Search result: Catalogue data in Spring Semester 2018

Pharmaceutical Sciences Bachelor Information
Compensatory Courses
NumberTitleTypeECTSHoursLecturers
376-0022-00LIntroduction to Biomedical Engineering II Restricted registration - show details W4 credits3GP. Christen, R. Riener, J. Vörös
AbstractIntroduction to biosignal processing, biomedical sensors, bioinstrumentation, bioelectric phenomena, physiological modeling and biomedical transport processes as well as to moral and ethical issues in biomedical engineering.
ObjectiveUnderstanding of physical and technical principles in biosignal processing, biomedical sensors, bioinstrumentation, bioelectric phenomena, physiological modeling and biomedical transport processes as well as basic moral and ethical issues in biomedical engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.
ContentBiosignal Processing, Biomedical Sensors, Bioinstrumentation, Bioelectric Phenomena, Physiological Modeling, Biomedical Transport Processes, Moral and Ethical Issues.
Lecture notesStored on ILIAS.
LiteratureIntroduction to Biomedical Engineering, 3rd Edition 2011,
Autors: John Enderle and Joseph Bronzino, ISBN 9780123749796
Academic Press
752-2001-00LFood Technology Restricted registration - show details W3 credits3GT. Sánchez-Ferrer
AbstractThis course will introduce the basic concepts in Food Technology, such as microbial inactivation, humidity control, isotherms interpretation, freezing, cooling, homogenization, etc., as well as a short introduction to characterization methods. Technology of selected groups of food from raw material to final product, quality and materials science aspects of these products will be reviewed.
ObjectiveWith this course, the student will be able to handle and gain an understanding of the general tools available in Food Technology.
376-1148-00LFrom Symptoms to the DiagnosisW1 credit1VW. O. Frey
AbstractThis lecture addresses students who have to deal with medical problems, such as for example heart-pain during bicacle loading. Finding the medical causes of the pain, defining its classification and the emergency aid are some of the aims of these lessons. Consolidated knowledge in physiology and anatomy is required.
ObjectiveThis lecture addresses students who have to deal with medical problems, such as for example heart-pain during bicacle loading. Finding the medical causes of the pain, defining its classification and the emergency aid are some of the aims of these lessons.
ContentFinding the medical causes of the pain, defining its classification and the emergency aid are some of the aims of these lessons.
LiteratureLebensqualität: Bewegung- Ernähurng- Erholung
ISBN 3-906466-22-1
Beiträge zur Gesundheitsförderung
v. Paolo C. Colombani, Walter O. Frey, Caspar Wenk
465-0952-00LBiomedical Photonics
Does not take place this semester.
W3 credits2V
AbstractThe lecture introduces the principles of generation, propagation and detection of light and its therapeutic and diagnostic application in medicine.
ObjectiveThe lecture provides knowledge about light sources and light delivery systems, optical biomedical imaging techniques, optical measurement technologies and their specific applications in medicine. Fundamental principles will be accompanied by practical and contemporary examples. Different selected optical systems used in diagnostics and therapy will be discussed.
ContentOptics always was strongly connected to the observation and interpretation of physiological phenomenon. The basic knowledge of optics for example was initially gained by studying the function of the human eye. Nowadays, biomedical optics is an independent research field that is no longer restricted to the observation of physiological processes but studies diagnostic and therapeutic problems in medicine. A basic prerequisite for applying optical techniques in medicine is the understanding of the physical properties of light, the light propagation in and its interaction with tissue. The lecture gives inside into the generation, propagation and detection of light, its propagation in tissue and into selected optical applications in medicine. Various optical imaging techniques (optical coherence tomography or optoacoustics) as well as therapeutic laser applications (refractive surgery, photodynamic therapy or nanosurgery) will be discussed.
Lecture noteswill be provided via Internet (Ilias)
Literature- M. Born, E. Wolf, "Principles of Optics", Pergamon Press
- B.E.A. Saleh, M.C. Teich, "Fundamentals of Photonics", John Wiley and Sons, Inc.
