Search result: Catalogue data in Spring Semester 2021

Mechanical Engineering Bachelor Information
6. Semester
Focus Specialization
Manufacturing Science
Focus Coordinator: Prof. Konrad Wegener
To achieve the required 20 credit points for the focus specialization you need to pass all 3 compulsory courses (HS/FS). The other 8 credit points can be achieved from the elective courses.
NumberTitleTypeECTSHoursLecturers
151-0720-00LProduction Machines IO4 credits4GK. Wegener, S. Weikert
AbstractFirst part of the lecture on production machines. Introduction to the special features of production machines on the basis of metal cutting and forming machine tools. Dimensioning and design, as well as specific functional components.
ObjectiveElaboration of the special requirements on the machine tools, such as precision, dynamics, long-life and their realisation. Development and respectively assortment of the most important components.
ContentBasics of the machine tool design, Six-point principal is shown. Components of machine tools (foundations, frames, bearings, guides, measuring systems, drives and their control) and their types of machine designs. Terminology, classification and quality characteristics. Special components and selected types of forming machines and there design and dimensioning. Insight into safety of machinery and automation.
Lecture notesyes
151-0306-00LVisualization, Simulation and Interaction - Virtual Reality I Information W+4 credits4GA. Kunz
AbstractTechnology of Virtual Reality. Human factors, Creation of virtual worlds, Lighting models, Display- and acoustic- systems, Tracking, Haptic/tactile interaction, Motion platforms, Virtual prototypes, Data exchange, VR Complete systems, Augmented reality, Collaboration systems; VR and Design; Implementation of the VR in the industry; Human Computer Interfaces (HCI).
ObjectiveThe product development process in the future will be characterized by the Digital Product which is the center point for concurrent engineering with teams spreas worldwide. Visualization and simulation of complex products including their physical behaviour at an early stage of development will be relevant in future. The lecture will give an overview to techniques for virtual reality, to their ability to visualize and to simulate objects. It will be shown how virtual reality is already used in the product development process.
• Students are able to evaluate and select the most appropriate VR technology for a given task regarding:
o Visualization technologies displays/projection systems/head-mounted displays
o Tracking systems (inertia/optical/electromagnetic)
o Interaction technologies (sensing gloves/real walking/eye tracking/touch/etc.)
• Students are able to develop a VR application
• Students are able to apply VR to industrial needs
• Students will be able to apply the gained knowledge to a practical realization
• Students will be able to compare different operation principles (VR/AR/MR/XR)
ContentIntroduction to the world of virtual reality; development of new VR-techniques; introduction to 3D-computergraphics; modelling; physical based simulation; human factors; human interaction; equipment for virtual reality; display technologies; tracking systems; data gloves; interaction in virtual environment; navigation; collision detection; haptic and tactile interaction; rendering; VR-systems; VR-applications in industry, virtual mockup; data exchange, augmented reality.
Lecture notesA complete version of the handout is also available in English.
Prerequisites / NoticeVoraussetzungen:
keine
Vorlesung geeignet für D-MAVT, D-ITET, D-MTEC und D-INF

