Suchergebnis: Katalogdaten im Herbstsemester 2019
Maschineningenieurwissenschaften Bachelor | ||||||
5. Semester | ||||||
Fokus-Vertiefung | ||||||
Energy, Flows and Processes Fokus-Koordinator: Prof. Christoph Müller Für die erforderlichen 20 KP der Fokus-Vertiefung Energy, Flows and Processes müssen mindestens 2 obligatorische Fächer (HS/FS) und mindestens 2 der wählbaren Fächer (HS/FS) gewählt werden. 1 Kurs kann frei aus dem gesamten Angebot aller D-MAVT Studiengänge (Bachelor und Master) gewählt werden. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
151-0123-00L | Experimental Methods for Engineers | O | 4 KP | 2V + 2U | T. Rösgen, A.‑K. U. Michel, N. Noiray, H.‑M. Prasser, M. Tibbitt | |
Kurzbeschreibung | The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics and process engineering) are attended by students in small groups. | |||||
Lernziel | Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition and processing. Study of applications in the laboratory. Fundamentals of scientific documentation & reporting. | |||||
Inhalt | In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, process engineering) Student participation in 8-10 laboratory experiments (study groups of 3-5 students, dependent on the number of course participants and available experiments) Lab reports for all attended experiments have to be submitted by the study groups. A final exam evaluates the acquired knowledge individually. | |||||
Skript | Presentations, handouts and instructions are provided for each experiment. | |||||
Literatur | Holman, J.P. "Experimental Methods for Engineers", McGraw-Hill 2001, ISBN 0-07-366055-8 Morris, A.S. & Langari, R. "Measurement and Instrumentation", Elsevier 2011, ISBN 0-12-381960-4 Eckelmann, H. "Einführung in die Strömungsmesstechnik", Teubner 1997, ISBN 3-519-02379-2 | |||||
Voraussetzungen / Besonderes | Basic understanding in the following areas: - fluid mechanics, thermodynamics, heat and mass transfer - electrical engineering / electronics - numerical data analysis and processing (e.g. using MATLAB) | |||||
151-0293-00L | Combustion and Reactive Processes in Energy and Materials Technology | O | 4 KP | 2V + 1U + 2A | K. Boulouchos, F. Ernst, N. Noiray, Y. Wright | |
Kurzbeschreibung | The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. | |||||
Lernziel | The students should become familiar with the fundamentals and with application examples of chemically reactive processes in energy conversion (combustion engines in particular) as well as the synthesis of new materials. The lecture is part of the focus "Energy, Flows & Processes" on the Bachelor level and is recommended as a basis for a future Master in the area of energy. It is also a facultative lecture on Master level in Energy Science and Technology and Process Engineering. | |||||
Inhalt | Reaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, applications in combustion engines. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. Tailoring of products made in flame spray pyrolysis. | |||||
Skript | No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed: J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. Teaching language, assignments and lecture slides in English | |||||
Literatur | J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. I. Glassman, Combustion, 3rd edition, Academic Press, 1996. | |||||
151-0109-00L | Turbulent Flows | W | 4 KP | 2V + 1U | P. Jenny | |
Kurzbeschreibung | Inhalt - Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung | |||||
Lernziel | Die Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt. | |||||
Inhalt | - Eigenschaften laminarer, transitioneller und turbulenter Strömungen - Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition - Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell). | |||||
Skript | Lecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch | |||||
Literatur | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||
151-0235-00L | Thermodynamics of Novel Energy Conversion Technologies | W | 4 KP | 3G | A. Milionis, G. Sansavini | |