- O. Svelto, "Principles of Lasers", Plenum Press
- J. Eichler, T. Seiler, "Lasertechnik in der Medizin", Springer Verlag
- M.H. Niemz, "Laser-Tissue Interaction", Springer Verlag
- A.J. Welch, M.J.C. van Gemert, "Optical-thermal response of laser-irradiated tissue", Plenum Press
Prerequisites / NoticeLanguage of instruction: English
This is the same course unit (465-0952-00L) with former course title "Medical Optics".
551-0314-00LMicrobiology (Part II)W3 credits2VW.‑D. Hardt, L. Eberl, H.‑M. Fischer, J. Piel, J. Vorholt-Zambelli
AbstractAdvanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
ObjectiveThis concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
ContentAdvanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis.
Lecture notesUpdated handouts will be provided during the class.
LiteratureCurrent literature references will be provided during the lectures.
Prerequisites / NoticeEnglish
551-0320-00LCellular Biochemistry (Part II)W3 credits2VY. Barral, R. Kroschewski, A. E. Smith
AbstractThis course will focus on molecular mechanisms and concepts underlying cellular biochemistry, providing advanced insights into the structural and functional details of individual cell components, and the complex regulation of their interactions. Particular emphasis will be on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes.
ObjectiveThe full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterization of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry.
The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain how different molecules and signaling pathways can be integrated during complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, and cell division. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer or during cellular infection.
ContentSpatial and temporal integration of different molecules and signaling pathways into global cellular processes, such as cell division, cell infection and cell motility. Emphasis is also put on the understanding of pathologies associated with defective cell physiology, such as cancer or during cellular infection.
LiteratureRecommended supplementary literature (review articles and selected primary literature) will be provided during the course.
Prerequisites / NoticeTo attend this course the students must have a solid basic knowledge in chemistry, biochemistry, cell biology and general biology. Biology students have in general already attended the first part of the "Cellular Biochemistry" concept course (551-0319-00). The course will be taught in English.
In addition, the course will be based on a blended-learning scenario, where frontal lectures will be complemented with carefully chosen web-based teaching elements that students access through the ETH Moodle platform.
701-0614-00LAllergies and EnvironmentW1 credit1VP. Schmid-Grendelmeier
AbstractAllergic diseases are common and of increasing importance. In this course symptoms and management of allergies such as hay fever, asthma, eczema or food allergy are presesented. The importnat interactions between environmental factors such as air quality, climate, nutrition and form and frequency of allergic diseases will be discussed.
ObjectiveKenntnis der Grundlagen der allergischen Erkrankungen bei Menschen, insbesonders der sogenannten Atopien. Kenntnis der Umweltallergene und der möglichen Mechanismen, welche für die Zunahme der allergischen Reaktionen verantwortlich sind. Kenntnis der Wechselbeziehungen zwischen individueller genetischer Prädisposition, Umweltallergenen und anderen Umweltfaktoren wie Luftschadstoffen.
ContentGrundtypen der allergischen Erkrankungen. Begriff von Atopien und Pseudoallergien. Pathophysiologie IgE-vermittelter Reaktionen inkl. Mechanismen der IgE-Regulation. Epidemiologische Daten über die Zunahme der Allergien als Umweltkrankheiten Nr. 1 und Gründe für ihre Zunahme. Besprechung der wichtigsten inhalativen und nutritiven Allergene wie Pollen, Hausstaubmilben, Pilzsporen, Nahrungsmittel und Nahrungsmittelzusätze.
Lecture notesMerkblätter resp Vorlesungsunterlagen werden abgegeben.
LiteratureAxel Trautmann und Jörg Kleine-Tebbe:
Allergie-Diagnose/Allergie-Therapie
Thieme-Verlag. 2 Auflage (2013)
ISBN 978-3-13-142181-4
701-0662-00LEnvironmental Impacts, Threshold Levels and Health Effects Information W3 credits2VC.‑T. Monn, M. Brink
AbstractEnvironmental impacts on human health and well-being will be discussed. Concepts and methods for exposure measurements and assessments will be shown. In the first part of the semester, air pollutants (for example for ozone, and fine particles).
