Suchergebnis: Katalogdaten im Herbstsemester 2020

Statistik Master Information
Die hier aufgelisteten Lehrveranstaltungen gehören zum Curriculum des Master-Studiengangs Statistik. Die entsprechenden KP gelten nicht als Mobilitäts-KP, auch wenn gewisse Lerneinheiten nicht an der ETH Zürich belegt werden können.
Master-Studium (Studienreglement 2020)
Kernfächer
Statistical Modelling
NummerTitelTypECTSUmfangDozierende
401-3622-00LStatistical Modelling Information W8 KP4GP. L. Bühlmann, M. Mächler
KurzbeschreibungIn der Regression wird die Abhängigkeit einer zufälligen Response-Variablen von anderen Variablen untersucht. Wir betrachten die Theorie der linearen Regression mit einer oder mehreren Ko-Variablen, hoch-dimensionale lineare Modelle, nicht-lineare Modelle und verallgemeinerte lineare Modelle, Robuste Methoden, Modellwahl und nicht-parametrische Modelle.
LernzielEinführung in Theorie und Praxis eines umfassenden und vielbenutzten Teilgebiets der Statistik, unter Berücksichtigung neuerer Entwicklungen.
InhaltIn der Regression wird die Abhängigkeit einer beobachteten quantitativen Grösse von einer oder mehreren anderen (unter Berücksichtigung zufälliger Fehler) untersucht. Themen der Vorlesung sind: Einfache und multiple Regression, Theorie allgemeiner linearer Modelle, Hoch-dimensionale Modelle, Ausblick auf nichtlineare Modelle. Querverbindungen zur Varianzanalyse, Modellsuche, Residuenanalyse; Einblicke in Robuste Regression. Durchrechnung und Diskussion von Anwendungsbeispielen.
SkriptVorlesungsskript
Voraussetzungen / BesonderesThis is the course unit with former course title "Regression".
Credits cannot be recognised for both courses 401-3622-00L Statistical Modelling and 401-0649-00L Applied Statistical Regression in the Mathematics Bachelor and Master programmes (to be precise: one course in the Bachelor and the other course in the Master is also forbidden).
401-4623-00LTime Series AnalysisW6 KP3GF. Balabdaoui
KurzbeschreibungThe course offers an introduction into analyzing times series, that is observations which occur in time. The material will cover Stationary Models, ARMA processes, Spectral Analysis, Forecasting, Nonstationary Models, ARIMA Models and an introduction to GARCH models.
LernzielThe goal of the course is to have a a good overview of the different types of time series and the approaches used in their statistical analysis.
InhaltThis course treats modeling and analysis of time series, that is random variables which change in time. As opposed to the i.i.d. framework, the main feature exibited by time series is the dependence between successive observations.

The key topics which will be covered as:

Stationarity
Autocorrelation
Trend estimation
Elimination of seasonality
Spectral analysis, spectral densities
Forecasting
ARMA, ARIMA, Introduction into GARCH models
LiteraturThe main reference for this course is the book "Introduction to Time Series and Forecasting", by P. J. Brockwell and R. A. Davis
Voraussetzungen / BesonderesBasic knowledge in probability and statistics
Applied Statistics
NummerTitelTypECTSUmfangDozierende
401-0625-01LApplied Analysis of Variance and Experimental DesignW5 KP2V + 1UL. Meier
KurzbeschreibungPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LernzielParticipants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R.
InhaltPrinciples of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power.
LiteraturG. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000.
Voraussetzungen / BesonderesThe exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held.
Mathematical Statistics
The two core courses Fundamentals of Mathematical Statistics (401-3621-00L) and Likelihood Inference (401-8623-00L) are similar in content. Therefore only one of them can be recognised towards the Master’s degree in the core course area «Mathematical Statistics».
NummerTitelTypECTSUmfangDozierende
401-3621-00LFundamentals of Mathematical Statistics Information W10 KP4V + 1US. van de Geer
KurzbeschreibungThe course covers the basics of inferential statistics.
Lernziel
401-8623-00LLikelihood Inference (University of Zurich)
Der Kurs muss direkt an der UZH belegt werden.
UZH Modulkürzel: STA402

