, the registration process, legal problems of surveying, the reform of official surveying, liability of the geom-eter. The lecture unit is carried out within a frame of 8 sessions (2 hours): the first hour of each is given in the form of a lecture, the second in the form of a case-study.
Lecture notesAbgegebene Unterlagen: Skript in digitaler Form

Pflichtlektüre: Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrechts und des Grundbuchrechts, Beiträge aus dem Institut für schweizerisches und internationales Baurecht der Universität Freiburg/Schweiz, Zürich 2014
Literature- Meinrad Huser, Schweizerisches Vermessungsrecht, unter besonderer Berücksichtigung des Geoinformationsrecht und des Grundbuchrechts, Zürich 2014
- Meinrad Huser, Geo-Informationsrecht, Rechtlicher Rahmen für Geographische Informationssyteme, Zürich 2005
- Meinrad Huser, Darstellung von Grenzen zur Sicherung dinglicher Rechte, in ZBGR 2013, 238 ff.
- Meinrad Huser, Baubeschränkungen und Grundbuch, in BR/DC 4/2016, 197 ff.
- Meinrad Huser, Publikation von Eigentumsbeschränkungen - neue Regeln, in Baurecht 4/2010, S. 169
- Meinrad Huser, Datenschutz bei Geodaten
Prerequisites / NoticeRequirements: Property Law (12-722)
103-0258-00LInteroperability of GISW4 credits3GM. Krummenacher
AbstractContent: Transform back and forth (geo-)data with same content but different structure.
Themes: System-neutral model-driven approach with reality selection, conceptual modelling, flexible standard formats, 1:1 processors and semantic transformation.
Tools: Conceptual schema languages UML and INTERLIS, formats ITF, XML, tools ILI-Checker and awk, and for the semantic transformation UMLT and FME.
Objective- Explain and apply the model-driven approach based on standards
- Know and use interoperability types
- Know transfer formats and reformat with 1:1 processors
- Explain object-oriented modelling (with graphic and text)
- Know and use communication technologies and OGC Web services
- UML, EBNF, INTERLIS, ITF, XML, awk, FME
- Know and apply appropriate software tools
ContentSemantic interoperability of GIS is in the main part of this lecture and means to transform back and forth (geo-) data with same content but different structure. The reduction of the necessary programming amount to a modest minimum is provided by the system-independent model-driven approach. Its elements reality selection, conceptual modelling, flexible standard formats, 1:1 processors and semantic transformation are presented and used. As generally useful tools are introduced and applied the conceptual schema languages UML and INTERLIS, the flexible transfer formats ITF, XML the ILI-Checker, the efficient reformatting tool awk and for the semantic transformation UMLT and FME.
Prerequisites / NoticeCondition for participation: Successful bachelor lecture GIS II
103-0778-00LGIS and Geoinformatics LabW4 credits4PM. Raubal
AbstractIndependent study project with (mobile) geoinformation technologies.
ObjectiveLearn how to work with (mobile) geoinformation technologies (including application design and programming).
Major in Planning
NumberTitleTypeECTSHoursLecturers
103-0347-00LLandscape Planning and Environmental Systems Restricted registration - show details
Only for master students, otherwise a special permisson by the lecturers is required.
O3 credits2VA. Grêt-Regamey
AbstractIn the course, methods for the identification and measurement of landscape characteristics, as well as measures and implementation of landscape planning are taught. Landscape planning is put into the context of the environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.
ObjectiveThe aims of this course are:
1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3) To show the importance of ecosystem services.
4) To point out basic information about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of existing and foreseeable utilization of space (nature goods and services and landscape functions).
5) To identify and measure the characteristics of landscape.
6) Learn how to use the instrument of GIS appropriately in landscape planning.
ContentIn this course, the following topics are discussed:
- Definition of the concept of landscape
- Landscape change
- Landscape planning
- Methods, instruments and aims of landscape planning (politics)
- Socio-political questions of the future
- Environmental systems, IUCN Red List, ecological connectivity
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning
Lecture notesNo script. The documentation, consisting of presentation slides are partly handed out and are provided for download on the PLUS website.
Prerequisites / NoticeThe contents of the course will be illustrated in the associated lecture 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)). An combination of courses is recommended.
103-0337-00LSite and Project DevelopementW3 credits2GG. Nussbaumer, M. Sudau
AbstractThe main focus of the lecture is on site and project development questions in relation to recycling of industrial wasteland. A semester exercise covers a specific major project and serves as the semester grade (project report and presentation).
ObjectiveObjectives of the lecture are:
1) Acquire knowledge of comprehensive and multifunctional large-scale projects and their problem areas
2) Get deepened knowledge in selected fields (site analysis, market analysis, project development, cooperative planning, participation processes)
3) Practical orientation, insight into occupational fields
4) Independent acquirement and acquisition of theoretical knowledge
ContentThe lecture consists of several modules. The main focus is on site and project development questions in relation to recycling of industrial wasteland. Technical presentations, lectured by scientific staff of the division of Planning of Landscape and Urban Systems PLUS as well as well guest referees treat different subjects.

