Search result: Catalogue data in Spring Semester 2021

Computational Science and Engineering Bachelor Information
Bachelor Studies (Programme Regulations 2016)
Basic Courses
Block G3
227-0014-10L Operating Systems and Networks was offered for the last time in the Spring Semester 2019.
401-0674-00LNumerical Methods for Partial Differential Equations
Not meant for BSc/MSc students of mathematics.
O10 credits2G + 2U + 2P + 4AR. Hiptmair
AbstractDerivation, properties, and implementation of fundamental numerical methods for a few key partial differential equations: convection-diffusion, heat equation, wave equation, conservation laws. Implementation in C++ based on a finite element library.
ObjectiveMain skills to be acquired in this course:
* Ability to implement fundamental numerical methods for the solution of partial differential equations efficiently.
* Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations.
* Ability to select and assess numerical methods in light of the predictions of theory
* Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm.
* Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations.
* Skills in the efficient implementation of finite element methods on unstructured meshes.

This course is neither a course on the mathematical foundations and numerical analysis of methods nor an course that merely teaches recipes and how to apply software packages.
Content1 Second-Order Scalar Elliptic Boundary Value Problems
1.2 Equilibrium Models: Examples
1.3 Sobolev spaces
1.4 Linear Variational Problems
1.5 Equilibrium Models: Boundary Value Problems
1.6 Diffusion Models (Stationary Heat Conduction)
1.7 Boundary Conditions
1.8 Second-Order Elliptic Variational Problems
1.9 Essential and Natural Boundary Conditions
2 Finite Element Methods (FEM)
2.2 Principles of Galerkin Discretization
2.3 Case Study: Linear FEM for Two-Point Boundary Value Problems
2.4 Case Study: Triangular Linear FEM in Two Dimensions
2.5 Building Blocks of General Finite Element Methods
2.6 Lagrangian Finite Element Methods
2.7 Implementation of Finite Element Methods
2.7.1 Mesh Generation and Mesh File Format
2.7.2 Mesh Information and Mesh Data Structures L EHR FEM++ Mesh: Container Layer L EHR FEM++ Mesh: Topology Layer L EHR FEM++ Mesh: Geometry Layer
2.7.3 Vectors and Matrices
2.7.4 Assembly Algorithms Assembly: Localization Assembly: Index Mappings Distribute Assembly Schemes Assembly: Linear Algebra Perspective
2.7.5 Local Computations Analytic Formulas for Entries of Element Matrices Local Quadrature
2.7.6 Treatment of Essential Boundary Conditions
2.8 Parametric Finite Element Methods
3 FEM: Convergence and Accuracy
3.1 Abstract Galerkin Error Estimates
3.2 Empirical (Asymptotic) Convergence of Lagrangian FEM
3.3 A Priori (Asymptotic) Finite Element Error Estimates
3.4 Elliptic Regularity Theory
3.5 Variational Crimes
3.6 FEM: Duality Techniques for Error Estimation
3.7 Discrete Maximum Principle
3.8 Validation and Debugging of Finite Element Codes
4 Beyond FEM: Alternative Discretizations [dropped]
5 Non-Linear Elliptic Boundary Value Problems [dropped]
6 Second-Order Linear Evolution Problems
6.1 Time-Dependent Boundary Value Problems
6.2 Parabolic Initial-Boundary Value Problems
6.3 Linear Wave Equations
7 Convection-Diffusion Problems [dropped]
8 Numerical Methods for Conservation Laws
8.1 Conservation Laws: Examples
8.2 Scalar Conservation Laws in 1D
8.3 Conservative Finite Volume (FV) Discretization
8.4 Timestepping for Finite-Volume Methods
8.5 Higher-Order Conservative Finite-Volume Schemes
Lecture notesThe lecture will be taught in flipped classroom format:
- Video tutorials for all thematic units will be published online.
- Tablet notes accompanying the videos will be made available to the audience as PDF.
- A comprehensive lecture document will cover all aspects of the course.
LiteratureChapters of the following books provide supplementary reading
(detailed references in course material):

* D. Braess: Finite Elemente,
Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer 2007 (available online).
* S. Brenner and R. Scott. Mathematical theory of finite element methods, Springer 2008 (available online).
* A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, New York, 2004.
* Ch. Großmann and H.-G. Roos: Numerical Treatment of Partial Differential Equations, Springer 2007.
* W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment, volume 18 of Springer Series in Computational Mathematics. Springer, Berlin, 1992.
* P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations, volume 44 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* S. Larsson and V. Thomée. Partial Differential Equations with Numerical Methods, volume 45 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK, 2002.

However, study of supplementary literature is not important for for following the course.
Prerequisites / NoticeMastery of basic calculus and linear algebra is taken for granted.
Familiarity with fundamental numerical methods (solution methods for linear systems of equations, interpolation, approximation, numerical quadrature, numerical integration of ODEs) is essential.

