Suchergebnis: Katalogdaten im Herbstsemester 2022

Elektrotechnik und Informationstechnologie Master Information
Master-Studium (Studienreglement 2018)
Communication
The core courses and specialisation courses below are a selection for students who wish to specialise in the area of "Communication", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html.

The individual study plan is subject to the tutor's approval.
Kernfächer
These core courses are particularly recommended for the field of "Communication".
You may choose core courses form other fields in agreement with your tutor.

A minimum of 24 credits must be obtained from core courses during the MSc EEIT.
Foundation Core Courses
Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area.
NummerTitelTypECTSUmfangDozierende
227-0121-00LKommunikationssysteme Information
Findet dieses Semester nicht statt.
W6 KP4GNoch nicht bekannt
KurzbeschreibungInformationstheorie, Signalraumanalyse, Basisbandübertragung, Passbandübertragung, Systembeispiel und Kanal, Sicherungsschicht, MAC, Beispiele Layer 2, Layer 3, Internet
LernzielZiel der Vorlesung ist die Einführung der wichtigsten Konzepte und Verfahren, die in modernen digitalen Kommunikationssystemen Anwendung finden, sowie eine Übersicht über bestehende und zukünftige Systeme.
InhaltEs werden die untersten drei Schichten des OSI-Referenzmodells behandelt: die Bitübertragungsschicht, die Sicherungsschicht mit dem Zugriff auf das Übertragungsmedium und die Vermittlung. Die wichtigsten Begriffe der Informationstheorie werden eingeführt. Anschliessend konzentrieren sich die Betrachtungen auf die Verfahren der Punkt-zu-Punkt-Übertragung, welche sich mittels der Signalraumdarstellung elegant und kohärent behandeln lassen. Den Methoden der Fehlererkennung und –korrektur, sowie Protokollen für die erneute Übermittlung gestörter Daten wird Rechnung getragen. Auch der Vielfachzugriff bei geteiltem Übertragungsmedium wird diskutiert. Den Abschluss bilden Algorithmen für das Routing in Kommunikationsnetzen und der Flusssteuerung.

Die Anwendung der grundlegenden Verfahren wird ausführlich anhand von bestehenden und zukünftigen drahtlosen und drahtgebundenen Systemen erläutert.
SkriptVorlesungsfolien
Literatur[1] Simon Haykin, Communication Systems, 4. Auflage, John Wiley & Sons, 2001
[2] Andrew S. Tanenbaum, Computernetzwerke, 3. Auflage, Pearson Studium, 2003
[3] M. Bossert und M. Breitbach, Digitale Netze, 1. Auflage, Teubner, 1999
227-0101-00LDiscrete-Time and Statistical Signal Processing Information W6 KP4GH.‑A. Loeliger
KurzbeschreibungThe course is about some fundamental topics of digital signal processing with a bias towards applications in communications: discrete-time linear filters, inverse filters and equalization, DFT, discrete-time stochastic processes, elements of detection theory and estimation theory, LMMSE estimation and LMMSE filtering, LMS algorithm, Viterbi algorithm.
LernzielThe course is about some fundamental topics of digital signal processing with a bias towards applications in communications. The two main themes are linearity and probability. In the first part of the course, we deepen our understanding of discrete-time linear filters. In the second part of the course, we review the basics of probability theory and discrete-time stochastic processes. We then discuss some basic concepts of detection theory and estimation theory, as well as some practical methods including LMMSE estimation and LMMSE filtering, the LMS algorithm, and the Viterbi algorithm. A recurrent theme throughout the course is the stable and robust "inversion" of a linear filter.
Inhalt1. Discrete-time linear systems and filters:
state-space realizations, z-transform and spectrum,
decimation and interpolation, digital filter design,
stable realizations and robust inversion.

2. The discrete Fourier transform and its use for digital filtering.

3. The statistical perspective:
probability, random variables, discrete-time stochastic processes;
detection and estimation: MAP, ML, Bayesian MMSE, LMMSE;
Wiener filter, LMS adaptive filter, Viterbi algorithm.
SkriptLecture Notes
  •  Seite  1  von  1