Search result: Catalogue data in Autumn Semester 2022
Mechanical Engineering Bachelor ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Focus Coordinator: Prof. Kristina Shea In order to achieve the required 20 credit points for the Focus Specialization Design, Mechanics and Material you are free to choose any of the courses offered within the focus and are encouraged to select among those recommended. If you wish to take one of the Master level courses, you must get approval from the lecturer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0364-00L | Lightweight Structures Laboratory ![]() ![]() Number of participants limited to 24. | W+ | 4 credits | 5A | M. Zogg, P. Ermanni | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Teams of 2 to 3 students have to design, size, and manufacture a lightweight structre complying with given specifications. An aircraft wing spar prototype as well as later a second improved spar will be tested and assessed regarding to design and to structural mechanical criteria. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | To develop the skills to identify and solve typical problems of the structure mechanics on a real application. Other important aspects are to foster team work and team spirit, to link theoretical knowledge and practice, to gather practical experiences in various fields related to lightweight structures such as design, different CAE-methods and structural testing. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The task of each team (typically 2-2 students) is the realization of a reduced-scale aircraft wing spar, a typical load-carrying structure, with selected materials. The teams are free to develop and implement their own ideas. In this context, specified requirements include information about loads, interface to the surrounding structures. The project is structured as described below: - Concept development - design of the component including FEM simulation and stability checks - manufacturing and structural testing of a prototype in the lab - manufacturing and structural testing of an improved component in the lab - cost assessment - Report The project work is supported by selected teaching units. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | handouts for selected topics are available | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3207-00L | Lightweight | W+ | 4 credits | 2V + 2U | P. Ermanni, T. Tancogne-Dejean, M. Zogg | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The elective course Lightweight includes numerical methods for the analysis of the load carrying and failure behavior of lightweight structures, as well as construction methods and design principles for lightweight design. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is to convey substantiated background for the understanding and the design and sizing of modern lightweight structures in mechanical engineering, vehicle and airplane design. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Lightweight design Thin-walled beams and structures Instability behavior of thin walled structures Reinforced shell structures Load introduction in lightweight structures Joining technology Sandwich design | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script, Handouts, Exercises | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3213-00L | Integrative Ski Building Workshop ![]() Number of participants limited to 12. To apply, please send the following information to jchapuis@ethz.ch by 31.08.2022: Letter of Motivation (one page) , CV, Transcript of Records. | W+ | 4 credits | 9P | K. Shea | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces students to engineering design and fabrication by building their own skis or snowboard. Theoretical and applied engineering design skills like CAD, analysis and engineering of mechanical properties, 3D printing, laser cutting and practical handcrafting skills are acquired in the course. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objectives of the course are to use the practical ski/board design and building exercise to gain hands-on experience in design, mechanics and materials. A selection of sustainable materials are also used to introduce students to sustainable design. The built skis/board will be mechanically tested in the lab as well as together out in the field on a ski day and evaluated from various perspectives. Students can keep their personal built skis/boards after the course. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This practical ski/board design and building workshop consists of planning, designing, engineering and building your own alpine ski or snowboard. Students learn and execute all the needed steps in the process, such as engineering design, CAD, material selection, analysis of the mechanical properties of a composite layup, fabrication, routing wood cores, 3D printing of plastic protectors, milling side walls from wood or ABS plastic, laying up the fibers from carbon, glas, basalt or flax, laminating with resins, sanding and finishing, as well as laser engraving and veneer wood inlays. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | available on Moodle | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Willingness to engage in the practical building of your ski/board also beyond the course hours in the evening. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive Manufacturing Note: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 credits | 3G | D. Ahmed | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0524-00L | Continuum Mechanics I | W | 4 credits | 2V + 1U | A. E. Ehret | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture deals with constitutive models that are relevant for the design and analysis of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity and viscoplasticity. The basic concepts of homogenization and laminate theory are introduced. Theoretical models are complemented by examples of engineering applications and experiments. