Search result: Catalogue data in Spring Semester 2021

Electrical Engineering and Information Technology Master Information
Master Studies (Programme Regulations 2018)
Computers and Networks
The core courses and specialization courses below are a selection for students who wish to specialize in the area of "Computers and Networks", see Link.

The individual study plan is subject to the tutor's approval.
Core Courses
These core courses are particularly recommended for the field of "Computers and Networks".
You may choose core courses form other fields in agreement with your tutor.

A minimum of 24 credits must be obtained from core courses during the MSc EEIT.
Foundation Core Courses
NumberTitleTypeECTSHoursLecturers
227-0104-00LCommunication and Detection Theory Information W6 credits4GA. Lapidoth
AbstractThis course teaches the foundations of modern digital communications and detection theory. Topics include the geometry of the space of energy-limited signals; the baseband representation of passband signals, spectral efficiency and the Nyquist Criterion; the power and power spectral density of PAM and QAM; hypothesis testing; Gaussian stochastic processes; and detection in white Gaussian noise.
ObjectiveThis is an introductory class to the field of wired and wireless communication. It offers a glimpse at classical analog modulation (AM, FM), but mainly focuses on aspects of modern digital communication, including modulation schemes, spectral efficiency, power budget analysis, block and convolu- tional codes, receiver design, and multi- accessing schemes such as TDMA, FDMA and Spread Spectrum.
Content- Baseband representation of passband signals.
- Bandwidth and inner products in baseband and passband.
- The geometry of the space of energy-limited signals.
- The Sampling Theorem as an orthonormal expansion.
- Sampling passband signals.
- Pulse Amplitude Modulation (PAM): energy, power, and power spectral density.
- Nyquist Pulses.
- Quadrature Amplitude Modulation (QAM).
- Hypothesis testing.
- The Bhattacharyya Bound.
- The multivariate Gaussian distribution
- Gaussian stochastic processes.
- Detection in white Gaussian noise.
Lecture notesn/a
LiteratureA. Lapidoth, A Foundation in Digital Communication, Cambridge University Press, 2nd edition (2017)
227-0120-00LCommunication Networks Information W6 credits4GL. Vanbever
AbstractAt the end of this course, you will understand the fundamental concepts behind communication networks and the Internet. Specifically, you will be able to:

- understand how the Internet works;
- build and operate Internet-like infrastructures;
- identify the right set of metrics to evaluate the performance of a network and propose ways to improve it.
ObjectiveAt the end of the course, the students will understand the fundamental concepts of communication networks and Internet-based communications. Specifically, students will be able to:

- understand how the Internet works;
- build and operate Internet-like network infrastructures;
- identify the right set of metrics to evaluate the performance or the adequacy of a network and propose ways to improve it (if any).

The course will introduce the relevant mechanisms used in today's networks both from an abstract perspective but also from a practical one by presenting many real-world examples and through multiple hands-on projects.

For more information about the lecture, please visit: Link
Lecture notesLecture notes and material for the course will be available before each course on: Link
LiteratureMost of course follows the textbook "Computer Networking: A Top-Down Approach (6th Edition)" by Kurose and Ross.
Prerequisites / NoticeNo prior networking background is needed. The course will include some programming assignments (in Python) for which the material covered in Technische Informatik 1 (227-0013-00L) will be useful.
  •  Page  1  of  1