In the second part, noise, its effects and control, will be covered.
Objective- to understand the basic concepts of an exposure assessment (air, noise)
- to know methods used in health effect research
- to know criteria and methods for setting threshold levels
ContentAir Pollutants
- sources of pollutants (indoors and outdoors)
- concepts of an exposure assessment
- measurement methods for gases and particles
- health effect of pollutants (methods, most important pollutants, such as fine particles and ozone)

Noise
- Introduction to acoustics, Measurement, Hearing
- Auditory processing
- Exposure assessment of noise
- Noise effects, Exposure-effect relationships
- Basics of noise control and abatement, exposure limits
- Noise abatement policy
Lecture notesPresentations (ppt, pdf) will be sent by email.
Literaturesee references in the scripts.
701-1704-01LHealth Impact Assessment: Concepts and Case StudiesW3 credits2VM. Winkler, C. Guéladio, M. Röösli, J. M. Utzinger
AbstractThis course introduces the concept of health impact assessment (HIA) and discusses a suite of case studies in industrialised and developing countries. HIA pursues an inter- and multidisciplinary approach, employs qualitative and quantitative methods with the overarching goal to influence decision-making so that negative health effects of policies, programmes and projects can be minimized and posit
ObjectiveAfter successful completion of the course, students should be able to:
o critically reflect on the concept of HIA and the different steps from screening to implementation and monitoring; and
o apply specific tools and methodologies for HIA of policies, programmes and projects in different social, ecological and epidemiological settings.
ContentThe course will present a broad set of tools and methods for the systematic and evidence-based judgment of potential health effects related to policies, programmes and projects. Methodological features will be introduced and applied to a variety of case studies in the public sector (e.g. traffic-related air pollution, passive smoking and waste water management) and private sector (e.g. water resource developments and extractive industries) all over the world.
Lecture notesHandouts will be distributed.
LiteratureWhenever possible, at least one peer-reviewed paper will be made available for each session.
752-1300-00LIntroduction to ToxicologyW3 credits2VR. Eggen, S. J. Sturla
AbstractIntroduction to how chemical properties and biological interactions govern the disposition and influences of toxicants.
ObjectiveThe objectives are for the student to establish a framework for examining adverse effects resulting from exposures to toxicants by understanding key mechanisms that give rise to toxic responses and disease processes.
ContentThis course will introduce mechanisms governing the chemical disposition and biological influences of toxicants. The course is geared toward advanced bachelors students in food science, environmental science, and related disciplines, such as chemistry, biology and pharmaceutical sciences. Examples of topics include: dose-response relationships and risk assessment, absorption, transport, and biotransformation of xenobiotic chemicals; Carcinogenesis; DNA damage, repair, and mutation; Immunotoxicity; Neurotoxicity; and modern toxicity testing strategies. These fundamental concepts in Mechanistic Toxicology will be integrated with examples of toxicants relevant to food, drugs and the environment.
LiteratureCasarett & Doull's Toxicology, The Basic Science of Poisons. Seventh Edition. Editor: Curtis D. Klaassen, 2008, McGraw-Hill. (available on-line)
Prerequisites / NoticeBasic knowledge of organic chemistry and biochemistry is required.
376-1392-00LMechanobiology: Implications for Development, Regeneration and Tissue EngineeringW3 credits2GA. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong
AbstractThis course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs.
ObjectiveThis course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena.
ContentTypically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include all forms of myogenesis (cardiac, skeletal and smooth muscles), osteogenesis (bones), chondrogenesis (cartilage), tendogenesis (tendons) and angiogenesis (blood vessels). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance.

The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering.
Lecture notesn/a
LiteratureTopical Scientific Manuscripts
  •  Page  1  of  1