# Search result: Catalogue data in Autumn Semester 2020

Earth and Climate Sciences Bachelor | ||||||

Basic Courses I | ||||||

First Year Examinations | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|

529-2001-02L | Chemistry I | O | 4 credits | 2V + 2U | J. Cvengros, J. E. E. Buschmann, P. Funck, S. Hug, E. C. Meister, R. Verel | |

Abstract | General Chemistry I: Chemical bond and molecular structure, chemical thermodynamics, chemical equilibrium. | |||||

Learning objective | Introduction to general and inorganic chemistry. Basics of the composition and the change of the material world. Introduction to the thermodynamically controlled physico-chemical processes. Macroscopic phenomena and their explanation through atomic and molecular properties. Using the theories to solve qualitatively and quantitatively chemical and ecologically relevant problems. | |||||

Content | 1. Stoichiometry Amount of substance and mass. Composition of chemical compounds. Reaction equation. Ideal gas law. 2. Atoms Elementary particles and atoms. Electron configuration of the elements. Periodic system. 3. Chemical bonding and its representation. Spatial arrangement of atoms in molecules. Molecular orbitals. 4. Basics of chemical thermodynamics System and surroundings. Description of state and change of state of chemical systems. 5. First law of thermodynamics Internal energy. Heat and Work. Enthalpy and reaction enthalpy. 6. Second law of thermodynamics Entropy. Change of entropy in chemical systems and universe. Reaction entropy. 7. Gibbs energy and chemical potential. Combination of laws of thermodynamics. Gibbs energy and chemical reactions. Activities of gases, condensed substances and species in solution. Equilibrium constant. 8. Chemical equilibrium Law of mass action. Reaction quotient and equilibrium constant. Phase transition equilibrium. 9. Acids and bases Properties of acids and bases. Dissociation of acids and bases. pH and the calculation of pH-values in acid-base systems. Acid-base diagrams. Buffers. Polyprotic acids and bases. 10. Dissolution and precipitation. Heterogeneous equilibrium. Dissolution and solubility product. Carbon dioxide-carbonic acid-carbonate equilibrium. | |||||

Lecture notes | Online-Skript mit durchgerechneten Beispielen. | |||||

Literature | Charles E. Mortimer, CHEMIE - DAS BASISWISSEN DER CHEMIE. 12. Auflage, Georg Thieme Verlag Stuttgart, 2015. Weiterführende Literatur: Theodore L. Brown, H. Eugene LeMay, Bruce E. Bursten, CHEMIE. 10. Auflage, Pearson Studium, 2011. (deutsch) Catherine Housecroft, Edwin Constable, CHEMISTRY: AN INTRODUCTION TO ORGANIC, INORGANIC AND PHYSICAL CHEMISTRY, 3. Auflage, Prentice Hall, 2005.(englisch) | |||||

401-0251-00L | Mathematics I | O | 6 credits | 4V + 2U | L. Halbeisen | |

Abstract | This course covers mathematical concepts and techniques necessary to model, solve and discuss scientific problems - notably through ordinary differential equations. | |||||

Learning objective | Mathematics is of ever increasing importance to the Natural Sciences and Engineering. The key is the so-called mathematical modelling cycle, i.e. the translation of problems from outside of mathematics into mathematics, the study of the mathematical problems (often with the help of high level mathematical software packages) and the interpretation of the results in the original environment. The goal of Mathematics I and II is to provide the mathematical foundations relevant for this paradigm. Differential equations are by far the most important tool for modelling and are therefore a main focus of both of these courses. | |||||

Content | 1. Single-Variable Calculus: review of differentiation, linearisation, Taylor polynomials, maxima and minima, antiderivative, fundamental theorem of calculus, integration methods, improper integrals. 2. Linear Algebra and Complex Numbers: systems of linear equations, Gauss-Jordan elimination, matrices, determinants, eigenvalues and eigenvectors, cartesian and polar forms for complex numbers, complex powers, complex roots, fundamental theorem of algebra. 3. Ordinary Differential Equations: separable ordinary differential equations (ODEs), integration by substitution, 1st and 2nd order linear ODEs, homogeneous systems of linear ODEs with constant coefficients, introduction to 2-dimensional dynamical systems. | |||||

Literature | - Thomas, G. B.: Thomas' Calculus, Part 1 (Pearson Addison-Wesley). - Bretscher, O.: Linear Algebra with Applications (Pearson Prentice Hall). | |||||

Prerequisites / Notice | Prerequisites: familiarity with the basic notions from Calculus, in particular those of function and derivative. Mathe-Lab (Assistance): Mondays 18-20, Tuesdays 18-20, Wednesdays 18-20, in Room HG E 41. | |||||

651-3001-00L | Dynamic Earth I | O | 6 credits | 4V + 2U | O. Bachmann, A. Galli, A. Fichtner, L. Krischer, M. Lupker, M. Schönbächler, S. Willett | |

Abstract | Provides a basic introduction into Earth Sciences, emphasizing different rock-types and the geological rock-cycle, as well as introduction into geophysics and plate tectonic theory. | |||||

Learning objective | Understanding basic geological and geophysical processes | |||||

Content | Overview of the Earth as a system, with emphasis on plate tectonic theory and the geological rock-cycle. Provides a basic introduction to crystals and minerals and different rock-types. Lectures include processes in the Earth's interior, physics of the earth, planetology, introduction to magmatic, metamorphic and sedimentary rocks. Excercises are conducted in small groups to provide more in depth understanding of concepts and content of the lectures. | |||||

Lecture notes | werden abgegeben. | |||||

Literature | Grotzinger, J., Jordan, T.H., Press, F., Siever, R., 2007, Understanding Earth, W.H. Freeman & Co., New York, 5th Ed. Press, F. Siever, R., Grotzinger, J. & Jordon, T.H., 2008, Allgemeine Geologie. Spektrum Akademischer Verlag, Heidelberg, 5.Auflage. | |||||

Prerequisites / Notice | Exercises and short excursions in small groups (10-15 students) will be lead by student assistants. Specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g. earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g. building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes. | |||||

First Year Additional Compulsory Courses | ||||||

Number | Title | Type | ECTS | Hours | Lecturers | |

529-0030-00L | Laboratory Course: Elementary Chemical Techniques | O | 3 credits | 6P | N. Kobert, A. de Mello, M. H. Schroth | |

Abstract | This practical course provides an introduction to elementary laboratory techniques. The experiments cover a wide range of techniques, including analytical and synthetic techniques (e. g. investigation of soil and water samples or the preparation of simple compunds). Furthermore, the handling of gaseous substances is practised. | |||||

Learning objective | This course is intended to provide an overview of experimental chemical methods. The handling of chemicals and proper laboratory techniques represent the main learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course. | |||||

Content | The classification and analysis of natural and artificial compounds is a key subject of this course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks: Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations, spectroscopy or ion chromatography. The chemistry of aqeous solutions (acid-base equilibria and solvatation or precipitation processes) is studied. The synthesis of simple inorganic complexes or organic molecules is practised. Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum. | |||||

Lecture notes | The script will be published on the web. Details will be provided on the first day of the semester. | |||||

Literature | A thorough study of all script materials is requested before the course starts. | |||||

Prerequisites / Notice | Safety concept: https://chab.ethz.ch/studium/bachelor1.html |

- Page 1 of 1