# Search result: Catalogue data in Spring Semester 2022

Physics Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Electives | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Electives: Physics and Mathematics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Selection: Solid State Physics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

402-0516-10L | Group Theory and its ApplicationsDoes not take place this semester. | W | 12 credits | 3V + 3U | to be announced | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This lecture introduces the use of group theory to solve problems of quantum mechanics, condensed matter physics and particle physics. Symmetry is at the roots of quantum mechanics: this lecture is also a tutorial for students that would like to understand the practical side of the (often difficult) mathematical exposition of regular courses on quantum mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The aim of this lecture is to give a practical knowledge on the application of symmetry in atomic-, molecular-, condensed matter- and particle physics. The lecture is intended for students at the master and Phd. level in Physics that would like to have a practical and comprehensive view of the role of symmetry in physics. Students in their third year of Bachelor will be perfectly able to follow the lecture and can use it for their future master curriculuum. Students from other Departements are welcome, as the lecture is designed to be (almost) self-contained. As symmetry is omnipresent in science and in particular quantum mechanics, this lecture is also a tutorial on quantum mechanics for students that would like to understand what is behind the often difficult mathematical exposition of regular courses on quantum mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 1. Abstract Group Theory and representation theory of groups (Fundamentals of groups, Groups and geometry, Point and space groups, Representation theory of groups (H. Weyl, 1885-1955), Reducible and irreducible representations , Properties of irreducible representations, Characters of a representation and theorems involving them, Symmetry adapted vectors) 2. Group theory and eigenvalue problems (General introduction and practical examples) 3. Representations of continuous groups (the circle group, The full rotation group, atomic physics, the translation group and the Schrödinger representation of quantum mechanics, Cristal field splitting, The Peter-Weyl theorem, The Stone-von Neumann theorem, The Harisch-Chandra character) 4. Space groups and their representations (Elements of crystallography, irreducible representations of the space groups, non-symmorphic space groups) 5. Topological properties of groups and half integer spins: tensor products, applications of tensor products, an introduction to the universal covering group, the universal covering group of SO3, SU(2), how to deal with the spin of the electron, Clebsch-Gordan coefficients, double point groups, the Clebsch-Gordan coefficients for point groups, the Wigner-Eckart-Koster theorem and its applications 6 The application of symmetry to phase transitions (Landau). 7. Young tableaus: many electron and particle physics (SU_3). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A manuscript is made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | -B.L. van der Waerden, Group Theory and Quantum Mechanics, Springer Verlag. ("Old" but still modern). - L.D. Landau, E.M. Lifshitz, Lehrbuch der Theor. Pyhsik, Band III, "Quantenmechanik", Akademie-Verlag Berlin, 1979, Kap. XII and Ibidem, Band V, "Statistische Physik", Teil 1, Akademie-Verlag 1987, Kap. XIII and XIV. (Very concise and practical) -A. Fässler, E. Stiefel, Group Theoretical Methods and Their applications, Birkhäuser. (A classical book on practical group theory, from a strong ETHZ school). - C. Isham, Lectures on group and vector spaces for physicists, World Scientific. (More mathematical but very didactical) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0536-00L | Ferromagnetism: From Thin Films to SpintronicsSpecial Students UZH must book the module PHY434 directly at UZH. | W | 6 credits | 3G | R. Allenspach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course extends the introductory course "Introduction to Magnetism" to the latest, modern topics in research in magnetism and spintronics. After a short revisit of the basic magnetism concepts, emphasis is put on novel phenomena in (ultra)thin films and small magnetic structures, displaying effects not encountered in bulk magnetism. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Knowing the most important concepts and applications of ferromagnetism, in particular on the nanoscale (thin films, small structures). Being able to read and understand scientific articles at the front of research in this area. Learn to know how and why magnetic storage, sensors, memories and logic concepts function. Learn to condense and present the results of a research articles so that colleagues understand. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Magnetization curves, magnetic domains, magnetic anisotropy; novel effects in ultrathin magnetic films and multilayers: interlayer exchange, spin transport; magnetization dynamics, spin precession. Applications: Magnetic data storage, magnetic memories, spin-based electronics, also called spintronics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes will be handed out (in English). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | This course can be easily followed also without having attended the "Introduction to Magnetism" course. Language: English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0318-00L | Semiconductor Materials: Characterization, Processing and Devices | W | 6 credits | 2V + 1U | S. Schön, M. Shayegan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course gives an introduction into the fundamentals of semiconductor materials. The main focus in this semester is on state-of-the-art characterization, semiconductor processing and devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Basic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 1. Material characterization: structural and chemical methods 1.1 X-ray diffraction methods (Powder diffraction, HRXRD, XRR, RSM) 1.2 Electron microscopy Methods (SEM, EDX, TEM, STEM, EELS) 1.3 SIMS, RBS 2. Material characterization: electronic methods 2.1 van der Pauw techniquel2.2 Floating zone method 2.2 Hall effect 2.3 Cyclotron resonance spectroscopy 2.4. Quantum Hall effect 3. Material characterization: Optical methods 3.1 Absorption methods 3.2 Photoluminescence methods 3.3 FTIR, Raman spectroscopy 4. Semiconductor processing: lithography 4.1 Optical lithography methods 4.2 Electron beam lithography 4.3 FIB lithography 4.4 Scanning probe lithography 4.5 Direct growth methods (CEO, Nanowires) 5. Semiconductor processing: structuring of layers and devices 5.1 Wet etching methods 5.2 Dry etching methods (RIE, ICP, ion milling) 5.3 Physical vapor depositon methods (thermal, e-beam, sputtering) 5.4 Chemical vapor Deposition methods (PECVD, LPCVD, ALD) 5.5 Cleanroom basics & tour 6. Semiconductor devices 6.1 Semiconductor lasers 6.2 LED & detectors 6.3 Solar cells 6.4 Transistors (FET, HBT, HEMT) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | https://moodle-app2.let.ethz.ch/course/view.php?id=16802 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The "compulsory performance element" of this lecture is a short presentation of a research paper complementing the lecture topics. Several topics and corresponding papers will be offered on the moodle page of this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0596-00L | Electronic Transport in Nanostructures | W | 6 credits | 2V + 1U | T. M. Ihn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The lecture discusses modern topics in quantum transport through nanostructures including the underlying materials. Topics are: quantum transport effects, transport in graphene and other 2D layered materials, quantum dot qubits for quantum information processing, decoherence of quantum states | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Students are able to understand modern experiments in the field of electronic transport in nanostructures. They can critically reflect published research in this field and explain it to an audience of physicists. Students know and understand the fundamental phenomena of electron transport in the quantum regime and their significance. They are able to apply their knowledge to practical experiments in a modern research lab. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | The lecture is based on the book: T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, 2010. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | A solid basis in quantum mechanics, electrostatics, quantum statistics and in solid state physics is required. Having passed the lecture Semiconductor Nanostructures (fall semester) may be advantageous, but is not required. Students of the Master in Micro- and Nanosystems should at least have attended the lecture by David Norris, Introduction to quantum mechanics for engineers. They should also have passed the exam of the lecture Semiconductor Nanostructures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0564-00L | Solid State OpticsDoes not take place this semester. | W | 6 credits | 2V + 1U | L. Degiorgi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The interaction of light with the condensed matter is the basic idea and principal foundation of several experimental spectroscopic methods. This lecture is devoted to the presentation of those experimental methods and techniques, which allow the study of the electrodynamic response of solids. I will also discuss recent experimental results on materials of high interest in the on-going solid-stat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The lecture will give a basic introduction to optical spectroscopic methods in solid state physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Chapter 1 Maxwell equations and interaction of light with the medium Chapter 2 Experimental methods: a survey Chapter 3 Kramers-Kronig relations; optical functions Chapter 4 Drude-Lorentz phenomenological method Chapter 5 Electronic interband transitions and band structure effects Chapter 6 Selected examples: strongly correlated systems and superconductors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | manuscript (in english) is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | F. Wooten, in Optical Properties of Solids, (Academic Press, New York, 1972) and M. Dressel and G. Gruener, in Electrodynamics of Solids, (Cambridge University Press, 2002). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Exercises will be proposed every week for one hour. There will be also the possibility to prepare a short presentations based on recent scientific literature (more at the beginning of the lecture). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0528-12L | Ultrafast Methods in Solid State Physics | W | 6 credits | 2V + 1U | S. Johnson, M. Savoini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | In condensed matter physics, “ultrafast” refers to dynamics on the picosecond and femtosecond time scales, the time scales where atoms vibrate and electronic spins flip. Measuring real-time dynamics on these time scales is key to understanding materials in nonequilibrium states. This course offers an overview and understanding of the methods used to accomplish this in modern research laboratories. