Search result: Catalogue data in Autumn Semester 2017

Environmental Sciences Bachelor Information
Bachelor Studies (Programme Regulations 2016)
Specialization in an Environmental System
Biogeochemistry
NumberTitleTypeECTSHoursLecturers
701-0216-00LBiogeochemical CyclesW3 credits2GB. Wehrli
AbstractBiogeochemical cycles are discussed from global or regional perspectives, important methods to determine reaction rates and pathways are introduced and typical reaction mechansims are discussed at a molecular level.
ObjectiveThe students will be able to
* explain how molecular processes govern global biogeochemical cycles;
* apply simple numerical models of biogeochemical processes (equilibrium-, mass-balance, transport-reaction models);
* interpret concentration changes in time and space and deduce rates of biogeochemical processes.
ContentBiogeochemical cycles in aquatic systems will be discussed from three perspectives: 1) Case studies with a gloabal or regional point of view will document the relevant background information on rates, time-scales and reservoirs of selected element cycles such as C, N, P, S, Fe, Mn Cd, Cu, Mo and As. 2) From a practical perspective we will compare the potential and limits of different methods to quantify biogeochemical processes in aquatic systems. 3) On a molecular level we will discuss mechanisms and pathways of relevant reactions.
Lecture notesLecture notes and assignments will be available in German
LiteratureSimilar coverage of some topics: Steven R. Emerson, John I. Hedges: Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press 2008.
Prerequisites / NoticeBasic knowledge in chemistry and systems analysis
701-0533-00LSoil ChemistryW3 credits2GR. Kretzschmar, D. I. Christl
AbstractThis course discusses chemical and biogeochemical processes in soils and their influence on the behavior and cycling of nutrients and pollutants in terrestrial systems. Approaches for quantitative modeling of the processes are introduced.
ObjectiveUnderstanding of important chemical soil properties and processes and their influence on the behavior (e.g., speciation, bioavailability, mobility) of nutrients and pollutants.
ContentImportant topics include the structure and properties of clays and oxides, the chemistry of the soil solution, gas equilibria, dissolution and precipitation of mineral phases, cation exchange, surface complexation, chemistry of soil organic matter, redox reactions in flooded soils, soil acidification and soil salinization.
Lecture notesHandouts in lectures.
Literature- Selected chapters in: Encyclopedia of Soils in the Environment, 2005.
- Chapters 2 and 5 in Scheffer/Schachtschabel - Soil Science, 1st English edition, Springer, 2016.
701-0535-00LEnvironmental Soil Physics/Vadose Zone Hydrology Information W3 credits2G + 2UD. Or
AbstractThe course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. Emphasis is given to land-atmosphere interactions, the role of plants on hydrological cycles, and biophysical processes in soils.
ObjectiveStudents are able to
- characterize quantitative knowledge needed to measure and parameterize structural, flow and transport properties of partially-saturated porous media.
- quantify driving forces and resulting fluxes of water, solute, and heat in soils.
- apply modern measurement methods and analytical tools for hydrological data collection
- conduct and interpret a limited number of experimental studies
- explain links between physical processes in the vadose-zone and major societal and environmental challenges
ContentWeeks 1 to 3: Physical Properties of Soils and Other Porous Media – Units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil texture; particle size distributions; surface area; soil structure. Soil colloids and clay behavior

Soil Water Content and its Measurement - Definitions; measurement methods - gravimetric, neutron scattering, gamma attenuation; and time domain reflectometry; soil water storage and water balance.

Weeks 4 to 5: Soil Water Retention and Potential (Hydrostatics) - The energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); modern aspects of capillarity in porous media; units and calculations and measurement of equilibrium soil water potential components; soil water characteristic curves definitions and measurements; parametric models; hysteresis. Modern aspects of capillarity

Demo-Lab: Laboratory methods for determination of soil water characteristic curve (SWC), sensor pairing

Weeks 6 to 9: Water Flow in Soil - Hydrodynamics:
Part 1 - Laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; saturated flow; hydraulic conductivity and its measurement.

Lab #1: Measurement of saturated hydraulic conductivity in uniform and layered soil columns using the constant head method.

Part 2 - Unsaturated steady state flow; unsaturated hydraulic conductivity models and applications; non-steady flow and Richard’s Eq.; approximate solutions to infiltration (Green-Ampt, Philip); field methods for estimating soil hydraulic properties.
Midterm exam

Lab #2: Measurement of vertical infiltration into dry soil column - Green-Ampt, and Philip's approximations; infiltration rates and wetting front propagation.

Part 3 - Use of Hydrus model for simulation of unsaturated flow


Week 10 to 11: Energy Balance and Land Atmosphere Interactions - Radiation and energy balance; evapotranspiration definitions and estimation; transpiration, plant development and transpirtation coefficients – small and large scale influences on hydrological cycle; surface evaporation.

