Suchergebnis: Katalogdaten im Frühjahrssemester 2018
MAS in Medizinphysik | ||||||
Fachrichtung: Allg. Medizinphysik und Biomedizinisches Ingenieurwesen | ||||||
Vertiefung Bioelectronics | ||||||
Kernfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0390-00L | Elements of Microscopy | W | 4 KP | 3G | M. Stampanoni, G. Csúcs, A. Sologubenko | |
Kurzbeschreibung | The lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging. | |||||
Lernziel | Solid introduction to the basics of microscopy, either with visible light, electrons or X-rays. | |||||
Inhalt | It would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level. The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy. During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated. | |||||
Literatur | Available Online. | |||||
Praktika | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
465-0800-00L | Practical Work Nur für MAS in Medizinphysik | O | 4 KP | externe Veranstalter | ||
Kurzbeschreibung | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Lernziel | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Wahlfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
151-0172-00L | Microsystems II: Devices and Applications | W | 6 KP | 3V + 3U | C. Hierold, C. I. Roman | |
Kurzbeschreibung | The students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS). They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products. | |||||
Lernziel | The students are introduced to the fundamentals and physics of microelectronic devices as well as to microsystems in general (MEMS), basic electronic circuits for sensors, RF-MEMS, chemical microsystems, BioMEMS and microfluidics, magnetic sensors and optical devices, and in particular to the concepts of Nanosystems (focus on carbon nanotubes), based on the respective state-of-research in the field. They will be able to apply this knowledge for system research and development and to assess and apply principles, concepts and methods from a broad range of technical and scientific disciplines for innovative products. During the weekly 3 hour module on Mondays dedicated to Übungen the students will learn the basics of Comsol Multiphysics and utilize this software to simulate MEMS devices to understand their operation more deeply and optimize their designs. | |||||
Inhalt | Transducer fundamentals and test structures Pressure sensors and accelerometers Resonators and gyroscopes RF MEMS Acoustic transducers and energy harvesters Thermal transducers and energy harvesters Optical and magnetic transducers Chemical sensors and biosensors, microfluidics and bioMEMS Nanosystem concepts Basic electronic circuits for sensors and microsystems | |||||
Skript | Handouts (on-line) | |||||
151-0622-00L | Measuring on the Nanometer Scale | W | 2 KP | 2G | A. Stemmer, T. Wagner | |
Kurzbeschreibung | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Lernziel | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Inhalt | Conventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters. | |||||
Skript | Class notes and special papers will be distributed. | |||||
151-0980-00L | Biofluiddynamics | W | 4 KP | 2V + 1U | D. Obrist, P. Jenny | |
Kurzbeschreibung | Introduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics). | |||||
Lernziel | A basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately. | |||||
Inhalt | This lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear. | |||||
Skript | Lecture notes are provided electronically. | |||||
Literatur | A list of books on selected topics of biofluiddynamics can be found on the course web page. | |||||
227-1046-00L | Computer Simulations of Sensory Systems | W | 3 KP | 2V + 1U | T. Haslwanter | |
Kurzbeschreibung | This course deals with computer simulations of the human auditory, visual, and balance system. The lecture will cover the physiological and mechanical mechanisms of these sensory systems. And in the exercises, the simulations will be implemented with Python (or Matlab). The simulations will be such that their output could be used as input for actual neuro-sensory prostheses. | |||||
Lernziel | Our sensory systems provide us with information about what is happening in the world surrounding us. Thereby they transform incoming mechanical, electromagnetic, and chemical signals into “action potentials”, the language of the central nervous system. The main goal of this lecture is to describe how our sensors achieve these transformations, how they can be reproduced with computational tools. For example, our auditory system performs approximately a “Fourier transformation” of the incoming sound waves; our early visual system is optimized for finding edges in images that are projected onto our retina; and our balance system can be well described with a “control system” that transforms linear and rotational movements into nerve impulses. In the exercises that go with this lecture, we will use Python to reproduce the transformations achieved by our sensory systems. The goal is to write programs whose output could be used as input for actual neurosensory prostheses: such prostheses have become commonplace for the auditory system, and are under development for the visual and the balance system. For the corresponding exercises, at least some basic programing experience is required. | |||||