Testat/ Kredit-Bedingungen/ Prüfung:
– Teilnahme an Vorlesung und Kolloquien
– Erfolgreiche Durchführung von Übungen in Teams
– Mündliche Einzelprüfung 30 Minuten
151-0516-00LNon-smooth Dynamics
Diese Lerneinheit wird zum letzten Mal im FS21 angeboten.
W+5 credits5GC. Glocker
AbstractInequality problems in dynamics, in particular friction and impact problems with discontinuities in velocity and acceleration. Mechanical models of unilateral contacts, friction, sprag clutches, pre-stressed springs. Formulation by set-valued maps as linear complementarity problems. Numerical time integration of the combined friction impact contact problem.
ObjectiveThe lecture provides the students an introduction to modern methods for inequality problems in dynamics. The contents of the lecture are fitted to frictional contact problems in mechanics, but can be transferred to a large class of inequality problems in technical sciences. The purpose of the lecture is to acquaint the students with a consistent generalization of classical mechanics towards systems with discontinuities, and to make them familiar with inequalities treated as set-valued constitutive laws.
Content1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Lineares Komplementaritätsproblem (LCP), Zeitdiskretisierung nach Moreau, Kontaktproblem in lokalen Koordinaten als LCP.
Lecture notesEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Prerequisites / NoticeKinematik und Statik & Dynamics
151-0718-00LMetrology for Production - Metrology of WorkpiecesW+4 credits2V + 2UA. Günther
AbstractThe course "Metrology of workpieces" deals with definition and measurement of errors in size, location, form and roughness of workpieces, with typical measuring instruments and their measurement uncertainties, including coordinate measuring machines and vision systems, QS according to ISO 9001, statistical process control, as well as with the thermal influences on geometrical measurements.
ObjectiveKnowledge of
- basics of geometrical metrology
- evaluation of size, location, form and roughness of workpieces
- typical measuring instruments and their measurement uncertainties
- coordinate metrology
- vision systems
- quality assurance system according to ISO 9001
- statistical process control
- application in the manufacturing process and for the evaluation of machine tool capability
ContentMetrology for production - metrology of workpieces
- basics, like kinematic mounting
- definition and evaluation of size, location, form, roughness
- thermal influences on size, location, form
- measurement uncertainty
- coordinate metrology and 3D coordinate measuring machines
- areal form testing (vision systems)
- quality assurance system according to ISO 9001
- statistical process control
- metrology in the manufacturing process
- statistical process control, process and machine tool capability
Lecture notesDocuments are provided during the course.
Prerequisites / NoticeExercises in the laboratories and with the measuring instruments of the institute for machine tools and manufacturing (IWF) provide the practical background for this course.
151-0740-00LMetal Additive Manufacturing – Fundamentals and Process TechnologyW+4 credits2V + 2UM. Bambach, L. Deillon, A. K. Eissing
AbstractThis lecture gives an introduction to the fundamentals and process technology of additive manufacturing processes with a focus on metals. The principles and technologies of laser powder bed fusion, directed energy deposition as well as sintering processes will be introduced.
ObjectiveThe students will learn
- the physics of the most important metal additive manufacturing processes including the interaction of energy sources (laser, electron beams, arc/plasma) and metals, the phenomena occurring during melting and solidification, the generation of stresses and defects
- the capabilities and limits of these processes
- the digital aspects of the process chains including preparation of geometries, slicing, hatching etc. including assessment of printability of a design
- working principles of machines, equipment and technology
- basics of sensors and process control
- post processing steps and interaction with AM material
- future trends in metal AM
ContentSynopsis

1. Introduction / motivation

2. From fusion welding to AM (Basics of fusion welding, moving heat sources, melt pool dynamics, solidification of weld beads, part properties)

3. Wire-arc Additive Manufacturing (Process technology, Digital process chain: Slicing and process definition, Overlapping weld beads, Sensors and control, materials for WAAM)

4. Laser-based metal additive manufacturing I – Basics of laser technology (Laser principles, Gaussian beams and beam quality, Inteaction laser-material / laser-plasma)

5. Laser-based metal additive manufacturing II – Laser powder bed fusion (Process technology, digital process chain, parameters and properties, support structures, process control, applications & trends)

6. Laser-based metal additive manufacturing III – Laser-based directed Energy deposition (Process technology, digital process chain, Sensors & control, materials, applications & trends)

7. Electron beam based AM (Process technology, b. Interaction electron beams – matter, sensors & control, materials, applications & trends)

8. Binder Jetting / Sintering based AM (Process technology, Sinter theory, compensation of shrinkage, applications)

9. Post-processing (removal of supports, hot isostatic pressing, Machining / Finishing)

10. Materials for AM (Alloy systems for AM, Production and quality of powder, Computational materials design)

11. Future trends (Multi-material AM, Hybrid AM processes, ...)
Lecture notesThe lecture slides will be distributed.
LiteratureA list of references be given in the lecture.
Prerequisites / NoticeWerkstoffe und Fertigung or a similar course
151-0802-00LAutomation TechnologyW+4 credits2V + 1UH. Wild, K. Wegener
AbstractThe automation of production lines will be dealt as interdisciplinary topic. The course contains:
- elementary elements of automatized systems
- Chain of action: sensors, signalisation, control and closed loop control, power electronics, actors
- Conception, description, computation, layout, design and simulation
- Availability and reliability
- Modern concepts
ObjectiveThe students shall acquire knowledge for projection and realization of highly automatized production systems. They will be trained to understand, overview and supervise the whole value chain from the definition of task the specification tender, conception and projection, the detailed design and startup. They shall know and be able to evaluate the solution possibilities, and the concepts in research and development.
ContentHighly developed industrialized nations are necessarily bound to automatization of manufacturing processes for their competitiveness. Conception, realization, startup and run in of automatized production lines, "to make them alive", is one of the most exciting businesses in engineering. For the layout of automatized systems mechatronic design is of greatest importance to achieve optimal and overall supreme solutions. The course focuses on the interdisciplinary solution space, spanned by mechanical engineering, process technology, electronics and electrical engineering, information technology and more and more optics. subsystems , the information and optical subsystems. The complete processing chain, from sensing to action, sensors, signalization, control and closed loop control, power electronics and actors is discussed.