Week 12 to 13: Solute Transport in Soils – Transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion eq.; solutions for pulse and step solute application; parameter estimation; salt balance.

Lab #3: Miscible displacement and breakthrough curves for a conservative tracer through a column; data analysis and transport parameter estimation.

Additional topics:

Temperature and Heat Flow in Porous Media - Soil thermal properties; steady state heat flow; nonsteady heat flow; estimation of thermal properties; engineering applications.

Biological Processes in the Vaodse Zone – An overview of below-ground biological activity (plant roots, microbial, etc.); interplay between physical and biological processes. Focus on soil-atmosphere gaseous exchange; and challenges for bio- and phytoremediation.
Lecture notesClassnotes on website: Vadose Zone Hydrology, by Or D., J.M. Wraith, and M. Tuller
(available at the beginning of the semester)
Link
LiteratureSupplemental textbook (not mandatory) -Environmental Soil Physics, by: D. Hillel
Atmosphere and Climate
NumberTitleTypeECTSHoursLecturers
701-0461-00LNumerical Methods in Environmental Sciences Information W3 credits2GC. Schär, O. Fuhrer
AbstractThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ObjectiveThis lecture imparts the mathematical basis necessary for the development and application of
numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models.
ContentClassification of numerical problems, introduction to finite-difference methods, time integration schemes, non-linearity, conservative numerical techniques, an overview of spectral and finite-element methods. Examples and exercises from a diverse cross-section of Environmental Science.

Three obligatory exercises, each two hours in length, are integrated into the lecture. The implementation language is Matlab (previous experience not necessary: a Matlab introduction is given). Example programs and graphics tools are supplied.
Lecture notesIs provided (CHF 10.- per copy).
LiteratureList of literature is provided.
701-0471-01LAtmospheric Chemistry Information W3 credits2GM. Ammann, D. W. Brunner
AbstractThe lecture provides an introduction to atmospheric chemistry at bachelor level. It introduces the kinetics of gas phase and heterogeneous reactions on aerosols and in clouds and explains the chemical and physical mechanisms responsible for global (e.g. stratospheric ozone depletion) as well as regional (e.g. urban air pollution) environmental problems.
ObjectiveThe students will understand the basics of gas phase and heterogeneous reactions and will know the most relevant atmospheric chemical processes taking place in the gas phase as well as between different phases including aerosols and clouds.
The students will also acquire a good understanding of atmospheric environmental problems including air pollution, stratospheric ozone destruction and changes in the oxidative capacity of the global atmosphere.
Content- Origin and properties of the atmosphere: structure, large scale dynamics, UV radiation
- Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions.
- Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition
- Aerosols and clouds: chemical properties, primary and secondary aerosol sources
- Multiphase chemistry: heterogeneous kinetics, solubility and hygroscopicity, N2O5 chemistry, SO2 oxidation, secondary organic aerosols
- Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends
- Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol
- Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions
Lecture notesVorlesungsunterlagen (Folien) werden laufend während des Semesters jeweils mind. 2 Tage vor der Vorlesung zur Verfügung gestellt.
Prerequisites / NoticeAttendance of the lecture "Atmosphäre" LV 701-0023-00L or equivalent is a pre-requisite.
701-0473-00LWeather Systems Information W3 credits2GM. A. Sprenger, F. Scholder-Aemisegger
AbstractThis lecture introduces the theoretical principles and the observational and analytical methods of atmospheric dynamics. Based on these principles, the following aspects are discussed: the energetics of the global circulation, the basic synoptic- and meso-scale flow phenomena, in particular the dynamics of exrtatropical cyclones, and the influence of mountains on the atmospheric flow.
ObjectiveThe students are able to
- explain up-to-date meteorological observation techniques and the basic methods of theoretical atmospheric dynamics
- to discuss the mathematical basis of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
ContentSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
Lecture notesLecture notes and slides
LiteratureAtmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press
701-0475-00LAtmospheric PhysicsW3 credits2GA. Beck, A. A. Mensah
AbstractThis course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation, thermodynamics, aerosol physics, radiation as well as the impact of aerosols and clouds on climate and artificial weather modification.
ObjectiveStudents are able
- to explain the mechanisms of cloud and precipitation formation using knowledge of humidity processes and thermodynamics.
- to evaluate the significance of clouds and aerosol particles for climate and artificial weather modification.
ContentMoist processes/thermodynamics; aerosol physics; cloud formation; precipitation processes, storms; importance of aerosols and clouds for climate and weather modification, clouds and precipitation
Lecture notesPowerpoint slides and script will be made available
LiteratureLohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016.
Prerequisites / Notice50% of the time we use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning.

We offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments.