Important: Coding skills and experience in C++ are essential.

Homework assignments involve substantial coding, partly based on a C++ finite element library. The written examination will be computer based and will comprise coding tasks.
529-0431-00LPhysical Chemistry III: Molecular Quantum Mechanics Information Restricted registration - show details O4 credits4GF. Merkt
AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
ObjectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
Lecture notesA script written in German will be available. The script is, however, no replacement for personal notes during the lecture and does not cover all aspects discussed.
Block G4
Students that enrol for the second year in the CSE Bachelor Programme and whose first year examination did not involve the subject "Physics I" will instead of "Physics II" (402-0034-10L) take the "Physics I and II" (402-0043-00L and 402-0044-00L) courses with performance assessment as a yearly course.
As of FS 2018 the course unit 151-0122-00L Fluid Dynamics for CSE gets replaced in Block G4 by 151-0102-00L Fluid Dynamics I.
402-0034-10LPhysics IIW4 credits2V + 2UW. Wegscheider
AbstractThis is a two-semester course introducing students into the foundations of Modern Physics. Topics include electricity and magnetism, light, waves, quantum physics, solid state physics, and semiconductors. Selected topics with important applications in industry will also be considered.
ObjectiveThe lecture is intended to promote critical, scientific thinking. Key concepts of Physics will be acquired, with a focus on technically relevant applications. At the end of the two semesters, students will have a good overview over the topics of classical and modern Physics.
ContentIntroduction into Quantum Physics, Absorption and Emission of Electromagnetic Radiation, Basics of Solid State Physics, Semiconductors
Lecture notesLecture notes will be available in German.
LiteraturePaul A. Tipler, Gene Mosca, Michael Basler und Renate Dohmen
Physik: für Wissenschaftler und Ingenieure
Spektrum Akademischer Verlag, 2009, 1636 Seiten, ca. 80 Euro.

Paul A. Tipler, Ralph A. Llewellyn
Moderne Physik
Oldenbourg Wissenschaftsverlag, 2009, 982 Seiten, ca. 75 Euro.
Prerequisites / NoticeNo testat requirements for this lecture.
402-0044-00LPhysics IIW4 credits3V + 1UT. Esslinger
AbstractIntroduction to the concepts and tools in physics with the help of demonstration experiments: electromagnetism, optics, introduction to modern physics.
ObjectiveThe concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.
ContentElectromagnetism (electric current, magnetic fields, electromagnetic induction, magnetic materials, Maxwell's equations)
Optics (light, geometrical optics, interference and diffraction)
Short introduction to quantum physics
Lecture notesThe lecture follows the book "Physik" by Paul A. Tipler.
LiteraturePaul A. Tipler and Gene Mosca
Springer Spektrum Verlag
151-0102-00LFluid Dynamics I Restricted registration - show details O6 credits4V + 2UT. Rösgen
AbstractAn introduction to the physical and mathematical foundations of fluid dynamics is given.
Topics include dimensional analysis, integral and differential conservation laws, inviscid and viscous flows, Navier-Stokes equations, boundary layers, turbulent pipe flow. Elementary solutions and examples are presented.
ObjectiveAn introduction to the physical and mathematical principles of fluid dynamics. Fundamental terminology/principles and their application to simple problems.
ContentPhenomena, applications, foundations
dimensional analysis and similitude; kinematic description; conservation laws (mass, momentum, energy), integral and differential formulation; inviscid flows: Euler equations, stream filament theory, Bernoulli equation; viscous flows: Navier-Stokes equations; boundary layers; turbulence
Lecture notesLecture notes (extended formulary) for the course are made available electronically.
LiteratureRecommended book: Fluid Mechanics, Kundu & Cohen & Dowling, 6th ed., Academic Press / Elsevier (2015).
Prerequisites / NoticeVoraussetzungen: Physik, Analysis
529-0483-00LStatistical Physics and Computer Simulation Information O4 credits2V + 1US. Riniker, P. H. Hünenberger
AbstractPrinciples and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, Stochastic dynamics.
Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages.
ObjectiveIntroduction to statistical mechanics with the aid of computer simulation, development of skills to carry out statistical mechanical calculations using computers and interpret the results.
ContentPrinciples and applications of statistical mechanics and equilibrium molecular dynamics, Monte Carlo simulation, stochastic dynamics, free energy calculation.
Exercises using a MD simulation program to generate ensembles and subsequently calculate ensemble averages.
Literaturewill be announced in the lecture
Prerequisites / NoticeSince the exercises on the computer do convey and test essentially different skills as those being conveyed during the lectures and tested at the written exam, the results of a small programming project will be presented in a 10-minutes talk by pairs of students who had been working on the project.

Additional information will be provided in the first lecture.
  •  Page  1  of  1