The subjects are:
-Site and market analysis
-Real estate development
-Project development from the perspective of project developers and investors
-Parking and transportation models
-Cooperative planning, participation processes, mediation

The theory is discussed and illustrated at case studies and exercises. Specific large-scale projects that are currently in the development phase will be discussed, for example the area Gaswerkareal Bern, the Sihl-Manegg area in Zurich (GreenCity) or the area Alter Pilatusmarkt (Niedfeld) Luzern. For one specific industrial wasteland area the students will develop a vision for a possible redevelopment and a new land-use concept, which will be discussed with experts.
Lecture notes-Handouts of the lectures
-Extracts from relevant scientific articles and theory literature
-Exercise material

Download: Link
103-0317-00LSustainable Spatial Development I
Only for master students, otherwise a special permisson by the lecturer is required.
O3 credits2GB. Scholl
AbstractThe lectures imparts important knowledge for solving spatial relevant conflicts and problems. Case studies will be used to demonstrate the implementation in practice.
ObjectiveSpatial development deals with the development and the design of our living space. To meet the expectations, the interests and the plans of the different actors, it is needed a planning approach considering the overview of both the actual and future situation.
The concept of sustainable development in spatial planning leads necessarily to an efficient management of the resources, especially regarding the resource land. The basics of this important discipline will be the subject of this lecture, which is therefore organised in three parts:
- Inner development
- Integrated spatial and infrastructure development
- Cross-border issues in spatial development
ContentContents

Tasks of Spatial Planning and development
Issues of local and supra-local interest
Recurring spatial changes, impacts and key figures
Formal and informal instruments and procedures in spatial planning
Spatial Design - Ideas about the future
Reasoning and assessing the situation in spatial planning
Spatial planning as a sequence of decisions and interventions
Process and procedures management
Focus issues - Inner development before external development
Focus issues - Cross-border tasks
Focus Issues - Integrated spatial and infrastructure development
Lecture notesFuther information and the documents for the lecture can be found on the homepage of the Chair of Spatial Development.
103-0417-02LTheory and Methodology of Spatial Planning
Only for master students, otherwise a special permisson by the lecturer is required.
W3 credits2GM. Nollert
AbstractIn order to solve problems in spatial planning it is necessary to explore actions and to judge them; finally, one has to argue why a certain option should be preferred to others. Assessments of the situation are the basis for the problems to treat. Specific knowledge, represented in an adequate manner, is required.
ObjectiveThe participants know the interdependencies between the assessment of a situation, decision making, knowlegde and language. They know the nature of a decision dilemma und maximes, how to deal with it. Especially they learn that the requirement of information for a decision depends upon the preferences of the deciding acteur. They are also familiar with difficulties and pitfalls within these contexts and know what can be done against it.
ContentThe lecture deals with a discussion of theories and methods of/ about spatial planning and their evolution. It imparts deeper skills in dealing with typical methodic challenges of planning in complex systems
Assessment of the situation, deciding, language and knowledge are the main parts.
Lecture notesLearning materials: available online (Moodle) before corresponding lecture.
101-0427-01LPublic Transport Design and Operations
Remark:
Former title until HS16 "System- und Netzplanung ".
W6 credits4GF. Corman, V. De Martinis
AbstractThis course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.
ObjectivePublic transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks.
Their various performance criteria based on various perspective and stakeholders.
The most relevant decision making problems in a planning tactical and operational point of view
At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
general introduction of transport, modes, technologies,
system design and line planning for different situations,
mathematical models for design and line planning
timetabling and tactical planning, and related mathematical approaches
operations, and quantitative support to operational problems,
evaluation of public transport systems.
ContentBasics for line transport systems and networks
Passenger/Supply requirements for line operations
Objectives of system and network planning, from different perspectives and users, design dilemmas
Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport

Planning process, from demand evaluation to line planning to timetables to operations
Matching demand and modes
Line planning techniques
Timetabling principles

Allocation of resources
Management of operations
Measures of realized operations
Improvements of existing services
Lecture notesLecture slides are provided.
LiteratureCeder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch)

Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English)

Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English)

Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English)

White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English)
101-0417-00LTransport Planning MethodsW6 credits4GK. W. Axhausen
AbstractThe course provides the necessary knowledge to develop models supporting the solution of given planning problems. This is done by dividing the forecasting problem into sub-problems.
The course is composed of a lecture part, providing the theoretical knowledge, and a applied part, in which students develop their own models.
Objective- Knowledge of methods and algorithms commonly used in transport planning
- Ability to independently develop a transport model able to solve / answer the given problem / questions
- Understanding of algorithms and their implementations commonly used in transport planning
ContentThe course provides the necessary knowledge to develop models supporting the solution of given planning problems. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations.

To cope with the forecasting problem it is first divided into sub-problems. Then, these are solved using various algorithms like iterative proportional fitting, shortest path algorithms and the method of successive averages.

The course is composed of a lecture part, providing the theoretical knowledge, and a applied part, in which students create their own models. This part takes place in form of a tutorial and consists in the development of a computer program. The programming part is closely guided and particularly suitable for students with little programming experience.
Lecture notesThe slides of the lecture are provided electronically.
LiteratureWillumsen, P. and J. de D. Ortuzar (2003) Modelling Transport, Wiley, Chichester.

Cascetta, E. (2001) Transportation Systems Engineering: Theory and Methods, Kluwer Academic Publishers, Dordrecht.

Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice Hall, Englewood Cliffs.
103-0347-01LLandscape Planning and Environmental Systems (GIS Exercises) Restricted registration - show details W3 credits2UA. Grêt-Regamey, V. Cohen, A. Stritih
AbstractThe course content of the lecture Landscape Planning and Environmental Systems (103-0347-00 V) will be illustrated.
ObjectiveTo show the importance of ecosystem services.
Analysis and assessment of the complex interactions between landscape elements.
To identify and measure the characteristics of landscape.
Learn how to use the instrument of GIS appropriately in landscape planning.
Content- Environmental systems, IUCN Red List, ecological connectivity
- Calculating urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning
- Modelling
- Landscape analysis
- Landscape metrics
Lecture notesNo script. The documentation, consisting of presentation slides are partly handed out and are provided for download on the PLUS website.
LiteratureWill be named in the lecture.
Prerequisites / NoticeBasic GIS skills are recommended. A brief introduction to GIS will be given in the first exercise.
103-0569-00LEuropean Aspects of Spatial DevelopmentW3 credits2GA. Peric Momcilovic
AbstractFollowing the insight into historical perspective and contemporary models of governance and planning, the course focuses on the international dimension of spatial planning in Europe. This includes a discussion of how European spatial policy is made and by whom, how planners can participate in such process and how they can address transnational challenges of spatial development cooperatively.
ObjectiveKeeping the general aim of exploring the European dimension of spatial planning in mind, the specific course learning objectives are as follows:
- to interpret the history of spatial planning at the transnational scale
- to understand and explain the content of the European spatial policy agenda
- to describe and analyse the role of territorial cooperation in making European spatial development patterns and planning procedures
- to discuss the changing role of planners and evaluate the ways of their engagement in European spatial policy-making
Content- European spatial policy agenda: introduction and basic directives
- governance models
- planning models; collaborative planning model (main concepts & critics)
- post-positivist approach to spatial planning
- transnational spatial planning in Europe; questioning the European spatial planning; spatial development trends in Europe
- EU as a political system: EU institutions & non-EU actors
- planning families in Europe; the European spatial planning agenda
- spatial planning strategies and programmes on territorial cooperation
- the notion of planning culture and planning system; planning cultures in Europe
- basic characteristics of planning systems in Europe
- the relevance of European transnational cooperation for spatial planning
- European transnational initiatives: CODE 24 (Rotterdam-Genoa), Orient/east-Med corridor (Hamburg-Athens), Danube region
Lecture notesThe documents for the lecture will be provided at the moodle, Link.
LiteratureObligatory literature:
- Dühr, S., Colomb, C. & Nadin, V. (2010). European Spatial Planning and Territorial Cooperation. London: Routledge.