There is a additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary.
Environmental Biology
NumberTitleTypeECTSHoursLecturers
701-0301-00LApplied Systems EcologyW3 credits2VA. Gessler
AbstractThis course provides the ecological systems` knowledge needed to question applied solutions to current environmental issues. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.
ObjectiveAt the end of the course...
...you know how to structure your inquiry and how to proceed the analysis when faced with a complex environmental issue. You can formulate the relevant questions, find answers (supported by discussions, input from the lecturers and the literature), and you are able to present your conclusions clearly and cautiously.
...you understand the complexity of interactions and structures in ecosystems. You know how ecosystem processes, functions and services interact and feed back across multiple spatio-temporal scales (in general, plus in depth case examples).
...you understand that biodiversity and the interaction between organisms are an integral part of ecosystems. You are aware that the link between biodiversity and process/function/service is rarely fully understood. You know how to honestly deal with this lack of understanding and can nevertheless find, critically analyse and communicate solutions.
...you understand the importance of ecosystem services for society.
...you have an overview of the methods of ecosystem research and have a deeper insight into some of them, e.g. ecosystem observation, manipulation and modelling.
...you have reflected on ecology as a young discipline at the heart of significant applied questions.
ContentThis course provides the ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating basic ecological concepts and principles. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.

The course is structured around four larger topical areas: (1) Integrated Water Management -- Green infrastructure (land management options) as an alternative to engineered solutions (e.g. large reservoirs) in flood and drought management; (2) Fire dynamics, the water cycle and biodiversity -- The surprising dynamics of species life cycles and populations in arid landscapes; (3) Rewilding, e.g. re-introducing apex predators (e.g. wolves), or large ungulates (e.g. bisons) in protected areas -- A nature conservation trend with counterintuitive effects; (4) Coupling of aquatic and terrestrial systems: carbon, nitrogen and phosphorus transfers of global importance on landscape scale.
Lecture notesCase descriptions, commented glossary and a list of literature and further resources per case.
LiteratureIt is not essential to borrow/buy the following books. We will continuously provide excerpts and other literature during the course.

Agren GI and Andersson FO (2012) Principles of Terrestrial Ecosystem Ecology, Cambridge University Press.

Chapin et al. (2011), Principles of Terrestrial Ecosystem Ecology, Springer.

Schulze et al. (2005) Plant Ecology; Springer.
Prerequisites / NoticeThe course combines elements of a classic lecture, group discussions and problem based learning. It is helpful, but not essential to be familiar with the "seven stages" method (see e.g. course 701-0352-00L "Analysis and Assessment of Environmental Sustainability" by Christian Pohl et al.).
701-0323-00LPlant EcologyW3 credits2VS. Güsewell, J. Levine
AbstractThis class focuses on ecological processes involved with plant life, mechanisms of plant adaptation, plant-animal and plant-soil interactions, plant strategies and implications for the structure and function of plant communities. The discussion of original research examples familiarises students with research questions and methods; they learn to evaluate results and interpretations.
ObjectiveStudents will be able to:
- propose methods to study ecological processes involved with plant life, and how these processes depend on internal and external factors;
- analyse benefits and costs of plant adaptations;
- explain plant strategies with relevant traits and trade-offs;
- explain and predict the assembly of plant communities;
- explain implications of plant strategies for animals, microbes and ecosystem functions;
- evaluate studies in plant ecology regarding research questions, assumptions, methods, as well as the reliability and relevance of results.
ContentPlants represent the matrix of natural communities. The structure and dynamics of plant populations drives the function of ecosystems. This course presents essential processes and plant traits involved with plant life. We focus on research questions that have been of special interest to plant ecologists as well as current topical questions. We use original research examples to discuss how ecological questions are studied and how results are interpreted.
- Growth: what determines the production of a plant?
- Nutrients: consumption or recycling: opposite strategies and feedbacks on soils;
- Clonality: collaboration and division of labour in plants;
- Plasticity: benefits and costs of plant intelligence;
- Flowering and pollination: how expensive is sex?
- Seed types, dispersal, seed banks and germination: strategies and trade-offs in the persistence of plant populations;
- Development and structure of plant populations;
- Stress, disturbance and competition as drivers of different plant strategies;
- Herbivory: plant-animal feedbacks and functioning of grazing ecosystems
- Fire: impacts on plants, vegetation and ecosystems.
- Plant functional types and rules in the assembly of plant communities.
Lecture notesHandouts and further reading will be available electronically at the beginning of the semester.
Prerequisites / NoticePrerequisites
- General knowledge of plant biology
- Basic knowledge of plant sytematics
- General ecological concepts
701-1413-00LPopulation and Quantitative GeneticsW3 credits2VT. Städler, P. C. Brunner
AbstractThis course is an introduction to the rapidly developing fields of population and quantitative genetics, emphasizing the major concepts and ideas over mathematical formalism. An overview is given of how mutation, genetic drift, gene flow, mating systems, and selection affect the genetic structure of populations. Evolutionary processes affecting quantitative and Mendelian characters are discussed.
ObjectiveStudents are able to
- describe types and sources of genetic variation.
- describe fundamental concepts and methods of quantitative genetics.
- use basic mathematical formalism to describe major population genetic concepts.
- discuss the main topics and developments in population and quantitative genetics.
- model population genetic processes using specific computer programs.
ContentPopulation Genetics:
Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory.

