Suchergebnis: Katalogdaten im Herbstsemester 2016

Interdisziplinäre Naturwissenschaften Bachelor Information
Physikalisch-Chemischen Fachrichtung
1. Semester (Physikalisch-Chemische Richtung)
Obligatorische Fächer Basisprüfung
NummerTitelTypECTSUmfangDozierende
401-1261-07LAnalysis IO10 KP6V + 3UM. Einsiedler
KurzbeschreibungEinführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration.
LernzielMathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung.
LiteraturK. Koenigsberger: Analysis I, Springer-Verlag
Link

R. Courant: Vorlesungen ueber Differential- und Integralrechnung.
Springer Verlag
Link

V. Zorich: Analysis I. Springer Verlag 2006
Link

Chr. Blatter: Analysis. Link

Struwe: Analysis I/II, siehe
Link

H. Heuser: Lehrbuch der Analysis. Teubner Verlag
W. Walter: Analysis 1. Springer Verlag
O. Forster: Analysis I. Vieweg Verlag

J.Appell: Analysis in Beispielen und Gegenbeispielen. Springer Verlag
Link

Schichl u. Steinbauer, Einführung in das mathematische Arbeiten
Link

Beutelspacher, Das ist o.B.d.A. trivial
Link
401-1151-00LLineare Algebra IO7 KP4V + 2UM. Akveld
KurzbeschreibungEinführung in die Theorie der Vektorräume für Studierende der Mathematik und der Physik: Grundlagen, Vektorräume, lineare Abbildungen, Lösungen linearer Gleichungen und Matrizen, Determinanten, Endomorphismen, Eigenwerte und Eigenvektoren.
Lernziel- Beherrschung der Grundkonzepte der Linearen Algebra
- Einführung ins mathematische Arbeiten
Inhalt- Grundlagen
- Vektorräume und lineare Abbildungen
- Lineare Gleichungssysteme und Matrizen
- Determinanten
- Endomorphismen und Eigenwerte
Literatur- H. Schichl und R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Siehe: Link
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Siehe: Link
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Siehe: Link
- S. H. Friedberg, A. J. Insel und L. E. Spence: Linear Algebra. Pearson 2003. Link
- R. Pink: Lineare Algebra I und II. Skript. Siehe: Link
402-1701-00LPhysik IO7 KP4V + 2UA. Wallraff
KurzbeschreibungDiese Vorlesung stellt eine erste Einführung in die Physik dar. Der Schwerpunkt liegt auf klassischer Mechanik, zusammen mit einer Einführung in die Wärmelehre.
LernzielAneignung von Kenntnissen der physikalischen Grundlagen in der klassischen Mechanik und Waermelehre. Fertigkeiten im Lösen von physikalischen Fragen anhand von Übungsaufgaben.
529-0011-01LAllgemeine Chemie I (PC) Information O3 KP2V + 1UF. Merkt
KurzbeschreibungAufbau der Materie und Atombau; Energiezustände des Atoms; Quantenmechanisches Atommodell; Chemische Bindung; Gasgesetze.
LernzielEinführung in die physikalischen Grundlagen der Chemie.
InhaltAufbau der Materie und Atombau: Atomtheorie, Elementarteilchen, Atomkern, Radioaktivität, Kernreaktionen. Energiezustände des Atoms: Ionisierungsenergien, Atomspektroskopie, Termschemata. Quantenmechanisches Atommodell: Dualität Welle-Teilchen, Unbestimmtheitsrelation, Schrödingergleichung, Wasserstoffatom, Aufbau des Periodensystems der Elemente. Chemische Bindung: Ionische Bindung, kovalente Bindung, Molekülorbitale. Gasgesetze: Ideale Gase
SkriptBeachten Sie die Homepage zur Vorlesung.
LiteraturBeachten Sie die Homepage zur Vorlesung.
Voraussetzungen / BesonderesVoraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung.
Übrige obligatorische Fächer des Basisjahrs
NummerTitelTypECTSUmfangDozierende
529-0011-04LAllgemeine Chemie (Praktikum) Belegung eingeschränkt - Details anzeigen
Obligatorische Belegung bis spätestens 19. September 2016.