Beachten Sie die Einschreibungstermine an der UZH: Link

Im Kernfachbereich «Mathematical Statistics» kann nur eines der beiden inhaltlich ähnlichen Kernfächer Fundamentals of Mathematical Statistics (401-3621-00L) und Likelihood Inference (401-8623-00L) für das Master-Diplom in Statistik (Studienreglement 2020) angerechnet werden.
W5 KP3GUni-Dozierende
KurzbeschreibungOverview over the basics of likelihood inference.
Lernziel
Fachbezogene Wahlfächer
NummerTitelTypECTSUmfangDozierende
401-3601-00LProbability Theory Information
Höchstens eines der drei Bachelor-Kernfächer
401-3461-00L Funktionalanalysis I / Functional Analysis I
401-3531-00L Differentialgeometrie I / Differential Geometry I
401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory
ist im Master-Studiengang Mathematik anrechenbar. Die Kategoriezuordnung können Sie in diesem Fall nicht selber in myStudies vornehmen, sondern Sie müssen sich dazu nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (Link) wenden.
W10 KP4V + 1UA.‑S. Sznitman
KurzbeschreibungBasics of probability theory and the theory of stochastic processes in discrete time
LernzielThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
InhaltThis course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned:
Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains.
Skriptavailable in electronic form.
LiteraturR. Durrett, Probability: Theory and examples, Duxbury Press 1996
H. Bauer, Probability Theory, de Gruyter 1996
J. Jacod and P. Protter, Probability essentials, Springer 2004
A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006
D. Williams, Probability with martingales, Cambridge University Press 1991
401-3627-00LHigh-Dimensional Statistics
Findet dieses Semester nicht statt.
W4 KP2VP. L. Bühlmann
Kurzbeschreibung"High-Dimensional Statistics" deals with modern methods and theory for statistical inference when the number of unknown parameters is of much larger order than sample size. Statistical estimation and algorithms for complex models and aspects of multiple testing will be discussed.
LernzielKnowledge of methods and basic theory for high-dimensional statistical inference
InhaltLasso and Group Lasso for high-dimensional linear and generalized linear models; Additive models and many smooth univariate functions; Non-convex loss functions and l1-regularization; Stability selection, multiple testing and construction of p-values; Undirected graphical modeling
LiteraturPeter Bühlmann and Sara van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Verlag.
ISBN 978-3-642-20191-2.
Voraussetzungen / BesonderesKnowledge of basic concepts in probability theory, and intermediate knowledge of statistics (e.g. a course in linear models or computational statistics).
401-3612-00LStochastic SimulationW5 KP3GF. Sigrist
KurzbeschreibungThis course introduces statistical Monte Carlo methods. This includes applications of stochastic simulation in various fields (statistics, statistical mechanics, operations research, financial mathematics), generating uniform and arbitrary random variables (incl. rejection and importance sampling), the accuracy of methods, variance reduction, quasi-Monte Carlo, and Markov chain Monte Carlo.
LernzielStudents know the stochastic simulation methods introduced in this course. Students understand and can explain these methods, show how they are related to each other, know their weaknesses and strengths, apply them in practice, and proof key results.
InhaltExamples of simulations in different fields (statistics, statistical mechanics, operations research, financial mathematics). Generation of uniform random variables. Generation of random variables with arbitrary distributions (including rejection sampling and importance sampling), simulation of multivariate normal variables and stochastic differential equations. The accuracy of Monte Carlo methods. Methods for variance reduction and quasi-Monte Carlo. Introduction to Markov chains and Markov chain Monte Carlo (Metropolis-Hastings, Gibbs sampler, Hamiltonian Monte Carlo, reversible jump MCMC). Algorithms introduced in the course are illustrated with the statistical software R.
SkriptA script will be available in English.
LiteraturP. Glasserman, Monte Carlo Methods in Financial Engineering.
Springer 2004.

B. D. Ripley. Stochastic Simulation. Wiley, 1987.

Ch. Robert, G. Casella. Monte Carlo Statistical Methods.
Springer 2004 (2nd edition).
Voraussetzungen / BesonderesIt is assumed that students have had an introduction to probability theory and statistics (random variables, joint and conditional distributions, law of large numbers, central limit theorem, basics of measure theory).