Quantitative Genetics:
Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem.
Lecture notesHandouts
LiteratureHamilton, M.B. 2009. Population Genetics. Wiley-Blackwell, Chichester, U.K.
Prerequisites / NoticeThere will be 5 optional extra sessions for the population genetics part (following lectures 2-6) for computer simulations, designed to help understand the course material.
701-1413-01LEcological GeneticsW3 credits2VA. Widmer, M. Fischer
AbstractThis course focuses on fundamental concepts and methods in ecological genetics. Topics covered include genetic diversity, natural selection, adaptation, reproductive isolation, hybridization and speciation.
ObjectiveStudents will be able
- to assess and propose methods to study pertinent questions in ecological genetics
- to combine knowledge from different disciplines, including population and quantitative genetics, ecology and evolution
- to analyse evolutionary processes in natural populations
ContentConcepts and methods for the study of genetic diversity, natural selection, adaptation, reproductive isolation, hybridization and speciation.
Lecture notesHandouts will be provided electronically.
Prerequisites / NoticeRecommendation:
We recommend that you also follow the course 701-1413-00L - Population and Quantitative Genetics either in advance or in parallel.
Forest and Landscape
NumberTitleTypeECTSHoursLecturers
701-0553-00LLandscape Ecology Information W3 credits2GF. Kienast, L. Pellissier
AbstractThe course is an introduction to Landscape Ecology and Landscape Modelling and provides various practical applications of Landscape Ecology in nature and landscape management.
ObjectiveThe students are able
- to explain and apply the concepts and methods of landscape analysis using examples,
-to explain causes and effects of changes in landscape using examples and simulations,
- to describe practical applications of Landscape Ecology in the management of nature and landscape.
ContentContents of the lecture:
- important terms and concepts of Landscape Ecology,
- analysis of landscape pattern (metrics),
- landscape modelling,
- perception of landscapes,
- landscape inventories used for nature and landscape protection.
Lecture notesThere is no script. Slides and other materials are provided on Moodle.
LiteratureMaster students seeking recognition of this course in the Bologna process have to show adequate knowledge of the landscape ecology topics described above and have to read selected chapters of

****Landscape Ecology in Theory and Practice, M. G. Turner, R. H. Gardner and R. V. O'Neill, Springer-Verlag.

Introduction, chapter 2, 3, 4, 5, 7, 10
Prerequisites / NoticeThis lecture uses the flipped classroom concept. Students acquire major parts of the knowledge self-paced on the Moodle platform. Contact hours (approx. every 2nd week) deepen and complement the content with additional case studies, examples and discussions.
It is advantageous but not required to have some GIS knowledge for this lecture and the practical 'Praktikum Wald und Landschaft' (spring semester) which is loosely linked with this lecture.
701-0561-00LForest Ecology Information W3 credits2VH. Bugmann
AbstractThis course conveys the basics of forest ecology with an emphasis on trees as those organisms that dominate the physiognomy and the dynamics of forest ecosystems. Based on this course, students have a good grasp of the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with a focus on central Europe.
ObjectiveStudents are able to
- summarize the fundamentals of forest ecology at the autecological, demecological and synecological level
- explain how trees dominate the physiognomy and dynamics of forest ecosystems
- describe the qualitative and quantitative importance of forest ecosystems at the global and regional scales, with an emphasis on central Europe and Alpine region.
ContentIntroduction and overview of the forests of the world
Forest ecosystem ecology: Production ecology of forests
Autecology: light, temperature, wind, water, and nutrients
Demecology: regeneration ecology, forest growth, mortality
Synecology: Fundamentals of trophic interactions (forest-ungulate interactions), succession
Lecture notesHandouts (mixture of overhead slides and full text chapters) are sold at cost
Relevant chapters from textbooks will be indicated.
LiteratureKimmins, J.P., 2004. Forest Ecology. Third ed., Pearson-Prentice Hall
Prerequisites / NoticeThe contents of the following courses of the 2nd year of the USYS BSc are required:

Pedosphere, Hydrosphere, Fundamentals of biology and ecology.