Inhalt | The following topics will be covered: • Introduction into the signal processing in nerve cells. • Introduction into Python. • Simplified simulation of nerve cells (Hodgkins-Huxley model). • Description of the auditory system, including the application of Fourier transforms on recorded sounds. • Description of the visual system, including the retina and the information processing in the visual cortex. The corresponding exercises will provide an introduction to digital image processing. • Description of the mechanics of our balance system, and the “Control System”-language that can be used for an efficient description of the corresponding signal processing (essentially Laplace transforms and control systems). | |||||
Skript | For each module additional material will be provided on the e-learning platform "moodle". The main content of the lecture is also available as a wikibook, under http://en.wikibooks.org/wiki/Sensory_Systems | |||||
Literatur | Open source information is available as wikibook http://en.wikibooks.org/wiki/Sensory_Systems For good overviews I recommend: • L. R. Squire, D. Berg, F. E. Bloom, Lac S. du, A. Ghosh, and N. C. Spitzer. Fundamental Neuroscience, Academic Press - Elsevier, 2012 [ISBN: 9780123858702]. This book covers the biological components, from the functioning of an individual ion channels through the various senses, all the way to consciousness. And while it does not cover the computational aspects, it nevertheless provides an excellent overview of the underlying neural processes of sensory systems. • Principles of Neural Science (5th Ed, 2012), by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, A.J. Hudspeth ISBN 0071390111 / 9780071390118 The standard textbook on neuroscience. • P Wallisch, M Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey, and N. G. Hatsopoulos. MATLAB for Neuroscientists, Academic Press, 2009. Compactly written, it provides a short introduction to MATLAB, as well as a very good overview of MATLAB’s functionality, focusing on applications in different areas of neuroscience. • G. Mather. Foundations of Sensation and Perception, 2nd Ed Psychology Press, 2009 [ISBN: 978-1-84169-698-0 (hardcover), oder 978-1-84169-699-7 (paperback)] A coherent, up-to-date introduction to the basic facts and theories concerning human sensory perception. | |||||
Voraussetzungen / Besonderes | Since I have to gravel from Linz, Austria, to Zurich to give this lecture, I plan to hold this lecture in blocks (every 2nd week). | |||||
376-1614-00L | Principles in Tissue Engineering | W | 3 KP | 2V | K. Maniura, J. Möller, M. Zenobi-Wong | |
Kurzbeschreibung | Fundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Lernziel | Understanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed. | |||||
Inhalt | This class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Skript | Handouts provided during the classes and references therin. | |||||
Literatur | The molecular Biology of the Cell, Alberts et al., 5th Edition, 2009. Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002 | |||||
Vertiefung Neuroinformatics | ||||||
Kernfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-1034-00L | Computational Vision (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH. UZH Module Code: INI402 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html | W | 6 KP | 2V + 1U | D. Kiper, K. A. Martin | |
Kurzbeschreibung | This course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision. | |||||
Lernziel | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Inhalt | This course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed. The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered. | |||||
Literatur | Books: (recommended references, not required) 1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997. 2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995. | |||||
Praktika | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
465-0800-00L | Practical Work Nur für MAS in Medizinphysik | O | 4 KP | externe Veranstalter | ||
Kurzbeschreibung | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Lernziel | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Wahlfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-1046-00L | Computer Simulations of Sensory Systems | W | 3 KP | 2V + 1U | T. Haslwanter | |