The course resources (including script, slides, exercises) will be provided via the Moodle online learning platform.
401-4619-67LAdvanced Topics in Computational Statistics
Findet dieses Semester nicht statt.
W4 KP2Vkeine Angaben
KurzbeschreibungThis lecture covers selected advanced topics in computational statistics. This year the focus will be on graphical modelling.
LernzielStudents learn the theoretical foundations of the selected methods, as well as practical skills to apply these methods and to interpret their outcomes.
InhaltThe main focus will be on graphical models in various forms:
Markov properties of undirected graphs; Belief propagation; Hidden Markov Models; Structure estimation and parameter estimation; inference for high-dimensional data; causal graphical models
Voraussetzungen / BesonderesWe assume a solid background in mathematics, an introductory lecture in probability and statistics, and at least one more advanced course in statistics.
401-4633-00LData Analytics in Organisations and BusinessW5 KP2V + 1UI. Flückiger
KurzbeschreibungOn the end-to-end process of data analytics in organisations & business and how to transform data into insights for fact based decisions. Presentation of the process from the beginning with framing the business problem to presenting the results and making decisions by the use of data analytics. For each topic case studies from the financial service, healthcare and retail sectors will be presented.
LernzielThe goal of this course is to give the students the understanding of the data analytics process in the business world, with special focus on the skills and techniques used besides the technical skills. The student will become familiar with the "business language", current problems and thinking in organisations and business and tools used.
InhaltFraming the Business Problem
Framing the Analytics Problem
Data
Methodology
Model Building
Deployment
Model Lifecycle
Soft Skills for the Statistical/Mathematical Professional
SkriptLecture Notes will be available.
Voraussetzungen / BesonderesPrerequisites: Basic statistics and probability theory and regression
401-6217-00LUsing R for Data Analysis and Graphics (Part II) Belegung eingeschränkt - Details anzeigen W1.5 KP1GM. Mächler
KurzbeschreibungThe course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions.
Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known.
LernzielThe students will be able to use the software R efficiently for data analysis, graphics and simple programming
InhaltThe course provides the second part of an introduction to the statistical software R (Link) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R.

Part II of the course builds on part I and covers the following additional topics:
- Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects;
- More on R functions;
- Applying functions to elements of vectors, matrices and lists;
- Object oriented programming with R: classes and methods;
- Tayloring R: options
- Extending basic R: packages

The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: Link
SkriptAn Introduction to R. Link
Voraussetzungen / BesonderesBasic knowledge of R equivalent to "Using R .. (part 1)" ( = 401-6215-00L ) is a prerequisite for this course.

The course resources will be provided via the Moodle web learning platform.
Subscribing via Mystudies should *automatically* make you
a student participant of the Moodle course of this lecture, which is at

Link

ALL material is available on this moodle page.
401-0627-00LSmoothing and Nonparametric Regression with Examples Information W4 KP2GS. Beran-Ghosh
KurzbeschreibungStarting with an overview of selected results from parametric inference, kernel smoothing will be introduced along with some asymptotic theory, optimal bandwidth selection, data driven algorithms and some special topics. Examples from environmental research will be used for motivation, but the methods will also be applicable elsewhere.
LernzielThe students will learn about methods of kernel smoothing and application of concepts to data. The aim will be to build sufficient interest in the topic and intuition as well as the ability to implement the methods to various different datasets.
InhaltRough Outline:

- Parametric estimation methods: selection of important results
o Maximum likelihood, Method of Least squares: regression & diagnostics

- Nonparametric curve estimation
o Density estimation, Kernel regression, Local polynomials, Bandwidth selection
o Selection of special topics (as time permits, we will cover as many topics as possible) such as rapid change points, mode estimation, robust smoothing, partial linear models, etc.

- Applications: potential areas of applications will be discussed such as, change assessment, trend and surface estimation, probability and quantile curve estimation, and others.
SkriptBrief summaries or outlines of some of the lecture material will be posted at Link.

NOTE: The posted notes will tend to be just sketches whereas only the in-class lessons will contain complete information.

LOG IN: In order to have access to the posted notes, you will need the course user id & the password. These will be given out on the first day of the lectures.
LiteraturReferences:
- Statistical Inference, by S.D. Silvey, Chapman & Hall.
- Regression Analysis: Theory, Methods and Applications, by A. Sen and M. Srivastava, Springer.
- Density Estimation, by B.W. Silverman, Chapman and Hall.
- Nonparametric Simple Regression, by J. Fox, Sage Publications.
- Applied Smoothing Techniques for Data Analysis: the Kernel Approach With S-Plus Illustrations, by A.W. Bowman, A. Azzalini, Oxford University Press.
- Kernel Smoothing: Principles, Methods and Applications, by S. Ghosh, Wiley.