Knowledge from the following courses of the 2nd year of the USYS BSc are an asset:

701-0312-00L Pflanzen- und Vegetationsökologie
701-0314-00L Systematische Botanik
701-0563-00LForest and Tree DiseasesW3 credits2V + 1PT. N. Sieber
AbstractDiseases and abiotic damage influence the use and maintenance of forest ecosystems, tree populations and individual trees. This course provides a basic overview of important infectious diseases and abiotic damage in woody plants, with a focus on Central Europe.
ObjectiveStudents are able to
- describe the basic processes of pathogenesis in trees.
- explain methods of disease diagnosis and control.
- name and identify ecologically or economically significant tree and forest diseases.
ContentThe concept of 'Forest Health', history of forest pathology, environment and disease, pathogenesis and defence, basics of epidemiology, Principles of tree management. Morphology, biology, diagnosis and control of selected pathogens (parasitic phanerogams, fungi, bacteria, viruses and viroids). Morphology of mycorrhiza. Damages to woody plants caused by abiotic environmental factors.
Lecture notesLecture slides are avilable in electronic form.
LiteratureButin, H., 2011: Krankheiten der Wald- und Parkbäume. Diagnose - Biologie - Bekämpfung. 3. Aufl., G. Thieme-Verlag, Stuttgart (only the previous edition is available in English: Butin, H.: 1995: Tree Diseases and Disorders. Causes, Biology and Control in Forest and Amenity Trees. Oxford University Press, 252 S.)
Hartmann, G., Nienhaus, F., Butin, H., 1995: Farbatlas Waldschäden. Diagnose von Baumkrankheiten. 2. Aufl., G. Thieme-Verlag, Stuttgart.
Hartman, G., Nienhaus, F., Butin, H., (1991): Les symptômes de dépérissement des arbres forestiers : atlas de reconnaissance en couleurs des maladies, insectes et divers [Paris] : Institut pour le Développement Forestier; 256 S.
Hartmann, G., Nienhaus, F., Butin, H., (1990): Atlante delle malattie delle piante : guida illustrata dei danni alle specie arboree. Padova : Muzzio. 266 S.
Prerequisites / NoticePrerequisites: Basics in General and Systematic Biology, good knowledge of morphology and biology of the most common forest tree species in Switzerland.
The course includes practical work (microscopy).
701-0565-00LFundamentals of Natural Hazards ManagementW3 credits3GH. R. Heinimann, B. Krummenacher, S. Löw
AbstractRisks to life and human assets result when settlement areas and infrastructure overlap regions where natural hazard processes occur. This course utilizes case studies to teach how a future natural hazards-specialist should analyze, assess and manage risks.
ObjectiveConcepts will be explained step-by-step through a set of case studies, and applied in lab by the students. The following principal steps are used when coping with natural hazard-risks. At each step, students will learn and apply the following skills:
Risk analysis - What can happen?
-Characterize the processes and environmental measures that lead to a natural hazard and integrate modeling results of these processes.
- Identify threats to human life and assets exposed to natural hazards and estimate possible drawbacks or damages.
Risk assessment - What are the acceptable levels of risk?
- Apply principles to determine acceptable risks to human life and assets in order to identify locations which should receive added protection.
- Explain causes for conflicts between risk perception and risk analysis.
Risk management - What steps should be taken to manage risks?
- Explain how various hazard mitigation approaches reduce risk.
- Describe hazard scenarios as a base for adequate dimensioning of control measures.
- Identify the best alternative from a set of thinkable measures based on an evaluation scheme.
- Explain the principles of risk-governance.
ContentDie Vorlesung besteht aus folgenden Blöcken:
1) Einführung ins Vorgehenskonzept (1W)
2) Risikoanalyse (6W + Exkursion) mit:
- Systemabgrenzung
- Gefahrenbeurteilung
- Expositions- und Folgenanalyse
3) Risikobewertung (2W)
4) Risikomanagement (2W + Exkursion)
5) Abschlussbesprechung (1W)
Human-Environment Systems
NumberTitleTypeECTSHoursLecturers
701-0661-00LEnvironmental Decision-Making Restricted registration - show details W3 credits2VA. Müller
AbstractEnironmental decision-making is at the core of sustainability policies and management of human-environment systems. This lecture provides an introduction to the conceptual background for environmental decision-making and teaches the practicalities of environmental decision-making by means of exemplary real world cases. Detailed analysis of those in small groups builds the key part of this lecture.
ObjectiveAfter the course, the students are able to
- identify the relevant drivers and actors that are effective in concrete situations of environmental decision-making
- examine the situation-specific dynamics quantitatively and qualitatively
- understand interactions between different drivers and actors
- evaluate and formulate policy instruments and other institutional solutions for improved environmental decision-making
- modify and apply the methods learned in the case-studies to other cases
ContentThis lecture is mainly organised in flipped-classroom format with supervised project work in small groups. The project work will focus on achieving the named learning goals by means of working with existing governmental, academic, NGO, etc. reports on specific situations that involve environmental decision-making. The reports will be chosen in close topical relation to the other core lectures chosen by the students and the students will work in small groups of 3-5 each. Topics thus cover questions related to energy, mobility, ecosystem management, food systems, etc.