Informationen zum Praktikum am Begrüssungstag.
O8 KP12PH. V. Schönberg, E. C. Meister
KurzbeschreibungQualitative Analyse (Kationen- und Anionennachweis), Säure-Base-Gleichgewicht (pH- Wert, Titrationen, Puffer), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Redoxreaktionen (Synthese, Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese, komplexometrische Titration)
Auswertung von Messdaten, Aggregatzustände (Dampfdruck, Leitfähigkeitsmessungen, Kalorimetrie)
LernzielQualitative Analyse (einfacher Kationen- und Anionentrennungsgang, Nachweis von Kationen und Anionen), Säure-Base-Gleichgewicht (Säure- und Basenstärke, pH- und pKa-Werte, Titrationen, Puffer, Kjeldahlbestimmung), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Oxidationszahlen und Redoxverhalten (Synthese), Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese von Komplexen, Ligandaustauschreaktionen, Komplexometrische Titration)
Auswertung von Messdaten (Messfehler, Mittelwert, Fehlerbetrachtung), Aggregatzustände (Dampfdruck), Eigenschaften von Elektrolyten (Leitfähigkeitsmessungen), Thermodynamik (Kalorimetrie)
InhaltDas Praktikum in allgemeiner Chemie soll die Studierenden in wissenschaftliches Arbeiten einführen und sie mit einfachen experimentellen Arbeiten im Laboratorium vertraut machen. Dabei sollen erste Erfahrungen mit dem Reaktionsverhalten von Stoffen gemacht werden. Neben einer Reihe von quantitativen Versuchen vermitteln qualitative Versuche Kenntnisse über die chemischen Eigenschaften von Substanzen. Die einzelnen Versuche sind so ausgewählt, dass ein möglichst vielfältiger Überblick über Substanzklassen und Phänomene der Chemie erhalten wird. In einem physikalisch – chemischen Teil des Praktikums werden Versuche zum Verhalten von Substanzen in ihren Aggregatzuständen durchgeführt und die Änderung ausgesuchter physikalischer Grössen erfasst und diskutiert.
SkriptLink
Voraussetzungen / BesonderesElektronische Einschreibung obligatorisch bis spätestens 1 Woche vor Semesterbeginn
Wahlfächer
NummerTitelTypECTSUmfangDozierende
529-0011-02LAllgemeine Chemie I (AC)W3 KP2V + 1UA. Togni
KurzbeschreibungEinführung in die Chemie von ionischen Gleichgewichten: Säuren und Basen, Redoxreaktionen, Komplexbildung und Fällungsreaktionen
LernzielVerstehen und Beherrschen von ionischen Gleichgewichten in qualitativer und quantitativer Hinsicht
InhaltGleichgewicht und Gleichgewichtsbedingungen, ein- und mehrprotonige Säuren und Basen in wässriger Lösung, Berechnung von Gleichgewichtskonzentrationen, Aciditätsfunktionen, Lewis-Säuren, Säuren in nicht-wässrigen Medien, Redoxreaktionen, Galvanische Zellen, Elektrodenpotentiale, Nernst-Gleichung, Metallkomplexe, Stufenweise Komplexbildung, Fällungsreaktionen
SkriptKopien der Vorlesungspräsentationen sowie andere Unterlagen werden als PDF über die moodle-Plattform zur Verfügung gestellt
LiteraturC. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0
529-0011-03LAllgemeine Chemie I (OC)W3 KP2V + 1UH. Wennemers
KurzbeschreibungEinführung in der organischen Chemie. Klassische Strukturlehre, Stereochemie, die chemische Bindung, Symmetrielehre, Nomenklatur, organische Thermochemie, Konformationsanalyse, Einführung in chemische Reaktionen.
LernzielEinführung in die Formelsprache der Chemie sowie in strukturelle und energetische Grundlagen der organischen Chemie
InhaltEinführung in die Geschichte der Organischen Chemie, Einführung in die Nomenklatur, Klassische Strukturlehre und Stereochemie: Isomerie, Fischer-Projektion, CIP-Regeln, Punktgruppen, Molekülsymmetrie und Chiralität, Topizität, Chemische Bindung: Lewis-Bindungsmodell und Resonanztheorie in der organischen Chemie, Beschreibung linear und cyclisch konjugierter Moleküle, Aromatizität, Hückel-Regel, organische Thermochemie, organisch-chemische Reaktionslehre, zwischenmolekulare Wechselwirkungen.
SkriptUnterlagen werden als PDF über die ILIAS-Plattform zur Verfügung gestellt
LiteraturC. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0
3. Semester (Physikalisch-Chemische Richtung)
Obligatorische Fächer: Prüfungsblock
NummerTitelTypECTSUmfangDozierende
529-0422-00LPhysikalische Chemie II: Chemische ReaktionskinetikO4 KP3V + 1UH. J. Wörner
KurzbeschreibungEinführung in die chemische Reaktionskinetik. Grundbegriffe: Geschwindigkeitsgesetze, Elementarreaktionen und zusammengesetzte Reaktionen, Molekularität, Reaktionsordnung. Experimentelle Methoden der Reaktionskinetik. Einfache Theorie chemischer Reaktionen. Reaktionsmechanismen und komplexe kinetische Systeme, Kettenreaktionen, Katalyse und Enzymkinetik.
LernzielEinführung in die chemische Reaktionskinetik
InhaltGrundbegriffe: Geschwindigkeitsgesetze, Elementarreaktionen und zusammengesetzte Reaktionen, Molekularität, Reaktionsordnung. Experimentelle Methoden der Reaktionskinetik bis hin zu neuen Entwicklungen der Femtosekundenkinetik. Einfache Theorie chemischer Reaktionen: Temperaturabhängigkeit der Geschwindigkeitskonstante und Arrheniusgleichung, Stosstheorie, Reaktionsquerschnitte, Theorie des Übergangszustandes. Zusammengesetzte Reaktionen: Reaktionsmechanismen und komplexe kinetische Systeme, Näherungsverfahren, Kettenreaktionen, Explosionen und Detonationen. Homogene Katalyse und Enzymkinetik. Kinetik geladener Teilchen. Diffusion und diffusionskontrollierte Reaktionen. Photochemische Kinetik. Heterogene Reaktionen und heterogene Katalyse.
SkriptMolekulare Thermodynamik und Kinetik, Teil 1, Chemische Reaktionskinetik. Quack, M. und Jans-Bürli, S. 1986, VdF, Zürich. (Neuauflage in Vorbereitung, wird verteilt).
Literatur- Wedler, G., 1982: Lehrbuch der Physikalischen Chemie, Verlag Chemie, Weinheim.
Voraussetzungen / BesonderesVoraussetzungen:
- Mathematik I und II
- Allgemeine Chemie I und II
- Physikalische Chemie I
402-2883-00LPhysik IIIO7 KP4V + 2UJ. Home
KurzbeschreibungEinführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik.
LernzielGrundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt.
InhaltEinführung in die Quantenphysik: Atome, Photonen, Photoelektrischer Effekt, Rutherford Streuung, Compton Streuung, de-Broglie Materiewellen.

Quantenmechanik: Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialtopf, harmonischer Oszillator, Wasserstoffatom, Spin.

Atomphysik: Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, LASER.

