# Search result: Catalogue data in Autumn Semester 2019

Energy Science and Technology Master | ||||||

Master Studies (Programme Regulations 2018) | ||||||

Core Courses At least two core courses must be passed in each area. All students must participate in the course offered in the area "Interdisciplinary Energy Management" | ||||||

Electrical Power Engineering | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

227-0122-00L | Introduction to Electric Power Transmission: System & Technology | W | 6 credits | 4G | C. Franck, G. Hug | |

Abstract | Introduction to theory and technology of electric power transmission systems. | |||||

Objective | At the end of this course, the student will be able to: describe the structure of electric power systems, name the most important components and describe what they are needed for, apply models for transformers and lines, explain the technology of overhead power lines, calculate stationary power flows, current and voltage transients and other basic parameters in simple power systems. | |||||

Content | Structure of electric power systems, transformer and power line models, analysis of and power flow calculation in basic systems, symmetrical and unsymmetrical three-phase systems, transient current and voltage processes, technology and principle of electric power systems. | |||||

Lecture notes | Lecture script in English, exercises and sample solutions. | |||||

227-1635-00L | Electric CircuitsStudents without a background in Electrical Engineering must take "Electric Circuits" before taking "Introduction to Electric Power Transmission: System & Technology" | W | 4 credits | 3G | M. Zima, D. Shchetinin | |

Abstract | Introduction to analysis methods and network theorems to describe operation of electric circuits. Theoretical foundations are essential for the analysis of the electric power transmission and distribution grids as well as many modern technological devices – consumer electronics, control systems, computers and communications. | |||||

Objective | At the end of this course, the student will be able to: understand variables in electric circuits, evaluate possible approaches and analyse simple electric circuits with RLC elements, apply circuit theorems to simple meshed circuits, analyze AC circuits in a steady state and understand the connection of the explained principles to the modelling of the 3-phase electric power systems. | |||||

Content | Course will introduce electric circuits variables, circuit elements (resistive, inductive, capacitive), resistive circuits and theorems (Kirchhoffs’ laws, Norton and Thevenin equivalents), nodal and mesh analysis, superposition principle; it will continue by discussing the complete response circuits (RLC), sinusoidal analysis – ac steady state (complex power, reactive, active power) and conclude with the introduction to 3-phase analysis; Mathematical foundations of the circuit analysis, such as matrix operations and complex numbers will be briefly reviewed. This course is targeting students who have no prior background in electrical engineering. | |||||

Lecture notes | lecture and exercises slides will be distributed after each lecture via moodle platform; additional materials to be accessed online (wileyplus) | |||||

Literature | Richard C. Dorf, James A. Svoboda Introduction to Electric Circuits, 9th Edition Online materials: Link Lecture slides and exercises slides | |||||

Prerequisites / Notice | This course is intended for students outside of D-ITET. No prior course in electrical engineering is required | |||||

Energy Flows and Processes | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

151-0293-00L | Combustion and Reactive Processes in Energy and Materials Technology | W | 4 credits | 2V + 1U + 2A | K. Boulouchos, F. Ernst, N. Noiray, Y. Wright | |

Abstract | The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. | |||||

Objective | The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering. | |||||

Content | Reaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, applications in combustion engines. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. Tailoring of products made in flame spray pyrolysis. | |||||

Lecture notes | No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed: J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. Teaching language, assignments and lecture slides in English | |||||

Literature | J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. I. Glassman, Combustion, 3rd edition, Academic Press, 1996. | |||||

151-1633-00L | Energy ConversionThis course is intended for students outside of D-MAVT. | W | 4 credits | 3G | I. Karlin, G. Sansavini | |

Abstract | This course provides the students with an introduction to thermodynamics and heat transfer. Students shall gain basic understanding of energy, energy interactions, and various mechanisms of heat transfer as well as their link to energy conversion technologies. | |||||

Objective | Thermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to building up students’ intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and psychrometry, as well as to basic principles of heat transfer. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included. | |||||

Content | 1. Thermodynamic systems, states and state variables 2. Properties of substances: Water, air and ideal gas 3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy 4. Second law of thermodynamics and entropy 5. Energy analysis of steam power cycles 6. Energy analysis of gas power cycles 7. Refrigeration and heat pump cycles 8. Nonideal gas equation of state and Joule-Thomson effect 9. Maximal work and exergy 10. Mixtures and psychrometry 11. Chemical reactions and combustion systems; chemical and phase equilibrium 12. Heat transfer | |||||

Lecture notes | Lecture slides and supplementary documentation will be available online. | |||||

Literature | Thermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill | |||||