Kurzbeschreibung | This course deals with computer simulations of the human auditory, visual, and balance system. The lecture will cover the physiological and mechanical mechanisms of these sensory systems. And in the exercises, the simulations will be implemented with Python (or Matlab). The simulations will be such that their output could be used as input for actual neuro-sensory prostheses. | |||||
Lernziel | Our sensory systems provide us with information about what is happening in the world surrounding us. Thereby they transform incoming mechanical, electromagnetic, and chemical signals into “action potentials”, the language of the central nervous system. The main goal of this lecture is to describe how our sensors achieve these transformations, how they can be reproduced with computational tools. For example, our auditory system performs approximately a “Fourier transformation” of the incoming sound waves; our early visual system is optimized for finding edges in images that are projected onto our retina; and our balance system can be well described with a “control system” that transforms linear and rotational movements into nerve impulses. In the exercises that go with this lecture, we will use Python to reproduce the transformations achieved by our sensory systems. The goal is to write programs whose output could be used as input for actual neurosensory prostheses: such prostheses have become commonplace for the auditory system, and are under development for the visual and the balance system. For the corresponding exercises, at least some basic programing experience is required. | |||||
Inhalt | The following topics will be covered: • Introduction into the signal processing in nerve cells. • Introduction into Python. • Simplified simulation of nerve cells (Hodgkins-Huxley model). • Description of the auditory system, including the application of Fourier transforms on recorded sounds. • Description of the visual system, including the retina and the information processing in the visual cortex. The corresponding exercises will provide an introduction to digital image processing. • Description of the mechanics of our balance system, and the “Control System”-language that can be used for an efficient description of the corresponding signal processing (essentially Laplace transforms and control systems). | |||||
Skript | For each module additional material will be provided on the e-learning platform "moodle". The main content of the lecture is also available as a wikibook, under http://en.wikibooks.org/wiki/Sensory_Systems | |||||
Literatur | Open source information is available as wikibook http://en.wikibooks.org/wiki/Sensory_Systems For good overviews I recommend: • L. R. Squire, D. Berg, F. E. Bloom, Lac S. du, A. Ghosh, and N. C. Spitzer. Fundamental Neuroscience, Academic Press - Elsevier, 2012 [ISBN: 9780123858702]. This book covers the biological components, from the functioning of an individual ion channels through the various senses, all the way to consciousness. And while it does not cover the computational aspects, it nevertheless provides an excellent overview of the underlying neural processes of sensory systems. • Principles of Neural Science (5th Ed, 2012), by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, A.J. Hudspeth ISBN 0071390111 / 9780071390118 The standard textbook on neuroscience. • P Wallisch, M Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey, and N. G. Hatsopoulos. MATLAB for Neuroscientists, Academic Press, 2009. Compactly written, it provides a short introduction to MATLAB, as well as a very good overview of MATLAB’s functionality, focusing on applications in different areas of neuroscience. • G. Mather. Foundations of Sensation and Perception, 2nd Ed Psychology Press, 2009 [ISBN: 978-1-84169-698-0 (hardcover), oder 978-1-84169-699-7 (paperback)] A coherent, up-to-date introduction to the basic facts and theories concerning human sensory perception. | |||||
Voraussetzungen / Besonderes | Since I have to gravel from Linz, Austria, to Zurich to give this lecture, I plan to hold this lecture in blocks (every 2nd week). | |||||
376-1792-00L | Introductory Course in Neuroscience II (University of Zurich) Der Kurs muss direkt an der UZH belegt werden. UZH Modulkürzel: SPV0Y020 Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html | W | 2 KP | 2V | Uni-Dozierende | |
Kurzbeschreibung | This course discusses behavioral aspects in neuroscience. Modern brain imaging methods are described. Clinical issues including diseases of the nervous system are studied. Sleep research and neuroimmunology are discussed. Finally, the course deals with the basic concepts in psychiatry. | |||||