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The goal of the course is to enable students to identify and evaluate experimental methods to manipulate and measure the electronic, magnetic and structural properties of solids on the fastest possible time scales. This offers new fundamental insights on the couplings that bind solid-state systems together. It also opens the door to new technological applications in data storage and processing involving metastable states that can be reached only by driving systems far from equilibrium. This course offers an overview of ultrafast methods as applied to condensed matter physics. Students will learn which methods are appropriate for studying relevant scientific questions, and will be able to describe their relative advantages and limitations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The topical course outline is as follows: Chapter 1: Introduction - Important time scales for dynamics in solids and their applications - Time-domain versus frequency-domain experiments - The pump-probe technique: general advantages and limits Chapter 2: Overview of ultrafast processes in solids - Carrier dynamics in response to ultrafast laser interactions - Dynamics of the lattice: coherent vs. incoherent phonons - Ultrafast magnetic phenomena Chapter 3: Ultrafast optical-frequency methods - Ultrafast laser sources (oscillators and amplifiers) - Generating broadband pulses - Second and third order harmonic generation - Optical parametric amplification - Fluorescence spectroscopy - Advanced optical pump-probe techniques Chapter 4: THz- and mid-infrared frequency methods - Low frequency interactions with solids - Difference frequency mixing - Optical rectification - Time-domain spectroscopy Chapter 5: VUV and x-ray frequency methods - Synchrotron based sources - Free electron lasers - High-harmonic generation - X-ray diffraction - Time-resolved X-ray microscopy & coherent imaging - Time-resolved core-level spectroscopies Chapter 6: Time-resolved electron methods - Ultrafast electron diffraction - Time-resolved electron microscopy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Will be distributed via moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Will be distributed via moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Although the course "Ultrafast Processes in Solids" (402-0526-00L) is useful as a companion to this course, it is not a prerequisite. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0532-00L | Quantum Solid State Magnetism | W | 6 credits | 2V + 1U | K. Povarov | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course is based on the principal modern tools used to study collective magnetic phenomena in the Solid State, namely correlation and response functions. It is quite quantitative, but doesn't contain any "fancy" mathematics. Instead, the theoretical aspects are balanced by numerous experimental examples and case studies. It is aimed at theorists and experimentalists alike. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Learn the modern theoretical foundations and "language", as well as principles and capabilities of the latest experimental techniques, used to describe and study collective magnetic phenomena in the Solid State. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | - Magnetic response and correlation functions. Analytic properties. Fluctuation-dissipation theorem. Experimental methods to measure static and dynamic correlations. - Magnetic response and correlations in metals. Diamagnetism and paramagnetism. Magnetic ground states: ferromagnetism, spin density waves. Excitations in metals, spin waves. Experimental examples. - Magnetic response and correlations of magnetic ions in crystals: quantum numbers and effective Hamiltonians. Application of group theory to classifying ionic states. Experimental case studies. - Magnetic response and correlations in magnetic insulators. Effective Hamiltonians. Magnetic order and propagation vector formalism. The use of group theory to classify magnetic structures. Determination of magnetic structures from diffraction data. Excitations: spin wave theory and beyond. "Triplons". Measuring spin wave spectra. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A comprehensive textbook-like script is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | In principle, the script is suffient as study material. Additional reading: -"Magnetism in Condensed Matter" by S. Blundell -"Quantum Theory of Magnetism: Magnetic properties of Materials" by R. M. White -"Lecture notes on Electron Correlations and Magnetism" by P. Fazekas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisite: 402-0861-00L Statistical Physics 402-0501-00L Solid State Physics Not prerequisite, but a good companion course: 402-0871-00L Solid State Theory 402-0257-00L Advanced Solid State Physics 402-0535-00L Introduction to Magnetism | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-2130-00L | Introducing Photons, Neutrons and Muons for Materials Characterisation Only for MSc Materials Science and MSc Physics. | W | 2 credits | 3G | A. Hrabec | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course takes place at the campus of the Paul Scherrer Institute. The program consists of introductory lectures on the use of photons, neutrons and muons for materials characterization, as well as tours of the large scale facilities of PSI. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The aim of the course is that the students acquire a basic understanding on the interaction of photons, neutrons and muons with matter and how one can use these as tools to solve specific problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course runs for one week in June (20st to 24th), 2022. It takes place at the campus of the Paul Scherrer Institute. The morning consists of introductory lectures on the use of photons, neutrons and muons for materials characterization. In the afternoon tours of the large scale facilities of PSI (Swiss Light Source, Swiss Spallation Neutron Source, Swiss Muon Source, Swiss Free Electron Laser), are foreseen, as well as in depth visits to some of the instruments. At the end of the week, the students are required to give an oral presentation about a scientific topic involving the techniques discussed. Time for the presentation preparations will be allocated in the afternoon. • Interaction of photons, neutrons and muons with matter • Production of photons, neutrons and muons • Experimental setups: optics and detectors • Crystal symmetry, Bragg’s law, reciprocal lattice, structure factors • Elastic and inelastic scattering with neutrons and photons • X-ray absorption spectroscopy, x-ray magnetic circular dichroism • Polarized neutron scattering for the study of magnetic materials • Imaging techniques using x-rays and neutrons • Introduction to muon spin rotation • Applications of muon spin