Suchergebnis: Katalogdaten im Frühjahrssemester 2020

Mathematik Master Information
Wahlfächer
Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen.
Wahlfächer aus Bereichen der angewandten Mathematik ...
vollständiger Titel:
Wahlfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten
Auswahl: Numerische Mathematik
NummerTitelTypECTSUmfangDozierende
401-4658-00LComputational Methods for Quantitative Finance: PDE Methods Information Belegung eingeschränkt - Details anzeigen W6 KP3V + 1UC. Schwab
KurzbeschreibungIntroduction to principal methods of option pricing. Emphasis on PDE-based methods. Prerequisite MATLAB programming
and knowledge of numerical mathematics at ETH BSc level.
LernzielIntroduce the main methods for efficient numerical valuation of derivative contracts in a
Black Scholes as well as in incomplete markets due Levy processes or due to stochastic volatility
models. Develop implementation of pricing methods in MATLAB.
Finite-Difference/ Finite Element based methods for the solution of the pricing integrodifferential equation.
Inhalt1. Review of option pricing. Wiener and Levy price process models. Deterministic, local and stochastic
volatility models.
2. Finite Difference Methods for option pricing. Relation to bi- and multinomial trees.
European contracts.
3. Finite Difference methods for Asian, American and Barrier type contracts.
4. Finite element methods for European and American style contracts.
5. Pricing under local and stochastic volatility in Black-Scholes Markets.
6. Finite Element Methods for option pricing under Levy processes. Treatment of
integrodifferential operators.
7. Stochastic volatility models for Levy processes.
8. Techniques for multidimensional problems. Baskets in a Black-Scholes setting and
stochastic volatility models in Black Scholes and Levy markets.
9. Introduction to sparse grid option pricing techniques.
SkriptThere will be english, typed lecture notes as well as MATLAB software for registered participants in the course.
LiteraturR. Cont and P. Tankov : Financial Modelling with Jump Processes, Chapman and Hall Publ. 2004.

Y. Achdou and O. Pironneau : Computational Methods for Option Pricing, SIAM Frontiers in Applied Mathematics, SIAM Publishers, Philadelphia 2005.

D. Lamberton and B. Lapeyre : Introduction to stochastic calculus Applied to Finance (second edition), Chapman & Hall/CRC Financial Mathematics Series, Taylor & Francis Publ. Boca Raton, London, New York 2008.

J.-P. Fouque, G. Papanicolaou and K.-R. Sircar : Derivatives in financial markets with stochastic volatility, Cambridge Univeristy Press, Cambridge, 2000.

N. Hilber, O. Reichmann, Ch. Schwab and Ch. Winter: Computational Methods for Quantitative Finance, Springer Finance, Springer, 2013.
401-4788-16LMathematics of (Super-Resolution) Biomedical Imaging
NOTICE: The exercise class scheduled for 5 March has been cancelled
W8 KP4GH. Ammari
KurzbeschreibungThe aim of this course is to review different methods used to address challenging problems in biomedical imaging. The emphasis will be on scale separation techniques, hybrid imaging, spectroscopic techniques, and nanoparticle imaging. These approaches allow one to overcome the ill-posedness character of imaging reconstruction in biomedical applications and to achieve super-resolution imaging.
LernzielSuper-resolution imaging is a collective name for a number of emerging techniques that achieve resolution below the conventional resolution limit, defined as the minimum distance that two point-source objects have to be in order to distinguish the two sources from each other.

In this course we describe recent advances in scale separation techniques, spectroscopic approaches, multi-wave imaging, and nanoparticle imaging. The objective is fivefold:
(i) To provide asymptotic expansions for both internal and boundary perturbations that are due to the presence
of small anomalies;
(ii) To apply those asymptotic formulas for the purpose of identifying the material parameters and certain geometric features of the anomalies;
(iii) To design efficient inversion algorithms in multi-wave modalities;
(iv) to develop inversion techniques using multi-frequency measurements;
(v) to develop a mathematical and numerical framework for nanoparticle imaging.

In this course we shall consider both analytical and computational
matters in biomedical imaging. The issues we consider lead to the investigation of fundamental problems in various branches of mathematics. These include asymptotic analysis, inverse problems, mathematical imaging, optimal control, stochastic modelling, and analysis of physical phenomena. On the other hand, deriving mathematical foundations, and new and efficient computational frameworks and tools in biomedical imaging, requires a deep understanding of the different scales in the physical models, an accurate mathematical modelling of the imaging techniques, and fine analysis of complex physical phenomena.

An emphasis is put on mathematically analyzing acoustic-electric imaging, thermo-elastic imaging, Lorentz force based imaging, elastography, multifrequency electrical impedance tomography, and plasmonic resonant nanoparticles.
  •  Seite  1  von  1