Measuring achievement of the learning goals:
A short report to be prepared after the course, based on a very clear concrete case of environmental decision-making. Students will be provided with clear guidance on how to compile this report and with a clear structure they should follow. It can, for example, be framed as the task that a governmental institution, NGO, political party or such would like to have a short but well-balanced answer on how to address a certain specific question of environmental decision-making.
Prerequisites / NoticeThis lecture establishes a new 3 KP lecture that can be chosen as one of the core lectures of the "Vertiefung Mensch-Umwelt-Systeme".
701-0301-00LApplied Systems EcologyW3 credits2VA. Gessler
AbstractThis course provides the ecological systems` knowledge needed to question applied solutions to current environmental issues. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.
ObjectiveAt the end of the course...
...you know how to structure your inquiry and how to proceed the analysis when faced with a complex environmental issue. You can formulate the relevant questions, find answers (supported by discussions, input from the lecturers and the literature), and you are able to present your conclusions clearly and cautiously.
...you understand the complexity of interactions and structures in ecosystems. You know how ecosystem processes, functions and services interact and feed back across multiple spatio-temporal scales (in general, plus in depth case examples).
...you understand that biodiversity and the interaction between organisms are an integral part of ecosystems. You are aware that the link between biodiversity and process/function/service is rarely fully understood. You know how to honestly deal with this lack of understanding and can nevertheless find, critically analyse and communicate solutions.
...you understand the importance of ecosystem services for society.
...you have an overview of the methods of ecosystem research and have a deeper insight into some of them, e.g. ecosystem observation, manipulation and modelling.
...you have reflected on ecology as a young discipline at the heart of significant applied questions.
ContentThis course provides the ecological systems' knowledge needed to question applied sustainability solutions. We will critically assess the complexity of current environmental issues, illustrating basic ecological concepts and principles. Our central aim is to balance participants' respect for complexity with a sense of possibility by providing examples from the vast solution space offered by ecological systems, such as e.g. green infrastructure to manage water.

The course is structured around four larger topical areas: (1) Integrated Water Management -- Green infrastructure (land management options) as an alternative to engineered solutions (e.g. large reservoirs) in flood and drought management; (2) Fire dynamics, the water cycle and biodiversity -- The surprising dynamics of species life cycles and populations in arid landscapes; (3) Rewilding, e.g. re-introducing apex predators (e.g. wolves), or large ungulates (e.g. bisons) in protected areas -- A nature conservation trend with counterintuitive effects; (4) Coupling of aquatic and terrestrial systems: carbon, nitrogen and phosphorus transfers of global importance on landscape scale.
Lecture notesCase descriptions, commented glossary and a list of literature and further resources per case.
LiteratureIt is not essential to borrow/buy the following books. We will continuously provide excerpts and other literature during the course.

Agren GI and Andersson FO (2012) Principles of Terrestrial Ecosystem Ecology, Cambridge University Press.

Chapin et al. (2011), Principles of Terrestrial Ecosystem Ecology, Springer.

Schulze et al. (2005) Plant Ecology; Springer.
Prerequisites / NoticeThe course combines elements of a classic lecture, group discussions and problem based learning. It is helpful, but not essential to be familiar with the "seven stages" method (see e.g. course 701-0352-00L "Analysis and Assessment of Environmental Sustainability" by Christian Pohl et al.).
701-0651-00LCoevolution between Society and Environment: Analysis and InfluenceW3 credits2VJ. Minsch
AbstractAnalysis of central mechanisms of the anthroposphere: ecological economics, theory of institutions and innovation, development economics.
ObjectiveIntroduction to the theoretical foundations of the analysis of central mechanisms of the anthroposphere – in a sustainable development perspective.

Knowledge of the different scientific and political discussions on sustainable development.

Knowledge of selected analytical tools (Ecological Economics, economic analysis of institutions, innovation theory, “Ordnungstheorie”, Theory of liberal economic policy).

Ability to identify central non sustainable mechanisms and policies, to formulate adequate research questions, to choose and to use adequate analytical tools, and to elaborate solutions.
ContentSustainable development-update: origins, conceptions, state of the discussion. What's left after 25 years of discussion?

Development as Freedom: Foundations of a human-rights-based Society and Economy (Amartya Sen, Daron Acemoglu / James A. Robinson, Ralf Dahrendorf, Friedrich. A. von Hayek, Karl. R. Popper. Walter Eucken).

Market Economy:
Its Critics, Reforms and new Developments.

An Inquiry into the Nature and Causes of ...Non-Sustainability:
Selected mechanisms and trends. The “neo-mercantilism-syndrom”

New Trends in the Growth Debate:
The Growth-spiral” (Hans Chr. Binswanger), Prosperity without growth? (T. Jackson), Intelligent Growth (R. Fücks)

The Internet of Things and Collaborative Commons - on the road to "The Zero Marginal Cost Society"?