Prerequisites / Notice | This course is intended for students outside of D-MAVT. Students are assumed to have an adequate background in calculus, physics, and engineering mechanics. | |||||

Energy Economics and Policy | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

363-0503-00L | Principles of MicroeconomicsGESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie. | W | 3 credits | 2G | M. Filippini | |

Abstract | The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution. | |||||

Objective | The learning objectives of the course are: (1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems. | |||||

Content | The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society. Topics covered by the course are: - Supply and demand - Consumer demand: neoclassical and behavioural perspective - Cost of production: neoclassical and behavioural perspective - Welfare economics, deadweight losses - Governmental policies - Market failures, common resources and public goods - Public sector, tax system - Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic) - International trade | |||||

Lecture notes | Lecture notes, exercises and reference material can be downloaded from Moodle. | |||||

Literature | N. Gregory Mankiw and Mark P. Taylor (2017), "Economics", 4th edition, South-Western Cengage Learning. The book can also be used for the course 'Principles of Macroeconomics' (Sturm) For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book: N. Gregory Mankiw and Mark P. Taylor (2017), "Microeconomics", 4th edition, South-Western Cengage Learning. Complementary: R. Pindyck and D. Rubinfeld (2018), "Microeconomics", 9th edition, Pearson Education. | |||||

Prerequisites / Notice | GESS (Science in Perspective): This lecture is for MSc students only. BSc students register for 363-1109-00L Einführung in die Mikroökonomie. | |||||

Interdisciplinary Energy Management | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

227-1631-10L | Case Studies: Energy Systems and Technology: Part 1 Only for Energy Science and Technology MSc. | O | 2 credits | 4G | C. Franck, C. Schaffner | |

Abstract | This course will allow the students to get an interdisciplinary overview of the “Energy” topic. It will explore the challenges to build a sustainable energy system for the future. This will be done through the means of case studies that the students have to work on. These case studies will be provided by industry partners. | |||||

Objective | The students will understand the different aspects involved in designing solutions for a sustainable future energy system. They will have experience in collaborating in interdisciplinary teams. They will have an understanding on how industry is approaching new solutions. | |||||

Lecture notes | Descriptions of case studies. | |||||

Electives | ||||||

» Electives can be found here. | ||||||

Industrial Internship For MEST students enrolled under the 2018 regulations | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

227-1650-10L | Internship in Industry Only for MEST students enrolled under the 2018 regulations | O | 12 credits | external organisers | ||

Abstract | The main objective of the 12-week internship is to expose master's students to the industrial work environment. During this period, students have the opportunity to be involved in on-going projects at the host institution. | |||||

Objective | see above | |||||

Semester Project For MEST students enrolled under the 2018 regulations | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

227-1101-00L | How to Write Scientific Texts in Engineering SciencesStrongly recommended prerequisite for Semester Projects and Master Theses at D-ITET (MSc BME, MSc EEIT, MSc EST). | E- | 0 credits | J. Leuthold | ||

Abstract | The 4 hour lecture covers the basics of writing & presenting a scientific text. The focus will be on the structure and elements of a scientific text and not on the language. Citation rules, good practice of scientific writing and an overview on software tools will be part of the training. The lecture will be thought on two afternoons. Some exercises will be built into the lecture. | |||||

Objective | Knowledge on structure and content of a scientific text. The course further is arranged to stimulate a discussion on how to properly write a legible scientific text versus writing an interesting novel. We will further discuss the practice of properly citing and critically reflect on recent plagiarism allegations. | |||||

Content | * Topic 1: Structure of a Scientific Text (The Title, the author list, the abstract, State-of-the Art, the "in this paper" paragraph, the scientific part, the summary, Equations, Figures). * Topic 2: Power Point Presentations. * Topic 3: Citation Rules and Citation Software. * Topic 4: Guidelines for Research Integrity. | |||||

Literature | ETH "Citation Etiquette", see Link. ETH Guidlines on "Guidelines for Research Integrity", see Link > Education > > Contacts, links & documents > Forms and documents > Brochures / guides. | |||||

Prerequisites / Notice | Students should already have a Bachelor degree and plan to do either a semester project or a master thesis in the immediate future. | |||||

227-1671-10L | Semester ProjectOnly for MEST students enrolled under the 2018 regulations | O | 12 credits | 20A | Supervisors | |

Abstract | The semester project is designed to train the students in solving specific problems from the field of Energy Science & Technology. This project uses the technical and social skills acquired during the master's program. The semester project ist advised by a professor and must be approved in advance by the tutor. | |||||

Objective | see above |

- Page 1 of 1