Basic elements, sensors and actors, transmitting from mechanics to electronics and vice versa, as well as control systems and interfaces and bus systems are presented. In production technology these are applied in the different automation devices and then condensed to full production lines.

Different concepts for automation, layout planning, description and simulation and the interface to and safety of humans are topics. The economic boundary conditions are taken into account and lead to concepts for availability and reliability of complex systems and to the discussion of today's research concepts for fault tolerancing systems, to autodiagnosis and self repair, cognitive systems and agent systems.
In theoretical and experimental exercises the students can gain experience, that qualify them for the conception, computation and startup of automatized systems.
Lecture notesManuscripts are distributed per chapter
151-0840-00LOptimization and Machine Learning
Note: previous course title until FS20 "Principles of FEM-Based Optimization and Robustness Analysis".
W+4 credits2V + 2UB. Berisha, D. Mohr
AbstractThe course teaches the basics of nonlinear optimization and concepts of machine learning. An introduction to the finite element method allows an extension of the application area to real engineering problems such as structural optimization and modeling of material behavior on different length scales.
ObjectiveStudents will learn mathematical optimization methods including gradient based and gradient free methods as well as established algorithms in the context of machine learning to solve real engineering problems, which are generally non-linear in nature. Strategies to ensure efficient training of machine learning models based on large data sets define another teaching goal of the course.

Optimization tools (MATLAB, LS-Opt, Python) and the finite element program ABAQUS are presented to solve both general and real engineering problems.
Content- Introduction into Nonlinear Optimization
- Design of Experiments DoE
- Introduction into Nonlinear Finite Element Analysis
- Optimization based on Meta Modeling Techniques
- Shape and Topology Optimization
- Robustness and Sensitivity Analysis
- Fundamentals of Machine Learning
- Generalized methods for regression and classification, Neural Networks, Support Vector machines
- Supervised and unsupervised learning
Lecture notesLecture slides and literature
151-0304-00LEngineering Design IIW4 credits4GK. Wegener
AbstractDimensioning (strength calculation) of machine parts,
shaft - hub - connections, welded and brazed joints, springs, screws, roller and slide bearings, transmissions, gears, clutch and brake as well as their practical applications.
ObjectiveThe students extend in that course their knowledge on the correct application of machine parts and machine elements including dimensioning. Focus is laid on the acquisition of competency to solve technical problems and judge technical solutions and to correctly apply their knowledge according to operation conditions, functionality and strength calculations.
ContentMachine parts as shaft - hub - connections, welded and brazed joints, springs, screws, roller and slide bearings, transmissions, gears, clutch and brake are discussed. The course covers for all the machine elements their functionality, their application and limits of applicability and the dimensioning is as well as their practical applications. Exercises show the solution of practical problems. Partly practical problems are solved by the students for their own.
Lecture notesScript exists. Price: SFr. 40.-
Prerequisites / NoticePrerequisites:
Basics in design and product development
Dimensioning 1

Credit-conditions / examination:
Partly practical problems are solved by the students for their own. The examination will be in the following examination session. Credits are given after passing the examination.
151-0515-00LContinuum Mechanics 2W4 credits2V + 1UE. Mazza, R. Hopf
AbstractAn introduction to finite deformation continuum mechanics and nonlinear material behavior. Coverage of basic tensor- manipulations and calculus, descriptions of kinematics, and balance laws . Discussion of invariance principles and mechanical response functions for elastic materials.
ObjectiveTo provide a modern introduction to the foundations of continuum mechanics and prepare students for further studies in solid
mechanics and related disciplines.
Content1. Tensors: algebra, linear operators
2. Tensors: calculus
3. Kinematics: motion, gradient, polar decomposition
4. Kinematics: strain
5. Kinematics: rates
6. Global Balance: mass, momentum
7. Stress: Cauchy's theorem
8. Stress: alternative measures
9. Invariance: observer
10. Material Response: elasticity
Lecture notesNone.
LiteratureRecommended texts:
(1) Nonlinear solid mechanics, G.A. Holzapfel (2000).
(2) An introduction to continuum mechanics, M.B. Rubin (2003).
151-0540-00LExperimental MechanicsW4 credits2V + 1UJ. Dual, T. Brack
Abstract1. General aspects like transfer functions, vibrations, modal analysis, statistics, digital signal processing, phase locked loop, 2. Optical methods 3. Piezoelectricity 4. Electromagnetic excitation and detection 5. Capacitive Detection
ObjectiveUnderstanding, quantitative modelling and practical application of experimental methods for producing and measuring mechanical quantities (motion, deformation, stresses,..)
Content1. General Aspects: Measurement chain, transfer functions, vibrations and waves in continuous systems, modal analysis, statistics, digital signal analysis, phase locked loop. 2. Optical methods ( acousto optic modulation, interferometry, holography, photoelasticity, shadow optics, Moire methods ) 3. Piezoelectric materials: basic equations, applications, accelerometer ) 4. Electomagnetic excitation and detection, 5. Capacitive detection
Practical training and homeworks
Lecture notesno
Prerequisites / NoticePrerequisites: Mechanics I to III, Physics, Elektrotechnik
151-0630-00LNanorobotics Information W4 credits2V + 1US. Pané Vidal
AbstractNanorobotics is an interdisciplinary field that includes topics from nanotechnology and robotics. The aim of this course is to expose students to the fundamental and essential aspects of this emerging field.
ObjectiveThe aim of this course is to expose students to the fundamental and essential aspects of this emerging field. These topics include basic principles of nanorobotics, building parts for nanorobotic systems, powering and locomotion of nanorobots, manipulation, assembly and sensing using nanorobots, molecular motors, and nanorobotics for nanomedicine.
151-0641-00LIntroduction to Robotics and Mechatronics Information Restricted registration - show details
Number of participants limited to 45.