Sufficiency: Perspectives of a resource-light society

Corporation 2020 - Transforming Business for Tomorrow's World (Remarks on Pavan Sukhdev's bestseller)

Finance Crash and Debt Crisis - new challenges for Democracy & Market Economy

Resourcecurse: Resources, democracy, and economic development

Globalization: Facts and elements of a fair globalization

It`s the software! Institutional Innovations for Sustainable Development. Let's continue writing The Federalist Papers!

On the way to the second "Great Transformation"

Perspectives for further, deeper analysis
Lecture notesskript and additional texts are distributed in the cource
LiteratureA first selection:
- Daron Acemoglu / James A. Robinson (2012): Why Nations Fail. The Origins of Power, Prosperity, and Poverty, New York
- Hans Christoph Binswanger (2006): Die Wachstumsspirale. Geld, Energie und Imagination in der Dynamik des Marksprozesses, Marburg
- Ralf Dahrendorf ( 2003): Auf der Suche nach einer neuen Ordnung, München
- Jared Diamond (2005): Collapse: How Societies Choose to Fail or Succeed, New York
- Ralf Fücks (2013): Intelligent wachsten, Die grüne Revolution, München
- Friedrich A. von Hayek (1991): Die Verfassung der Freiheit, 3. Auflage, Tübingen
- Friedrich A. von Hayek (1972): Theorie komplexer Phänomene, Tübingen
- Tim Jackson (2009): Prosperity without Growth. Economics for a Finite Planet, London
- Jürg Minsch / Peter H. Feindt / Hans. P. Meister / Uwe Schneidewind / Tobias Schulz (1998): Institutionelle Reformen für eine Politik der Nachhaltigkeit, Berlin / Heidelberg / New York
- J. Minsch / A. Eberle / B. Meier / U. Schneidewind (1996). Mut zum ökologischen Umbau. Innovationsstrategien für Unternehmen, Politik und Akteurnetze, Birkhäuser, Basel / Boston / Berlin
- Elinor Ostrom (1990): Governing the Commons, Cambridge University Press, Cambridge / New York / Melbourne
- oekom e.V., Hrsg. (2013): Baustelle Zukunft. die Grosse Trasformation von Wirtschaft und Gesellschaft, oekom Verlag, München
- Karl Polanyi (1944): The Great Transformation
- Karl. R. Popper (1980): Die offene Gesellschaft und ihre Feinde, Bde. I und II, 6. Auflage, Tübingen
Jeremy Rifkin (2014): The Zero Mrginal Cost Society: The Internet of things, the Collaborative Commons, and the Eclipse of Capitalism, palgrave macmillan
- Uwe Schneidewind / Angelika Zahrnt (2013): Damit gutes Leben einfacher wird. Perspektiven einer Suffizienzpolitik, München
- Pavan Sukhdev (2012): Corporation 2020. Transforming Business for Tomorrow's World, Washington D.C.
- Tomas Sedlacek (2012): Die Ökonomie von Gut und Böse, München
- Amartya Sen (1999): Development as Freedom, New York 1999)
- Daniel Spreng /Thomas Flüeler /David Goldblatt /Jürg Minsch (2012): Tackling Long Term Global Energy Problems: The Contribution of Social Science, Dortrecht / Heidelberg / New York
- Joseph Stiglitz (2006): Making Globalization Work, New York 2006)
- Peter Ulrich (2005): Zivilisierte Marktwirtschaft, 2. Aufl., Freiburg
- WBGU Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (2011): Welt im Wandel. Gesellschaftsvertrag für eine Grosse Transformation, Zusammenfassung für Entscheidungsträger, WBGU, Berlin, Link

Further reading and citations are listed in the skript and mentioned in the course.
Prerequisites / NoticeWillingness to prepare intensively the topics and to participate actively in the course
701-0659-00LTropical Forests, Agroforestry and Complex Socio-Ecological SystemsW3 credits2GC. Garcia, A. Giger Dray
AbstractThe course will focus on integrated landscape approaches for the management of tropical forest landscapes, by addressing the complex interactions between ecological processes, stakeholders´ strategies and public policies. Dedicated tools such as games and simulation models to improve knowledge and foster collective decision-making processes will be explored.
ObjectiveThrough the course the students will learn:
Section 1: Concepts and Methods
1. To master definitions and concepts: SES; Vulnerability; Resilience, Environmentalist Paradox.
2. To gain exposure to methods for assessing stakeholders perceptions/practices/knowledge.

Section 2: Recognising diversity & Interdisciplinarity
1. To understand points of views/normative views and how these shape management objectives and practices.
2. Gain familiarity with major schools of thought on Natural Resources Management - Theory of the commons, Political Ecology, Vulnerability, Resilience.
3. To explore interdisciplinary approaches to natural resources management.