Optik: Fermatsches Prinzip, Linsen, Abbildungssysteme, Beugung und Brechung, Interferenz, geometrische und Wellenoptik, Interferometer, Spektrometer.

Statistische Physik: Wahrscheinlichkeitsverteilungen, Boltzmann-Verteilung, statistische Ensembles, Gleichverteilungssatz, Schwarzkörperstrahlung, Plancksches Strahlungsgesetz.
SkriptIm Rahmen der Veranstaltung wird ein Skript in elektronischer Form zur Verfügung gestellt.
LiteraturQuantenmechanik/Atomphysik/Moleküle: "Atom- und Quantenphysik", H. Haken and H. C. Wolf, ISBN 978-3540026211

Optik: "Optik", E. Hecht, ISBN 978-3486588613

Statistische Mechanik: "Statistical Physics", F. Mandl ISBN 0-471-91532-7
Wahlfächer
Im Bachelor-Studiengang Interdisziplinäre Naturwissenschaften können die Studierenden prinzipiell alle Lehrveranstaltungen wählen, die in einem Bachelor-Studiengang der ETH angeboten werden.

Zu Beginn des 2. Studienjahrs legt jeder Studierende in Absprache mit dem Studiendelegierten für Interdisziplinäre Naturwissenschaften sein/ihr individuelles Studienprogramm fest. Siehe Studienreglement 2010 für Details.
NummerTitelTypECTSUmfangDozierende
252-0027-00LEinführung in die Programmierung Information W7 KP4V + 2UT. Gross
KurzbeschreibungEinführung in grundlegende Konzepte der modernen Programmierung. Vermittlung der Fähigkeit, Programme von höchster Qualität zu entwickeln. Einführung in Prinzipien des Software Engineering mit objekt-orientiertem Ansatz.
LernzielViele Menschen können Programme schreiben. Die Ziele der Vorlesung "Einführung in die Programmierung" gehen aber darüber hinaus: sie lehrt die fundamentalen Konzepte und Fertigkeiten, die nötig sind, um professionelle Programme zu erstellen. Nach erfolgreichem Abschluss der Vorlesung beherrschen Studenten die fundamentalen Kontrollstrukturen, Datenstrukturen, die Verfahren zur Problemlösung und Mechanismen von Programmiersprachen, die die moderne Programmierung auszeichnen. Sie kennen die Grundregeln für die Produktion von Software in hoher Qualität. Sie haben die nötigen Vorkenntnisse für weiterführende Vorlesungen, die das Programmieren in spezialisierten Anwendungsgebieten vorstellen.
InhaltGrundlagen der objekt-orientierten Programmierung. Objekte und Klassen. Vor- und Nachbedingungen, Invarianten, Design by Contract. Elementare Kontrollstrukturen. Zuweisungen und Referenzierung. Grundbegriffe aus der Hardware. Elementare Datenstrukturen und Algorithmen. Rekursion. Vererbung und Interfaces, Einführung in Event-driven Design und Concurrent Programming. Grundkonzepte aus Software Engineering wie dem Softwareprozess, Spezifikation und Dokumentation, Reuse und Quality Assurance.
SkriptDie Vorlesungsfolien auf der Vorlesungswebseite zum Download zur Verfügung gestellt.
LiteraturWeitere Literaturangaben auf der Web Seite der Vorlesung.
Voraussetzungen / BesonderesDie Vorlesung hat keine besonderen Voraussetzungen. Sie erwartet das gleichzeitige Belegen der anderen Informatik Vorlesungen des Basisjahres.
252-0847-00LInformatik Information W5 KP2V + 2UB. Gärtner
KurzbeschreibungDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
LernzielDas Ziel der Vorlesung ist eine algorithmisch orientierte Einführung ins Programmieren.
InhaltDie Vorlesung gibt eine Einführung in das Programmieren anhand der Sprache C++. Wir behandeln fundamentale Typen, Kontrollanweisungen, Funktionen, Felder und Klassen. Die Konzepte werden dabei jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache sowie Handouts in deutscher Sprache werden semesterbegleitend elektronisch herausgegeben.
LiteraturAndrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.

Stanley B. Lippman: C++ Primer, 3. Auflage, Addison-Wesley, 1998.

Bjarne Stroustrup: The C++ Programming Language, 3. Auflage, Addison-Wesley, 1997.

Doina Logofatu: Algorithmen und Problemlösungen mit C++, Vieweg, 2006.

Walter Savitch: Problem Solving with C++, Eighth Edition, Pearson, 2012
327-0103-00LEinführung in die MaterialwissenschaftW3 KP3GM. Niederberger, N. Spencer, P. Uggowitzer
KurzbeschreibungGrundlegende Kenntnisse und Verständnis der atomistischen und makroskopischen Konzepte der Materialwissenschaft.
LernzielBasiswissen und Verständnis der atomistischen und makroskopischen Konzepte in der Materialwissenschaft.
InhaltInhalt:
Atomaufbau
Atombindung
Kristalline Struktur
Kristalldefekte
Thermodynamik und Phasendiagramme
Diffusion und Diffusionskontrollierte Prozesse,
Mechanisches & Thermisches Verhalten,
Elektrische, optische und magnetische Eigenschaften
Auswahl und Einsatz von Werkstoffen
SkriptLink
LiteraturJames F. Shackelford
Introduction to Materials Science for Engineers
5th Ed., Prentice Hall, New Jersey, 2000
327-0301-00LMaterialwissenschaft IW3 KP3GJ. F. Löffler, A. R. Studart, P. Uggowitzer
KurzbeschreibungGrundlegende Konzepte der Metallphysik, Keramik, Polymere und ihre Technologie.
LernzielAufbauend auf der Vorlesung Einführung in die Materialwissenschaft soll ein vertieftes Verständnis wichtiger Aspekte der Materialwissenschaft erlangt werden, mit besonderer Betonung der metallischen und keramischen Werkstoffe.
InhaltAm Beispiel der Metalle werden Thermodynamik und Phasendiagramme, Grenzflächen und Mikrostruktur, Diffusionskontrollierte Umwandlungen in Festkörpern und diffusionslose Umwandlungen besprochen. Am Beispiel der keramischen Werkstoffe werden die Grundregeln der ionischen und kovalenten chemischen Bindung, ihre Energien, der kristalline Aufbau, Beispiele wichtiger Strukturkeramiken und der Aufbau und die Eigenschaften oxidischer Gläser und Glaskeramiken vorgestellt.
SkriptFür Metalle siehe
Link