Lernziel | ||||||
Voraussetzungen / Besonderes | Für Doktorierende des Zentrums für Neurowissenschaften Zürich. | |||||
376-1796-00L | Advanced Course in Neurobiology II (University of Zurich) Der Kurs muss direkt an der UZH belegt werden. UZH Modulkürzel: SPV0Y009 Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/mobilitaet.html | W | 2 KP | 2V | J.‑M. Fritschy, Uni-Dozierende | |
Kurzbeschreibung | The goal of this Advanced Course in Neurobiology is to provide students with a broader knowledge in several important areas of neurobiology. The course consists of four parts: Part I deals with various topics in developmental neurobiology. Part II is devoted to aspects of signal transduction. Part III focuses on synaptic transmission. Part IV gives deeper insights into systems neuroscience. | |||||
Lernziel | This credit point course is designed for doctoral students who have successfully completed the Introductory Course in Neuroscience at the Neuroscience Center Zürich. The goal is to provide students with a broader and deeper knowledge in several important areas of neurobiology. | |||||
Voraussetzungen / Besonderes | Für Doktorierende des Zentrums für Neurowissenschaften Zürich. Nicht für Master-Studierende geeignet. | |||||
Vertiefung Biocompatible Materials | ||||||
Kernfächer Von den beiden Lerneinheiten 376-1622-00L Practical Methods in Tissue Engineering (angeboten im Herbstsemester) und 376-1624-00L Practical Methods in Biofabrication (angeboten im Frühjahrssemester) dürfen nicht beide angerechnet werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
151-0980-00L | Biofluiddynamics | W | 4 KP | 2V + 1U | D. Obrist, P. Jenny | |
Kurzbeschreibung | Introduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics). | |||||
Lernziel | A basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately. | |||||
Inhalt | This lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear. | |||||
Skript | Lecture notes are provided electronically. | |||||
Literatur | A list of books on selected topics of biofluiddynamics can be found on the course web page. | |||||
376-1308-00L | Development Strategies for Medical Implants Maximale Teilnehmerzahl: 25 bis 30. Die Einschreibungen werden nach chronologischem Eingang berücksichtigt. | W | 3 KP | 2V + 1U | J. Mayer-Spetzler, M. Rubert | |
Kurzbeschreibung | Introduction to development strategies for implantable devices considering the interdependecies of biocompatibility, clinical and economical requirements ; discussion of the state of the art and actual trends in in orthopedics, sports medicine, traumatology and cardio-vascular surgery as well as regenerative medicine (tissue engineering). | |||||
Lernziel | Basic considerations in implant development Concept of structural and surface biocompatiblity and its relevance for the design of implant and surgical technique Understanding of conflicting factors, e.g. clinical need, economics and regulatory requirements Concepts of tissue engineering, its strengths and weaknesses as current and future clinical solution | |||||
Inhalt | Biocompatibility as bionic guide line for the development of medical implants; implant and implantation related tissue reactions, biocompatible materials and material processing technologies; implant testing and regulatory procedures; discussion of the state of the art and actual trends in implant development in orthopedics, sports medicine, traumatology, spinal and cardio-vascular surgery; introduction to tissue engineering. Selected topics will be further illustrated by commented movies from surgeries. Seminar: Group seminars on selected controversial topics in implant development. Participation is mandatory Planned excursions (limited availability, not mandatory, to be confirmed): 1. Participation (as visitor) on a life surgery (travel at own expense) | |||||
Skript | Scribt (electronically available): - presented slides - selected scientific papers for further reading | |||||
Literatur | Textbooks on selected topics will be introduced during the lectures | |||||
Voraussetzungen / Besonderes | Achieved Bachelor degree is mandatory The number of participants in the course is limited to 25-30 students in total. Students will be exposed to surgical movies which may cause emotional reactions. The viewing of the surgical movies is voluntary and is on the student's own responsability. | |||||
376-1392-00L | Mechanobiology: Implications for Development, Regeneration and Tissue Engineering | W | 3 KP | 2G | A. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong | |
Kurzbeschreibung | This course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs. | |||||
Lernziel | This course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena. | |||||