Kurzbeschreibung | In the framework of this course we will look at a current electronic thermal and energy management strategies and novel energy conversion processes. The course will focus on component level fundamentals of these process and system level analysis of interactions among various energy conversion components. | |||||
Lernziel | This course deals with liquid cooling based thermal management of electronics, reuse of waste heat, surface engineering aspects for improving heat transfer, and novel energy conversion and storage systems such as batteries and, fuel cells. The focus of the course is on the physics and basic understanding of those systems as well as their real-world applications. The course will also look at analysis of system level interactions between a range of energy conversion components. | |||||
Inhalt | Part 1: Fundamentals: - Overview of exergy analysis, Single phase cooling and micro-mixing; - Thermodynamics of phase equilibrium and Electrochemistry; - Surface wetting; Part 2: Applications: - Basic principles of battery and fuel cells; -Thermal management and reuse of waste heat from microprocessors - Condensation heat transfer; Part3: System-level analysis - Integration of the components into the system: a case study - Analysis of the coupled operations, identification of critical states - Support to system-oriented design | |||||
Skript | Lecture slides will be made available. | |||||
151-0917-00L | Mass Transfer | W | 4 KP | 2V + 2U | G. Kelesidis, S. E. Pratsinis, A. Güntner, V. Mavrantzas | |
Kurzbeschreibung | Diese Vorlesung behandelt Grundlagen der Transportvorgänge, wobei das Hauptaugenmerk auf dem Stofftransport liegt. Die physikalische Bedeutung der Grundgesetze des Stofftransports wird dargestellt und quantitativ beschrieben. Des weiteren wird die Anwendung dieser Prinzipien am Beispiel relevanter ingenieurtechnischer Problemstellungen aufgezeigt. | |||||
Lernziel | Diese Vorlesung behandelt Grundlagen der Transportvorgänge, wobei das Hauptaugenmerk auf dem Stofftransport liegt. Die physikalische Bedeutung der Grundgesetze des Stofftransports wird dargestellt und quantitativ beschrieben. Des weiteren wird die Anwendung dieser Prinzipien am Beispiel relevanter ingenieurtechnischer Problemstellungen aufgezeigt. | |||||
Inhalt | Ficksche Gesetze; Anwendungen und Bedeutung von Stofftransport; Vergleich von Fickschen Gesetzen mit Newtonschen und Fourierschen Gesetzen; Herleitung des zweiten Fickschen Gesetzes; Diffusion in verdünnten und konzentrierten Lösungen; Rotierende Scheibe; Dispersion; Diffusionskoeffizient, Gasviskosität und Leitfähigkeit (Pr und Sc); Brownsche Bewegung; Stokes-Einstein-Gleichung; Stofftransportkoeffizienten (Nu und Sh-Zahlen); Stoffaustausch über Grenzflächen; Reynolds- und Chilton-Colburn-Analogien für Impuls-, Wärme- und Stofftransport in turbulenten Strömungen; Film-, Penetrations- und Oberflächenerneuerungstheorien; Gleichzeitiger Transport von Stoff und Wärme oder Impuls (Grenzschichten); Homogene und heterogene, reversible und irreversible. Anwendungen Reaktionen; "Diffusionskontrollierte" Reaktionen; Stofftransport und heterogene Reaktion erster Ordnung. | |||||
Literatur | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | |||||
Voraussetzungen / Besonderes | Für die wöchentliche Übungen wird von den Teilnehmern ein erhöhter Lernaufwand während des Semesters erwartet. | |||||
151-0973-00L | Einführung in die Verfahrenstechnik | W | 4 KP | 2V + 2U | F. Donat, C. Müller | |
Kurzbeschreibung | Übersicht über die Verfahrenstechnik; Reaktoren, Bilanzen und Verweilzeiten; Übersicht thermischer Trennverfahren, Gleichgewichte bei Mehrphasenssystemen; Einführung mechanische Verfahren und Partikelanalyse | |||||
Lernziel | Vermitteln von Grundlagen der Verfahrenstechnik | |||||
Inhalt | Übersicht über die Verfahrenstechnik; Reaktoren, Bilanzen und Verweilzeiten; Übersicht thermischer Trennverfahren, Gleichgewichte bei Mehrphasenssystemen; Einführung mechanische Verfahren und Partikelanalyse | |||||
Skript | Skript vorhanden |
- Seite 1 von 1