Für Keramiken siehe:
Link
LiteraturMetalle:
D. A. Porter, K. E. Easterling
Phase Transformations in Metals and Alloys - Second Edition
ISBN : 0-7487-5741-4
Nelson Thornes

Keramiken:
- Munz, D.; Fett, T: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection,
- Askeland & Phulé: Science and Engineering of Materials, 2003
- diverse CEN ISO Standards given in the slides
- Barsoum MW: Fundamentals of Ceramics:
- Chiang, Y.M.; Dunbar, B.; Kingery, W.D; Physical Ceramics, Principles für Ceramic Science and Engineering. Wiley , 1997
- Hannik, Kelly, Muddle: Transformation Toughening in Zirconia Containing Ceramics, J Am Ceram Soc 83 [3] 461-87 (2000)
- "High-Tech Ceramics: viewpoints and perspectives", ed G. Kostorz, Academic Press, 1989. Chapter 5, 59-101.


- "Brevieral Ceramics" published by the "Verband der Keramischen Industrie e.V.", ISBN 3-924158-77-0. partly its contents may be found in the internet @ Link or on our homepage

- Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003,

- Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 3. Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986

- Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie, The Journal of Physical Chemistry, 1978

- Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975, Springer

- Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992

- "Formation of beta -Si sub 3 N sub 4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si sub 3 N sub 4 , AlN, Al sub 2 O sub 3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980.

- Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, Springer-Verlag, 1984, pp. 329, 1984 9.
Voraussetzungen / Besonderes- Im ersten Teil der Vorlesung werden die Grundlagen zu den Metallen vermittelt. Im zweiten Teil diese zu den keramischen Werkstoffen.
- Ein Teil der Vorlesung wird in Englisch gehalten.
401-2303-00LFunktionentheorie Information W6 KP3V + 2UR. Pandharipande
KurzbeschreibungKomplexe Funktionen einer komplexen Veränderlichen, Cauchy-Riemann Gleichungen, Cauchyscher Integralsatz, Singularitäten, Residuensatz, Umlaufzahl, analytische Fortsetzung, spezielle Funktionen, konforme Abbildungen. Riemannscher Abbildungssatz.
LernzielFähigkeit zum Umgang mit analytischen Funktion; insbesondre Anwendungen des Residuensatzes
LiteraturTh. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

B. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMethoden der mathematischen Physik IW6 KP3V + 2UC. A. Keller
KurzbeschreibungFourierreihen. Lineare partielle Differentialgleichungen der mathematischen Physik. Fouriertransformation. Spezielle Funktionen und Eigenfunktionenentwicklungen. Distributionen. Ausgewählte Probleme aus der Quantenmechanik.
Lernziel
Voraussetzungen / BesonderesDie Einschreibung in die Übungsgruppen erfolgt online. Melden Sie sich im Laufe der ersten Semesterwoche unter echo.ethz.ch mit Ihrem ETH Account an. Der Übungsbetrieb beginnt in der zweiten Semesterwoche.
402-0205-00LQuantenmechanik I Information W10 KP3V + 2UT. K. Gehrmann
KurzbeschreibungEinführung in die nicht-relativistische Einteilchen-Quantenmechanik. Diskussion grundlegender Ideen der Quantenmechanik, insbesondere Quantisierung klassischer Systeme, Wellenfunktionen und die Beschreibung von Observablen durch Operatoren auf einem Hilbertraum, und die Analyse von Symmetrien. Grundlegende Phänomene werden analysiert und durch generische Beispiele illustriert.
LernzielEinführung in die Einteilchen Quantenmechanik. Beherrschung grundlegender Ideen (Quantisierung, Operatorformalismus, Symmetrien, Störungstheorie) und generischer Beispiele und Anwendungen (gebunden Zustände, Tunneleffekt, Streutheorie in ein- und dreidimensionalen Problemen). Fähigkeit zur Lösung einfacher Probleme.
InhaltStichworte: Schrödinger-Gleichung, Formalismus der Quantenmechanik (Zustände, Operatoren, Kommutatoren, Messprozess), Symmetrien (Translation, Rotationen), Quantenmechanik in einer Dimension, Zentralkraftprobleme, Potentialstreuung, Störungstheorie, Variations-Verfahren, Drehimpuls, Spin, Drehimpulsaddition, Relation QM und klassische Physik.
LiteraturF. Schwabl: Quantenmechanik
J.J. Sakurai: Modern Quantum Mechanics
W. Nolting: Quantenmechanik (Theoretische Physik 5.1, 5.2)
C. Cohen-Tannoudji: Quantenmechanik I
402-0255-00LEinführung in die FestkörperphysikW10 KP3V + 2UK. Ensslin
KurzbeschreibungDie Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Strukturen von Festkörpern, Interatomare Bindungen, elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle, Halbleiter, Transportphänomene, Magnetismus, Supraleitung.
LernzielEinführung in die Physik der kondensierten Materie.
InhaltDie Vorlesung vermittelt die Grundlagen zur Physik kondensierter Materie und berührt einzelne Gebiete, welche später in Spezialvorlesungen eingehender behandelt werden. Im Stoff enthalten sind: Mögliche Formen von Festkörpern und deren Strukturen (Strukturklassifizierung und -bestimmung); Interatomare Bindungen; elementare Anregungen, elektronische Eigenschaften von Isolatoren, Metalle (klassische Theorie, quantenmechanische Beschreibung der Elektronenzustände, thermische Eigenschaften und Transportphänomene); Halbleiter (Bandstruktur, n/p-Typ Dotierungen, p/n-Kontakte); Magnetismus, Supraleitung
SkriptEin Skript wird verteilt.
LiteraturIbach & Lüth, Festkörperphysik
C. Kittel, Festkörperphysik
Ashcroft & Mermin, Festkörperphysik
W. Känzig, Kondensierte Materie
Voraussetzungen / BesonderesVoraussetzungen: Physik I, II, III wünschenswert
402-0263-00LAstrophysics I Information W10 KP3V + 2UA. Refregier
KurzbeschreibungThis introductory course will develop basic concepts in astrophysics as applied to the understanding of the physics of planets, stars, galaxies, and the Universe.
LernzielThe course provides an overview of fundamental concepts and physical processes in astrophysics with the dual goals of: i) illustrating physical principles through a variety of astrophysical applications; and ii) providing an overview of research topics in astrophysics.
402-0595-00LSemiconductor Nanostructures Information W6 KP2V + 1UT. M. Ihn
KurzbeschreibungDer Kurs umfasst die Grundlagen der Halbleiternanostrukturen, z.B. Materialherstellung, Bandstrukturen, 'bandgap engineering' und Dotierung, Feldeffekttransistoren. Aufbauend auf zweidimensionalen Elektronengasen wird dann der Quantenhalleffekt besprochen, sowie die Physik der gängigen Halbleiternanostrukturen, d.h. Quantenpunktkontakte, Aharonov-Bohm Ringe und Quantendots, behandelt.
LernzielZiel der Vorlesung ist das Verständnis von vier Schlüsselphänomenen des Elektronentransports in Halbleiter-Nanostrukturen. Dazu zählen
1. der ganzzahlige Quantenhalleffekt
2. die Quantisierung des Leitwerts in Quantenpunktkontakten
3. der Aharonov-Bohm Effekt
4. der Coulomb-Blockade Effekt in Quantendots
Inhalt1. Einführung und Überblick
2. Halbleiterkristalle: Herstellung und Bandstrukturen
3. k.p-Theorie, Elektronendynamik in der Näherung der effektiven Masse
4. Envelope Funktionen, Näherung der effektiven Masse, Heterostrukturen und 'band engineering'
5. Herstellung von Nanostrukturen
6. Elektrostatik und Quantenmechanik von Halbleiternanostrukturen
7. Heterostrukturen und zweidimensionale Elektronengase
8. Drude Transport
9. Elektronentransport in Quantenpunktkontakten; Landauer-Büttiker Beschreibung
10. Ballistische Transportexperimente
11. Interferenzeffekte in Aharonov-Bohm Ringen
12. Elektron im Magnetfeld, Shubnikov-de Haas Effekt
13. Ganzzahliger Quantenhalleffekt
14. Quantendots, Coulombblockade
SkriptT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteraturNeben dem Vorlesungsskript können folgende Bücher empfohlen werden:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Voraussetzungen / BesonderesDie Vorlesung richtet sich an alle Physikstudenten nach dem Bachelorabschluss. Grundlagen in der Festkörperphysik sind von Vorteil, ambitionierte Studenten im fünften Semester können der Vorlesung aber auch folgen. Die Vorlesung eignet sich auch für das Doktoratsstudium. Üblicherweise wird der Kurs auf Englisch gehalten werden.
402-2203-01LAllgemeine Mechanik Information W7 KP4V + 2UG. M. Graf
KurzbeschreibungBegriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Kreisel, relativistische Raum-Zeit-Struktur, Teilchen im elektromagnetischen Feld, Hamiltonsche Mechanik, kanonische Transformationen, integrable Systeme, Hamilton-Jacobi-Gleichung.
Lernziel
551-0015-00LBiologie IW2 KP2VR. Glockshuber, E. Hafen
KurzbeschreibungGegenstand der Vorlesung Biologie I ist zusammen mit der Vorlesung Biologie II im folgenden Sommersemester die Einführung in die Grundlagen der Biologie für Studenten der Materialwissenschaften und andere Studenten mit Biologie als Nebenfach.
LernzielZiel der Vorlesung Biologie I ist die Vermittlung des molekularen Aufbaus der Zelle, der Grundlagen des Stoffwechsels und eines Überblicks über molekulare Genetik
InhaltDie folgenden Kapitelnummern beziehen sich auf das der Vorlesung zugrundeliegende Lehrbuch "Biology" (Campbell & Rees, 10th edition, 2015)
Kapitel 1-4 des Lehrbuchs werden als Grundwissen vorausgesetzt

1. Aufbau der Zelle

Kapitel 5: Struktur und Funktion biologischer Makromoleküle
Kapitel 6: Eine Tour durch die Zelle
Kaptiel 7: Membranstruktur und-funktion
Kapitel 8: Einführung in den Stoffwechsel
Kapitel 9: Zelluläre Atmung und Speicherung chemischer Energie
Kapitel 10: Photosynthese
Kapitel 12: Der Zellzyklus
Kapitel 17: Vom Gen zum Protein