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic theories for solving continuum mechanics problems of engineering applications, with particular focus on constitutive models. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0544-00L | Metal Additive Manufacturing - Mechanical Integrity and Numerical Analysis | W | 4 credits | 3G | E. Hosseini | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An introduction to Metal Additive Manufacturing (MAM) (e.g. different techniques, the metallurgy of common alloy-systems, existing challenges) will be given. The focus of the lecture will be on the employment of different simulation approaches to address MAM challenges and to enable exploiting the full advantage of MAM for the manufacture of structures with desired property and functionality. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main objectives of this lecture are: - Acknowledging the possibilities and challenges for MAM (with a particular focus on mechanical integrity aspects), - Understanding the importance of material science and metallurgical considerations in MAM, - Appreciating the importance of thermal, fluid, mechanical and microstructural simulations for efficient use of MAM technology, - Using different commercial analysis tools (COMSOL, ANSYS, ABAQUS) for simulation of the MAM process. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Introduction to MAM (concept, application examples, pros & cons), - Powder-bed and powder-blown metal additive manufacturing, - Thermo-fluid analysis of additive manufacturing, - Continuum-based thermal modelling and experimental validation techniques, - Residual stress and distortion simulation and verification methods, - Microstructural simulation (basics, analytical, kinetic Monte Carlo, cellular automata, phase-field), - Mechanical property prediction for MAM, - Microstructure and mechanical response of MAM material (steels, Ti6Al4V, Inconel, Al alloys), - Design for additive manufacturing - Artificial intelligence for AM Exercise sessions use COMSOL, ANSYS, ABAQUS packages for analysis of MAM process. Detailed video instructions will be provided to enable students to set up their own simulations. COMSOL, ANSYS and ABAQUS agreed to support the course by providing licenses for the course attendees and therefore the students can install the packages on their own systems. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts of the presented slides. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | No textbook is available for the course (unfortunately), since it is a dynamic and relatively new topic. In addition to the material presented in the course slides, suggestions/recommendations for additional literature/publications will be given (for each individual topic). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | A basic knowledge of mechanical analysis, metallurgy, thermodynamics is recommended. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-3209-00L | Engineering Design Optimization ![]() Number of participants limited to 60. | W | 4 credits | 4G | K. Shea, T. Stankovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers fundamentals of computational optimization methods in the context of engineering design. It develops skills to formally state and model engineering design tasks as optimization problems and select appropriate methods to solve them. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The lecture and exercises teach the fundamentals of optimization methods in the context of engineering design. After taking the course students will be able to express engineering design problems as formal optimization problems. Students will also be able to select and apply a suitable optimization method given the nature of the optimization model. They will understand the links between optimization and engineering design in order to design more efficient and performance optimized technical products. The exercises are MATLAB based. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Optimization modeling and theory 2. Unconstrained optimization methods 2. Constrained optimization methods - linear and non-linear 4. Direct search methods 5. Stochastic and evolutionary search methods 6. Multi-objective optimization | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | available on Moodle | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-1204-00L | Materials at Work I | W | 4 credits | 4S | R. Spolenak, E. Dufresne, R. Koopmans | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Teaching goals: to learn how materials are selected for a specific application to understand how materials around us are produced and manufactured to understand the value chain from raw material to application to be exposed to state of the art technologies for processing, joining and shaping to be exposed to industry related materials issues and the corresponding language (terminology) and skills to create an impression of how a job in industry "works", to improve the perception of the demands of a job in industry | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course is designed as a two semester class and the topics reflect the contents covered in both semesters. Lectures and case studies encompass the following topics: Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted) Materials Selection (what is the optimal material (class) for a specific application) Materials systems (subdivisions include all classical materials classes) Processing Joining (assembly) Shaping Materials and process scaling (from nm to m and vice versa, from mg to tons) Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery) After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed. In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Manufacturing, Engineering & Technology Serope Kalpakjian, Steven Schmid ISBN: 978-0131489653 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Profound knowledge in Physical Metallurgy and Polymer Basics and Polymer Technology required (These subjects are covered at the Bachelor Level by the following lectures: Metalle 1, 2; Polymere 1,2) |
Page 1 of 1