Recommended literature:
Governance models:
- Martens, K. (2007). Actors in a Fuzzy Governance Environment. In G. de Roo & G. Porter (Eds.), Fuzzy Planning: The Role of Actors in a Fuzzy Governance Environment (pp. 43-65). Abingdon, Oxon, GBR: Ashgate Publishing Group.

Planning models:
- Davoudi, S. & Strange, I. (2009). Conceptions of Space and Place in Strategic Spatial Planning. Abingdon, Oxon, GBR: Routledge.
- Allmendinger, P. (2002). The Post-Positivist Landscape of Planning Theory. In P. Allmendinger & M. Tewdwr-Jones (Eds.), Planning Futures: New Directions for Planning Theory (pp. 3-17). London: Routledge.
- Healey, P. (1997). Collaborative Planning - Shaping places in fragmented societies. London: MacMillan Press.

EU as a political context:
- Williams, R. H. (1996). European Union Spatial Policy and Planning. London: Sage.

Territorial cooperation in Europe:
- Dühr, S., Stead, D. & Zonneveld, W. (2007). The Europeanization of spatial planning through territorial cooperation. Planning Practice & Research, 22(3), 291-307.
- Dühr, S. & Nadin, V. (2007). Europeanization through transnational territorial cooperation? The case of INTERREG IIIB North-West Europe. Planning Practice and Research, 22(3), 373-394.
- Faludi, A. (Ed.) (2002). European Spatial Planning. Cambridge, Mass.: Lincoln institute of land policy.
- Faludi, A. (2010). Cohesion, Coherence, Cooperation: European Spatial Planning Coming of Age? London: Routledge.
- Faludi, A. (2014). EUropeanisation or Europeanisation of spatial planning? Planning Theory & Practice, 15(2), 155-169.
- Kunzmann, K. R. (2006). The Europeanisation of spatial planning. In N. Adams, J. Alden & N. Harris (Eds.), Regional Development and Spatial Planning in an Enlarged European Union. Aldershot: Ashgate.

Planning families and cultures:
- Newman, P. & Thornley, A. (1996). Urban Plannning in Europe: international competition, national systems and planning projects. London: Routledge.
- Knieling, J. & Othengrafen, F. (Eds.). (2009). Planning Cultures in Europe: Decoding Cultural Phenomena in Urban and Regional Planning. Aldershot: Ashgate.
- Stead, D., de Vries, J. & Tasan-Kok, T. (2015). Planning Cultures and Histories: Influences on the Evolution of Planning Systems and Spatial Development Patterns. European Planning Studies, 23(11), 2127-2132.
- Scholl, B. (Eds.) (2012). Spaces and Places of National Importance. Zurich: ETH vdf Hochschulverlag.

Planning systems in Europe:
- Nadin, V. & Stead, D. (2008). European Spatial Planning Systems, Social Models and Learning. disP - The Planning Review, 44(172), 35-47.
- Commission of the European Communities. (1997). The EU compendium of spatial planning systems and policies. Luxembourg: Office for Official Publications of the European Communities.
Prerequisites / NoticeOnly for master students, otherwise a special permission by the lecturer is required.
  • First page Previous page Page  2  of  2     All