Search result: Catalogue data in Autumn Semester 2019
Chemical and Bioengineering Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
151-0109-00L | Turbulent Flows | W | 4 credits | 2V + 1U | P. Jenny | |
Abstract | Contents - Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings. Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows | |||||
Learning objective | Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling | |||||
Content | - Properties of laminar, transitional and turbulent flows. - Origin and control of turbulence. Instability and transition. - Statistical description, averaging, equations for mean and fluctuating quantities, closure problem. - Scalings, homogeneous isotropic turbulence, energy spectrum. - Turbulent free shear flows. Jet, wake, mixing layer. - Wall-bounded turbulent flows. - Turbulent flow computation and modeling. | |||||
Lecture notes | Lecture notes are available | |||||
Literature | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||
529-0611-01L | Molecular Aspects of Catalysts and Surfaces IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005. | W | 6 credits | 4G | J. A. van Bokhoven, D. Ferri | |
Abstract | Basic elements of surface science important for materials and catalysis research. Physical and chemical methods important for research in surface science, material science and catalysis are considered and their application is demonstrated on practical examples. | |||||
Learning objective | Basic aspects of surface science. Understanding of principles of most important experimental methods used in research concerned with surface science, material science and catalysis. | |||||
Content | Methods which are covered embrace: Gas adsorption and surface area analysis, IR-Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption, solid state NMR, Electron Microscopy and others. |
Page 1 of 1