2. Allgemeine Genetik

Kapitel 13: Meiose und Reproduktionszyklen
Kapitel 14: Mendel'sche Genetik
Kapitel 15: Die chromosomale Basis der Vererbung
Kapitel 16: Die molekulare Grundlage der Vererbung
Kapitel 18: Genetik von Bakterien und Viren
Kapitel 46: Tierische Reproduktion

Grundlagen des Stoffwechsels und eines Überblicks über molekulare Genetik
SkriptDer Vorlesungsstoff ist sehr nahe am Lehrbuch gehalten, Skripte werden ggf. durch die Dozenten zur Verfügung gestellt.
LiteraturDas folgende Lehrbuch ist Grundlage für die Vorlesungen Biologie I und II:

„Biology“, Campbell and Rees, 10th Edition, 2015, Pearson/Benjamin Cummings, ISBN 978-3-8632-6725-4
Voraussetzungen / BesonderesZur Vorlesung Biologie I gibt es während der Prüfungssessionen eine einstündige, schriftliche Prüfung. Die Vorlesung Biologie II wird separat geprüft.
529-0051-00LAnalytische Chemie IW3 KP3GD. Günther, M.‑O. Ebert, R. Zenobi
KurzbeschreibungVorstellung der wichtigsten spektroskopischen Methoden und ihre Anwendung in der Praxis der Strukturaufklärung.
LernzielKenntnis der notwendigen theoretischen Grundlagen und der Anwendungsmöglichkeiten für den Einsatz von relevanten spektroskopischen Methoden in der analytisch-chemischen Praxis.
InhaltAnwendungsorientierte Grundlagen der organischen und anorganischen Instrumentalanalytik und des empirischen Einsatzes von Methoden der Strukturaufklärung:
Massenspektrometrie: Ionisationsmethoden, Massentrennung, Aufnahmetechnik. Interpretation von Massenspektren: Isotopensignale, Fragmentierungsregeln, Umlagerungen.
NMR-Spektroskopie: Experimentelle Grundlagen, Chemische Verschiebung, Spin-Spin-Kopplung.
IR-Spektroskopie: Rekapitulation der Themen Harmonischer Oszillator, Normalschwingungen, gekoppelte Schwingungssysteme (Anknüpfen an Grundlagen aus der entsprechenden Vorlesung in physikalischer Chemie); Probenvorbereitung, Aufnahmetechnik, Lambert-Beer'sches Gesetz; Interpretation von IR-Spektren; Raman-Spektroskopie.
UV/VIS-Spektroskopie: Grundlagen, Interpretation von Elektronenspektren. Circulardichroismus (CD) und optische Rotations-Dispersion (ORD).
Atomabsorptions-, Emissions-, Röntgenfluoreszenz-Spektroskopie: Grundlagen, Probenvorbereitung.
SkriptEin Skript wird zum Selbstkostenpreis abgegeben.
Literatur- R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998;
- D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996;
- M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995
- E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001-
Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1.
Voraussetzungen / BesonderesÜbungen sind in die Vorlesung integriert. Zusätzlich wird die Veranstaltung 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4. Semester) empfohlen.
551-0105-00LGrundlagen der Biologie IAW5 KP5GM. Aebi, E. Hafen
KurzbeschreibungDie Vorlesung vermittelt eine Einführung in die Grundlagen der Molekular- und Zellbiologie und der Genetik.
LernzielEinführung in die Gebiete der modernen Biologie und in grundlegende biologischer Konzepte.
InhaltDie Lehrveranstaltung ist in verschiedene Kapitel gegliedert:
1. Grundzüge der Evolution
2. Chemie des Lebens: Wasser; Kohlenstoff und molekulare Diversität; Biomoleküle
3. Die Zelle: Aufbau,Membranen, Zellzyklus
4. Metabolismus: Zellatmung, Photosynthese, Gärung
5. Vererbung: Meiose und sexuelle Reproduktion, Mendel-Genetik, chromosomale Basis der Vererbung, molekulare Basis der Vererbung, vom Gen zum Protein, Regulation der Genexpression, das Genom und dessen Evolution
SkriptKein Skript.
LiteraturDas Lehrbuch "Biology" (Campbell, Reece) (10th Edition) ist die Grundlage der Vorlesung. Der Aufbau der Vorlesung ist in weiten Teilen mit jenem des Lehrbuchs identisch. Es wird den Studierenden empfohlen, das in Englisch geschriebene Lehrbuch zu verwenden.
Voraussetzungen / BesonderesEinzelne Teile des Inhalts des Lehrbuchs müssen im Selbststudium erarbeitet werden.
529-0121-00LAnorganische Chemie I Information W3 KP2V + 1UA. Mezzetti
KurzbeschreibungKomplexe der Übergangsmetalle: Struktur, chemische Bindung, spektroskopische Eigenschaften und Synthese.
LernzielVermittlung der methodischen Grundlagen der Bindungstheorie in Komplexen der Übergangsmetalle. Erklärung der Struktur, der chemischen Bindung und der spektroskopischen Eigenschaften. Allgemeine synthetische Strategien.
InhaltDie chemische Bingung (Zusammenfassung). Symmetrie und Gruppentheorie. Bindungstheorien der Koordinationsverbindungen: Valenzstruktur (VB), Kristallfeldtheorie (KFT), Molekülorbital-Theorie (MO LCAO, sigma-und pi-Bindungen). pi–Akzeptor-Liganden (CO, NO, Olefine, Disauerstoff, Diwasserstoff, Phosphine und Phosphite). Elektronische Spektren der Komplexe (Tanabe-Sugano-Diagramme). Koordinationszahlen und Isomerie. Moleküldynamische Phänomene. Komplexe und Kinetik.
SkriptAm HCI-Shop erhältlich
Literatur- J. E. Huheey: Anorganische Chemie, Prinzipien von Struktur und Reaktivität, Walter de Gruyter, Berlin, 3. Auflage, 2003.
529-0221-00LOrganische Chemie IW3 KP2V + 1UF. Diederich, C. Schaack
KurzbeschreibungChemische Reaktivität und Stoffklassen. Eliminierungen, Fragmentierungen, Chemie von Aldehyden und Ketonen (Hydrate, Acetale, Imine, Enamine, nucleophile Addition von metallorganischen Verbindungen, Umsetzung mit Phosphor- und Schwefel-Yliden; Enolate als Nucleophile) und von Carbonsäurederivaten. Aldolreaktionen.
LernzielAneignen eines grundlegenden Syntheserepertoires, das eine Reihe wichtiger Reaktionen von Aldehyden, Ketonen, Carbonsäuren und Carbonsäurederivaten sowie Eliminierungen und Fragmentierungen beinhaltet. Besonderer Wert wird auf das Verständnis der Reaktionsmechanismen und des Zusammenhangs zwischen Struktur und Reaktivität gelegt. Die in der Vorlesung besprochenen Konzepte werden anhand konkreter Beispiele in den wöchentlich ausgegebenen und jeweils eine Woche später besprochenen Übungen vertieft.
InhaltChemische Reaktivität und Stoffklassen. Eliminierungen, Fragmentierungen, Carbonylchemie: Hydrate, Acetale, Imine, Enamine, Derivate von Carbonsäuren, Derivate der Kohlensäure, nucleophile Addition von metallorganischen Verbindungen an die Carbonylgruppe, Enolate von Carbonylverbindungen als Nucleophile, Umsetzung von Ketonen mit Phosphor- und Schwefel-Yliden. Aldol-Reaktionen.