rotation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Slides from the lectures will be available on the internet prior to the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | • Philip Willmott: An Introduction to Synchrotron Radiation: Techniques and Applications, Wiley, 2011 • J. Als-Nielsen and D. McMorrow: Elements of Modern X-Ray Physics, Wiley, 2011. • G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications (1997). • Muon Spin Rotation, Relaxation, and Resonance, Applications to Condensed Matter" Alain Yaouanc and Pierre Dalmas de Réotier, Oxford University Press, ISBN: 9780199596478 • “Physics with Muons: from Atomic Physics to Condensed Matter Physics”, A. Amato https://www.psi.ch/lmu/EducationLecturesEN/A_Amato_05_06_2018.pdf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | This is a block course for students who have attended courses on condensed matter or materials physics. Registration at PSI website (http://indico.psi.ch/event/PSImasterschool) required by March 20th, 2022. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0533-00L | Quantum Acoustics and Optomechanics | W | 6 credits | 2V + 1U | Y. Chu | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course gives an introduction to the interaction of mechanical motion with electromagnetic fields in the quantum regime. There are parallels between the quantum descriptions of mechanical resonators, electrical circuits, and light, but each system also has its own unique properties. We will explore how interfacing them can be useful for technological applications and fundamental science. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | The course aims to prepare students for performing theoretical and/or experimental research in the fields of quantum acoustics and optomechanics. For example, after this course, students should be able to: - understand and explain current research literature in quantum acoustics and optomechanics - predict and simulate the behavior of mechanical quantum systems using tools such as the QuTiP package in Python - apply concepts discussed in the class toward designing devices and experiments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The focus of this course will be on the properties of and interactions between mechanical and electromagnetic systems in the context of quantum information and technologies. We will only briefly touch upon precision measurement and sensing with optomechanics since it is the topic of another course (227-0653-00L). Some topics that will be covered are: - Mechanical motion and acoustics in solid state materials - Quantum description of motion, electrical circuits, and light. - Different models for quantum interactions: optomechanical, Jaynes-Cummings, etc. - Mechanisms for mechanical coupling to electromagnetic fields: piezoelectricity, electrostriction, radiation pressure, etc. - Coherent interactions vs. dissipative processes: phenomenon and applications in different regimes. - State-of the art electromechanical and optomechanical systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Notes will be provided for each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Parts of books and research papers will be used. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Basic knowledge of quantum mechanics is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0532-50L | Quantum Solid State Magnetism IIDoes not take place this semester. | W | 6 credits | 2V + 1U | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course covers the modern developments and problems in the field of solid state magnetism. It has the special emphasis on the phenomena that go beyond semiclassical approximation, such as quantum paramagnets, spin liquids and magnetic frustration. The course is aimed at both the experimentalists and theorists, and the theoretical concepts are balanced by the experimental data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Learning objective | Learn the modern approach to the complex magnetic phases of matter and the transitions between them. A number of theoretical approaches that go beyond the linear spin wave theory will be discussed during the course, and an overview of the experimental status quo will be given. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | - Phase transitions in the magnetic matter. Classical and quantum criticality. Consequences of broken symmetries for the spectral properties. Absence of order in the low-dimensional systems. Berezinskii-Kosterlitz-Thouless transition and its relevance to “layered” magnets. - Failures of linear spin wave theory. Spin wave decays. Antiferromagnets as bosonic systems. Gapped “quantum paramagnets” and their phase diagrams. Extended spin wave theory. Magnetic “Bose-Einstein condensation”. - Spin systems in one dimension: XY, Ising and Heisenberg model. Lieb-Schultz-Mattis theorem. Tomonaga-Luttinger liquid description of the XXZ spin chains. Spin ladders and Haldane chains. Critical points in one dimension and generalized phase diagram. - Effects of disorder in magnets. Harris criterion. “Spin islands” in depleted gapped magnets. - Introduction into magnetic frustration. Order-from-disorder phenomena and triangular lattice in the magnetic field. Frustrated chain and frustrated square lattice models. Exotic magnetic states in two dimensions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A comprehensive textbook-like script is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | In principle, the script is sufficient as study material. Additional reading: -"Interacting Electrons and Quantum Magnetism" by A. Auerbach -"Basic Aspects of The Quantum Theory of Solids " by D. Khomskii -"Quantum Physics in One Dimension" by T. Giamarchi -"Quantum Theory of Magnetism: Magnetic properties of Materials" by R. M. White -"Frustrated Spin Systems" ed. H. T. Diep | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisite: 402-0861-00L Statistical Physics 402-0501-00L Solid State Physics Not prerequisite, but a good companion course: 402-0871-00L Solid State Theory 402-0257-00L Advanced Solid State Physics 402-0535-00L Introduction to Magnetism 402-0532-00L Quantum Solid State Magnetism I |

- Page 1 of 1