Additional references will be given out in the lectures.
Voraussetzungen / BesonderesPrerequisites: A background in Linear Algebra, Calculus, Probability & Statistical Inference including Estimation and Testing.
447-6289-00LStichproben-Erhebungen Belegung eingeschränkt - Details anzeigen
Fachstudierende "Universität Zürich (UZH)" im Master-Studiengang Biostatistik von der UZH können diese Lerneinheit nicht direkt in myStudies belegen. Leiten Sie die schriftliche Teilnahmebewilligung des Dozenten an die Kanzlei weiter. Als Einverständnis gilt auch ein direktes E-Mail des Dozenten an Link. Die Kanzlei wird anschliessend die Belegung vornehmen.
W2 KP1GB. Hulliger
KurzbeschreibungDie Elemente einer Stichproben-Erhebung werden erklärt. Die wichtigsten klassischen Stichprobenpläne (Einfach und geschichtete Zufallsstichprobe) mit ihren Schätzern sowie Schätzverfahren mit Hilfsinformationen und der Horvitz-Thompson Schätzer werden eingeführt. Datenaufbereitung, Antwortausfälle und deren Behandlung, Varianzschätzungen sowie Analysen von Stichprobendaten werden diskutiert.
LernzielKenntnis der Elemente und des Ablaufs einer Stichprobenerhebung. Verständnis für das Paradigma der Zufallsstichproben. Kenntnis der einfachen und geschichteten Stichproben-Strategien und Fähigkeit die entsprechenden Methoden anzuwenden. Kenntnis von weiterführenden Methoden für Schätzverfahren, Datenaufbereitung und Analysen.
SkriptEinführung in die statistischen Methoden von Stichprobenerhebungen
401-3628-14LBayesian Statistics
Findet dieses Semester nicht statt.
W4 KP2V
KurzbeschreibungIntroduction to the Bayesian approach to statistics: decision theory, prior distributions, hierarchical Bayes models, empirical Bayes, Bayesian tests and model selection, empirical Bayes, Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods.
LernzielStudents understand the conceptual ideas behind Bayesian statistics and are familiar with common techniques used in Bayesian data analysis.
InhaltTopics that we will discuss are:

Difference between the frequentist and Bayesian approach (decision theory, principles), priors (conjugate priors, noninformative priors, Jeffreys prior), tests and model selection (Bayes factors, hyper-g priors for regression),hierarchical models and empirical Bayes methods, computational methods (Laplace approximation, Monte Carlo and Markov chain Monte Carlo methods)
SkriptA script will be available in English.
LiteraturChristian Robert, The Bayesian Choice, 2nd edition, Springer 2007.

A. Gelman et al., Bayesian Data Analysis, 3rd edition, Chapman & Hall (2013).

Additional references will be given in the course.
Voraussetzungen / BesonderesFamiliarity with basic concepts of frequentist statistics and with basic concepts of probability theory (random variables, joint and conditional distributions, laws of large numbers and central limit theorem) will be assumed.
447-6273-00LBayes-Methoden Belegung eingeschränkt - Details anzeigen
Fachstudierende "Universität Zürich (UZH)" im Master-Studiengang Biostatistik von der UZH können diese Lerneinheit nicht direkt in myStudies belegen. Leiten Sie die schriftliche Teilnahmebewilligung des Dozenten an die Kanzlei weiter. Als Einverständnis gilt auch ein direktes E-Mail des Dozenten an Link. Die Kanzlei wird anschliessend die Belegung vornehmen.
W2 KP2GY.‑L. Grize
KurzbeschreibungBedingte Wahrscheinlichkeit; Bayes-Inferenz (konjugierte Verteilungen, HPD-Bereiche, lineare und empirische Verfahren), Bestimmung der a-posteriori Verteilung durch Simulation (Markov Chain Monte-Carlo mit R2Winbugs), Einführung in mehrstufige hierarchische Modelle.
Lernziel
InhaltDie Bayes-Statistik ist deshalb attraktiv, da sie ermöglicht, Entscheidungen unter Ungewissheit zu treffen, wo die klassische frequentische Statistik versagt! Der Kurs vermittelt einen Einstieg in die Bayes-Statistik, ist mathematisch nur moderat anspruchsvoll, verlangt aber ein gewisses Umdenken, das nicht unterschätzt werden darf.
LiteraturGelman A., Carlin J.B., Stern H.S. and D.B. Rubin, Bayesian Data Analysis, Chapman and Hall, 2nd Edition, 2004.