SkriptEine pdf-Datei des Skripts wird über das Internet zur Verfügung gestellt. Zusätzliches Material wird ggf. über das Internet zur Verfügung gestellt.
LiteraturKeine Pflichtliteratur. Ergänzungsliteratur wird zu Beginn der Vorlesung und im Skript vorgeschagen.
701-0023-00LAtmosphäre Information W3 KP2VH. Wernli, E. Fischer, T. Peter
KurzbeschreibungGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
LernzielVerständnis grundlegender physikalischer und chemischer Prozesse in der Atmosphäre. Kenntnis über die Mechanismen und Zusammenhänge von: Wetter - Klima, Atmosphäre - Ozeane - Kontinente, Troposphäre - Stratosphäre. Verständnis von umweltrelevanten Strukturen und Vorgängen in sehr unterschiedlichem Massstab. Grundlagen für eine modellmässige Darstellung komplexer Zusammenhänge in der Atmosphäre.
InhaltGrundlagen der Atmosphäre, physikalischer Aufbau und chemische Zusammensetzung, Spurengase, Kreisläufe in der Atmosphäre, Zirkulation, Stabilität, Strahlung, Kondensation, Wolken, Oxidationspotential und Ozonschicht.
SkriptSchriftliche Unterlagen werden abgegeben.
Literatur- John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998.
- Gösta H. Liljequist, Allgemeine Meteorologie, Vieweg, Braunschweig, 1974.
701-0245-00LIntroduction to Evolutionary BiologyW2 KP2VG. Velicer, S. Wielgoss
KurzbeschreibungThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions.
LernzielThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences.
InhaltTopics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection.
LiteraturTextbook:
Evolutionary Analysis
Scott Freeman and Jon Herron
5th Edition, English.
Voraussetzungen / BesonderesThe exam is based on lecture and textbook.
701-0401-00LHydrosphäreW3 KP2VR. Kipfer, C. Roques
KurzbeschreibungQualitatives und quantitatives Verständnis für die Prozesse, welche den Wasserkreislauf der Erde, die Energieflüsse sowie die Mischungs- und Transportprozesse in aquatischen Systemen bestimmen. Inhaltliche und methodische Zusammenhänge zwischen Hydrospäre, Atmosphäre und Pedosphäre werden aufgezeigt.
LernzielQualitatives und quantitatives Verständnis für die Prozesse, welche den Wasserkreislauf der Erde, die Energieflüsse sowie die Mischungs- und Transportprozesse in aquatischen Systemen bestimmen. Inhaltliche und methodische Zusammenhänge zwischen Hydrospäre, Atmosphäre und Pedosphäre werden aufgezeigt.
InhaltThemen der Vorlesung.
Physikalische Eigenschaften des Wassers (Dichte und Zustandsgleichung)
- Globale Wasserresourcen
Prozesse an Grenzflächen
- Energieflüsse (thermisch, kinetisch)
- Verdunstung, Gasaustausch
Stehende Oberflächengewässer (Meer, Seen)
- Wärmebilanz
- vertikale Schichtung und globale thermohaline Zirkulation / grossskalige Strömungen
- Turbulenz und Mischung
- Mischprozesse in Fliessgewässern
Grundwasser und seine Dynamik.
- Grundwasser als Teil des hydrologischen Kreislaufs
- Einzugsgebiete, Wasserbilanzen
- Grundwasserströmung: Darcy-Gesetz, Fliessnetze
- hydraulische Eigenschaften
Grundwasserleiter und ihre Eigenschaften
- Hydrogeochemie: Grundwasser und seine Inhaltsstoffe, Tracer
- Wassernutzung: Trinkwasser, Energiegewinnung, Bewässerung
Fallbeispiele: 1. Wasser als Ressource, 2. Wasser und Klima
SkriptErgänzend zu den empfohlenen Lehrmitteln werden Unterlagen abgegeben.
LiteraturDie Vorlesung stützt sich auf folgende Lehrmittel:
a) Park, Ch., 2001, The Environment, Routledge, 2001
b) Price, M., 1996. Introducing groundwater. Chapman & Hall, London u.a.
Voraussetzungen / BesonderesDie Fallbeispiele und die selbständig zu bearbeitende Uebungen sind ein obligatorischer Bestandteil der Lehrveranstaltung.
701-0423-00LChemie aquatischer SystemeW3 KP2GL. Winkel
KurzbeschreibungDieser Kurs gibt eine Einführung in die chemischen Prozesse in aquatischen Systemen und zeigt ihre Anwendung in verschiedenen Systemen. Es werden folgende Themen behandelt: Säure-Base-Reaktionen und Carbonatsystem, Löslichkeit fester Phasen und Verwitterung, Redoxreaktionen, Komplexierung der Metalle, Reaktionen an Grenzflächen fest / Wasser, Anwendungen auf See, Fluss, Grundwasser.
LernzielVerständnis für die chemischen Zusammenhänge in aquatischen Systemen. Quantitative Anwendung chemischer Gleichgewichte auf Prozesse in natürlichen Gewässern. Evaluation analytischer Daten aus verschiedenen aquatischen Systemen.
InhaltGrundlagen der Chemie aquatischer Systeme. Regulierung der Zusammensetzung natürlicher Gewässer durch chemische, geochemische und biologische Prozesse. Quantitative Anwendung chemischer Gleichgewichte auf Prozesse in natürlichen Gewässern. Folgende Themen werden behandelt: Säure-Base-Reaktionen (Carbonatsystem); Löslichkeit fester Phasen und Verwitterungsreaktionen; Metallkomplexierung und Metallkreisläufe in Gewässern; Redoxprozesse; Reaktionen an Grenzflächen Festphase-Wasser. Anwendungen auf Seen, Flüsse, Grundwasser.
SkriptUnterlagen werden abgegeben.
LiteraturSigg, L., Stumm, W., Aquatische Chemie, 5. Aufl., vdf/UTB, Zürich, 2011.
701-0461-00LNumerische Methoden in der Umweltphysik Information W3 KP2GC. Schär, O. Fuhrer
KurzbeschreibungDiese Vorlesung vermittelt Grundlagen, welche zur Entwicklung und Anwendung numerischer Modelle im Umweltbereich notwendig sind. Dazu gehört eine Einführung in die mathematische Modellierung gewöhnlicher und partieller Differentialgleichungen, sowie Übungen zur Entwicklung und Programmierung einfacher Modelle.
LernzielDiese Vorlesung vermittelt Grundlagen welche zur Entwicklung und Anwendung numerischer Modelle im Umweltbereich notwendig sind. Dazu gehört eine Einführung in die mathematische Modellierung gewöhnlicher und partieller Differentialgleichungen, sowie Uebungen zur Entwicklung und Programmierung einfacher Modelle.
InhaltKlassifikation numerischer Probleme, Einführung in die Methode der Finiten Differenzen, Zeitschrittverfahren, Nichtlinearität, konservative numerische Verfahren, Uebersicht über spektrale Methoden und Finite Elemente. Beispiele und Uebungen aus diversen Umweltbereichen.