Enrollment is only valid through registration on the MSRL website (Link). Registrations per e-mail is no longer accepted!
W4 credits2V + 2UB. Nelson, N. Shamsudhin
AbstractThe aim of this lecture is to expose students to the fundamentals of mechatronic and robotic systems. Over the course of these lectures, topics will include how to interface a computer with the real world, different types of sensors and their use, different types of actuators and their use.
ObjectiveAn ever-increasing number of mechatronic systems are finding their way into our daily lives. Mechatronic systems synergistically combine computer science, electrical engineering, and mechanical engineering. Robotics systems can be viewed as a subset of mechatronics that focuses on sophisticated control of moving devices.

The aim of this course is to practically and theoretically expose students to the fundamentals of mechatronic and robotic systems. Over the course of the semester, the lecture topics will include an overview of robotics, an introduction to different types of sensors and their use, the programming of microcontrollers and interfacing these embedded computers with the real world, signal filtering and processing, an introduction to different types of actuators and their use, an overview of computer vision, and forward and inverse kinematics. Throughout the course, students will periodically attend laboratory sessions and implement lessons learned during lectures on real mechatronic systems. By the end of the course, you will be able to independently choose, design and integrate these different building blocks into a working mechatronic system.
ContentThe course consists of weekly lectures and lab sessions. The weekly topics are the following:
0. Course Introduction
1. C Programming
2. Sensors
3. Data Acquisition
4. Signal Processing
5. Digital Filtering
6. Actuators
7. Computer Vision and Kinematics
8. Modeling and Control
9. Review and Outlook

The lecture schedule can be found on our course page on the MSRL website (Link)
Prerequisites / NoticeThe students are expected to be familiar with C programming.
151-1224-00LOil-Hydraulics and PneumaticsW4 credits2V + 2UJ.  Lodewyks
AbstractIntroduction to the physical and technical basics of oilhydraulic and pneumatic systems and their components as pumps, motors, cylinders and control valves, with emphasis on servo- and proportional techniques and feedback- controlled drives. In parallel an overview on application examples will be given
ObjectiveThe student
- can interpret and explain the function of an oilhydraulic or pneumatic system and can create basic circuit concepts
- can discribe the architecture and function of needed components and can select and design them to desired properties
- can simulate the dynamical behaviour of a servohydraulic cylinder- drive and can design an optimal state-feedback-control with observer
ContentSignificans of hydraulic and pneumatic systems, general definitions and typical application examples.
Review of important fluid-mechanical principles as compressibility, flow through orifices and friction losses in line-systems.
Components of hydraulic and pneumatic systems as pumps, motors, cylinders, control valves for direction, pressure and flow, proportional- and servo-valves, their function and structural composition.
Basic circuit concepts of hydraulic and pneumatic control systems.
Dynamical behaviour and state-feedback-control of servohydraulic and -pneumatic drives.
Exercices
Design of a oilhydraulic drive-system
Measurement of the flow characteristic of an orifice, a pressure valve and a pump.
Simulation and experimental investigation of a state-feedback-controlled servo-cylinder-drive.
Lecture notesAutography Oelhydraulik
Skript Zustandsregelung eines Servohydraulischen Zylinderantriebes
Skript Elemente einer Druckluftversorgung
Skript Modellierung eines Servopneumatischen Zylinderantriebes
Prerequisites / NoticeThe course is suitable for students as of 5th semester. In FS2021 the lectures will take place until Easter only digital. All required informations and documents are available on Moodle.
  •  Page  1  of  1