Section 3: Topics and Arenas
1. To understand links between Forest, Trees and Livelihoods - poverty, food security & well-being.
2. Gain familiarity with drivers of deforestation; degradation; reforestation.
3. Knowledge of global arenas affecting the international forest regime, and their impact at the local level.
4. To recognise and understand trade-offs between conservation and development in a forest/agroforest context;

A major objective of the course is to encourage students to develop a critical analysis of existing conservation and development narratives within the frame of agroforestry and forested agricultural landscapes. The course will also provide students with methods and tools to assess stakeholders perceptions/practices and knowledge, that will be of use in their professional life.
ContentThe course will address:

1- Definitions of forests and agroforests, deconstructing the rigid historical divisions between these two, and showing the complexities and implications legal definitions will have on the management systems. We will also address the definitions of Social and Ecological System (SES) and Resilience, useful for the entire course. We will provide insights on how to describe the SES using the ARDI methodology (Actors, Resources, Dynamics and Interactions)
2- Methodological frameworks to understand drivers and coping strategies of stakeholders (Sustainable livelihood framework & Vulnerability; Ecosystem Services & trade-offs; Companion Modelling and Adaptive Management; Surveys and Participatory Appraisals)

Building upon this, and introducing the Forest Transition curve as guiding framework for the course, a series of case studies will be presented, highlighting the different drivers and issues at each stage of the transition curve (Kanninen et al. 2007).

1- Tropical Forestry - including Reduced Impact Logging, Forest Certification, and International Timber Market.
2- Secondary forests and Agroforests - landscape mosaics, forest fragments, non timber forest products, slash and burn systems, small holder production systems.
3- Conversions and Deforestation: Global trends, Biofuel extensions .
4- Reforestation and Agroforestry : Plantations.
5- Conclusion - Future trends; Global Arenas and Local Governance.

The course will tackle new and emerging topics such as the role of forests and trees in adaptation to climate change, the links between forest, poverty and food security, and the need to mainstream conservation of biodiversity outside protected areas. The course will draw from diverse disciplines, from ecology, economy, sociology, political sciences and legal studies as the most preeminent ones.
The course will enlarge the scope of the students from the ecological process to the social and political components of tropical social and ecological systems. It will address topics and case studies that the students will have little opportunity to address elsewhere, linking them to issues of global relevance in environmental sciences.
LiteratureAssunçao, J., C. C. e Gandour, and R. Rocha. 2012. Deforestation Slowdown in the Legal Amazon: Prices or Policies? Climate Policy Initiative Rio de Janeiro, Rio de Janeiro.
CGIAR Research Program 6. 2011. Forest, Trees and Agroforestry: Livelihoods, Landscapes and Governance. Page 338. CGIAR Research Program 6. CIFOR, ICRAF, CIAT, Bioversity, Bogor.
Costanza, R., R. d'Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'Neill, and J. Paruelo. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253-260.
FAO. 2010. Global Forest Resource Assessment 2010. Page 342. FAO, Rome.
Kanninen, M., D. Murdiyarso, F. Seymour, A. Angelsen, S. Wunder, and L. German. 2007. Do trees grow on money: The implications of deforestation research for policies to promote REDD. Forest Perspectives. Forest Perspectives. CIFOR, Bogor.
Lescuyer, G., P. O. Cerutti, E. E. Mendoula, R. Ebaa-Atyi, and R. Nasi. 2010. Chainsaw milling in the Congo Basin. ETFRN News 52:121-128.
Torquebiau, E. F. 2000. A renewed perspective on agroforestry concepts and classification. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie 323:1009-1017.
World Bank. 2004. Sustaining Forests: a development strategy. Page 81, Washington, DC.
701-0791-00LEnvironmental History - Introduction and Overview Restricted registration - show details
Number of participants limited to 100.
W2 credits2VD. Speich Chassé
AbstractOur society faces a serious ecological crisis. Of what historical dimension is this crisis? How have human societies already in earlier times changed their environment, and, consequently, perhaps also ours? What were the main ecological challenges for societies and how did they change over time? And how did societies adapt to changing environmental conditions?
ObjectiveIntroduction into environmental history; survey of long-term development of human-nature-interrelations; discussion of selected problems. Improved ability to assess current problems from a historical perspective and to critically interrogate one's own standpoint.
Lecture notesCourse material is provided in digital form.
LiteratureMcNeill, John R. 2000. Something new under the sun: An environmental history of the twentieth-century world, New York: Norton.

Uekötter, Frank (Ed.) 2010. The turning points of environmental history, Pittsburgh: University of Pittsburgh Press.

Winiwarter, Verena und Martin Knoll 2007. Umweltgeschichte: Eine Einführung, Köln: Böhlau.
Prerequisites / NoticeStudents are asked to write an exam during the second last session (11.12.2015).
  •  Page  1  of  2 Next page Last page     All