Kruschke, J.K., Doing Bayesian Data Analysis, Elsevier2011.
Voraussetzungen / BesonderesVoraussetzung: Statistische Grundkenntnisse ; Kenntnis von R.
401-3901-00LMathematical OptimizationW11 KP4V + 2UR. Zenklusen
KurzbeschreibungMathematical treatment of diverse optimization techniques.
LernzielThe goal of this course is to get a thorough understanding of various classical mathematical optimization techniques with an emphasis on polyhedral approaches. In particular, we want students to develop a good understanding of some important problem classes in the field, of structural mathematical results linked to these problems, and of solution approaches based on this structural understanding.
InhaltKey topics include:
- Linear programming and polyhedra;
- Flows and cuts;
- Combinatorial optimization problems and techniques;
- Equivalence between optimization and separation;
- Brief introduction to Integer Programming.
Literatur- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018.
- Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.
- Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.
- Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Voraussetzungen / BesonderesSolid background in linear algebra.
252-0535-00LAdvanced Machine Learning Information W10 KP3V + 2U + 4AJ. M. Buhmann, C. Cotrini Jimenez
KurzbeschreibungMachine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects.
LernzielStudents will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data.
InhaltThe theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data.

Topics covered in the lecture include:

Fundamentals:
What is data?
Bayesian Learning
Computational learning theory

Supervised learning:
Ensembles: Bagging and Boosting
Max Margin methods
Neural networks

Unsupservised learning:
Dimensionality reduction techniques
Clustering
Mixture Models
Non-parametric density estimation
Learning Dynamical Systems
SkriptNo lecture notes, but slides will be made available on the course webpage.
LiteraturC. Bishop. Pattern Recognition and Machine Learning. Springer 2007.

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley &
Sons, second edition, 2001.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

L. Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer, 2004.
Voraussetzungen / BesonderesThe course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments.
Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution.

PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points.
252-3005-00LNatural Language Processing Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 200.
W5 KP2V + 1U + 1AR. Cotterell
KurzbeschreibungThis course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
LernzielThe objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.
InhaltThis course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
LiteraturJacob Eisenstein: Introduction to Natural Language Processing (Adaptive Computation and Machine Learning series)
227-0423-00LNeural Network Theory Information W4 KP2V + 1UH. Bölcskei
KurzbeschreibungThe class focuses on fundamental mathematical aspects of neural networks with an emphasis on deep networks: Universal approximation theorems, basics of approximation theory, fundamental limits of deep neural network learning, geometry of decision surfaces, capacity of separating surfaces, dimension measures relevant for generalization, VC dimension of neural networks.
LernzielAfter attending this lecture, participating in the exercise sessions, and working on the homework problem sets, students will have acquired a working knowledge of the mathematical foundations of (deep) neural networks.
Inhalt1. Universal approximation with single- and multi-layer networks

2. Introduction to approximation theory: Fundamental limits on compressibility of signal classes, Kolmogorov epsilon-entropy of signal classes, non-linear approximation theory

3. Fundamental limits of deep neural network learning

4. Geometry of decision surfaces

5. Separating capacity of nonlinear decision surfaces

6. Dimension measures: Pseudo-dimension, fat-shattering dimension, Vapnik-Chervonenkis (VC) dimension

7. Dimensions of neural networks

8. Generalization error in neural network learning
SkriptDetailed lecture notes will be provided.
Voraussetzungen / BesonderesThis course is aimed at students with a strong mathematical background in general, and in linear algebra, analysis, and probability theory in particular.
401-4521-70LGeometric Tomography - Uniqueness, Statistical Reconstruction and Algorithms Information Belegung eingeschränkt - Details anzeigen W4 KP2VJ. Hörrmann
KurzbeschreibungSelf-contained course on the theoretical aspects of the reconstruction of geometric objects from tomographic projection and section data.
LernzielIntroduction to geometric tomography and understanding of various theoretical aspects of reconstruction problems.
InhaltThe problem of reconstruction of an object from geometric information like X-ray data is a classical inverse problem on the overlap between applied mathematics, statistics, computer science and electrical engineering. We focus on various aspects of the problem in the case of prior shape information on the reconstruction object. We will answer questions on uniqueness of the reconstruction and also cover statistical and algorithmic aspects.
LiteraturR. Gardner: Geometric Tomography
F. Natterer: The Mathematics of Computerized Tomography
A. Rieder: Keine Probleme mit inversen Problemen
Voraussetzungen / BesonderesA sound mathematical background in geometry, analysis and probability is required though a repetition of relevant material will be included. The ability to understand and write mathematical proofs is mandatory.
  •  Seite  1  von  4 Nächste Seite Letzte Seite     Alle