Inhalt | Typically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include all forms of myogenesis (cardiac, skeletal and smooth muscles), osteogenesis (bones), chondrogenesis (cartilage), tendogenesis (tendons) and angiogenesis (blood vessels). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance. The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering. | |||||
Skript | n/a | |||||
Literatur | Topical Scientific Manuscripts | |||||
376-1614-00L | Principles in Tissue Engineering | W | 3 KP | 2V | K. Maniura, J. Möller, M. Zenobi-Wong | |
Kurzbeschreibung | Fundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Lernziel | Understanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed. | |||||
Inhalt | This class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed. | |||||
Skript | Handouts provided during the classes and references therin. | |||||
Literatur | The molecular Biology of the Cell, Alberts et al., 5th Edition, 2009. Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002 | |||||
376-1624-00L | Practical Methods in Biofabrication Number of participants limited to 12. | W | 5 KP | 4P | M. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak | |
Kurzbeschreibung | Biofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft. | |||||
Lernziel | The objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project. | |||||
Voraussetzungen / Besonderes | Not recommended if passed 376-1622-00 Practical Methods in Tissue Engineering | |||||
Praktika | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
465-0800-00L | Practical Work Nur für MAS in Medizinphysik | O | 4 KP | externe Veranstalter | ||
Kurzbeschreibung | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||
Lernziel | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||
Wahlfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
151-0622-00L | Measuring on the Nanometer Scale | W | 2 KP | 2G | A. Stemmer, T. Wagner | |
Kurzbeschreibung | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Lernziel | Introduction to theory and practical application of measuring techniques suitable for the nano domain. | |||||
Inhalt | Conventional techniques to analyze nano structures using photons and electrons: light microscopy with dark field and differential interference contrast; scanning electron microscopy, transmission electron microscopy. Interferometric and other techniques to measure distances. Optical traps. Foundations of scanning probe microscopy: tunneling, atomic force, optical near-field. Interactions between specimen and probe. Current trends, including spectroscopy of material parameters. | |||||
Skript | Class notes and special papers will be distributed. | |||||
Vertiefung Molecular Biology and Biophysics | ||||||
Kernfächer | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
551-1402-00L | Molecular and Structural Biology VI: Biophysical Analysis of Macromolecular Mechanisms This course is strongly recommended for the Masters Major "Biology and Biophysics". | W | 4 KP | 2V | R. Glockshuber, T. Ishikawa, S. Jonas, B. Schuler, E. Weber-Ban | |
Kurzbeschreibung | The course is focussed on biophysical methods for characterising conformational transitions and reaction mechanisms of proteins and biological mecromolecules, with focus on methods that have not been covered in the Biology Bachelor Curriculum. | |||||
Lernziel | The goal of the course is to give the students a broad overview on biopyhsical techniques available for studying conformational transitions and complex reaction mechanisms of biological macromolecules. The course is particularly suited for students enrolled in the Majors "Structural Biology and Biophysics", "Biochemistry" and "Chemical Biology" of the Biology MSc curriculum, as well as for MSc students of Chemistry and Interdisciplinary Natural Sciences". | |||||
Inhalt | The biophysical methods covered in the course include advanced reaction kinetics, methods for the thermodynamic and kinetic analysis of protein-ligand interactions, classical and dynamic light scattering, analytical ultracentrifugation, spectroscopic techniques such as fluorescence anisotropy, fluorescence resonance energy transfer (FRET) and single molecule fluorescence spectrosopy, modern electron microscopy techniques, atomic force microscopy, and isothermal and differential scanning calorimetry. | |||||
Skript | Course material from the individual lecturers wil be made available at the sharepoint website https://team.biol.ethz.ch/e-learn/551-1402-00L | |||||
Voraussetzungen / Besonderes | Finished BSc curriculum in Biology, Chemistry or Interdisciplinary Natural Sciences. The course is also adequate for doctoral students with research projects in structural biology, biophysics, biochemistry and chemical biology. |
- Seite 3 von 4 Alle