Numerikübungen unter Verwendung von Matlab, 3 Übungsblöcke à 2 Stunden. Matlab-Kenntnisse werden nicht vorausgesetzt. Musterprogramme und Grafiktools werden abgegeben.
SkriptWird zum Preis von Fr. 10.- abgegeben.
LiteraturLiteraturliste wird abgegeben.
701-0473-00LWettersysteme Information W3 KP2GM. A. Sprenger, C. Grams
KurzbeschreibungDie theoretischen Grundlagen und die Mess- und Anlaysemethoden der
Atmosphärendynamik werden eingeführt. Auf dieser Basis werden die
Energetik der globalen Zirkulation, synoptisch- und meso-skalige Prozesse
(insbesondere Tiefdruckwirbel) und der Einfluss von Gebirgen auf die
Dynamik von Wettersystemen behandelt.
LernzielDie Studierenden können:
- die gängigen Mess- und Analysemethoden der Atmosphärendynamik erklären
- mathematische Grundlagen der Atmosphärendynamik beispielhaft erklären
- die Dynamik von globalen und synoptisch-skaligen Prozessen erklären
- den Einfluss von Gebirgen auf die Atmosphärendynamik erklären
InhaltSatellitenbeobachtungen; Analyse vertikaler Sondierungen; Geostrophischer und thermischer Wind; Tiefdruckwirbel in den mittleren Breiten; Überblick und Energetik der globalen Zirkulation; Nordatlantische Oszillation; Atmosphärische Blockierungswetterlagen; Eulersche und Lagrange Perspektive der Dynamik;
Potentielle Vortizität; Alpine Dynamik (Windstürme, Um- und Überströmung von Gebirgen); Planetare Grenzschicht
SkriptVorlesungsskript + Folien
LiteraturAtmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press
701-0475-00LAtmosphärenphysikW3 KP2GU. Lohmann, A. A. Mensah
KurzbeschreibungIn dieser Veranstaltung werden die Grundlagen der Atmosphärenphysik behandelt. Dies umfasst die Themen: Wolken- und Niederschlagsbildung, Thermodynamik, Aerosolphysik, Strahlung sowie Klimaeinfluss von Aerosolpartikeln und Wolken und künstliche Wetterbeeinflussung.
LernzielDie Studierenden können
- die Mechanismen der Wolken- und Niederschlagsbildung mit Wissen über Feuchteprozesse und Thermodynamik erklären.
- die Bedeutung der Wolken und Aerosolpartikel für das Klima und die künstliche Niederschlagsbeeinflussung evaluieren.
InhaltIm ersten Teil werden ausgewählte Konzepte der für atmosphärische Prozesse wichtigen Thermodynamik eingeführt: Die Studenten lernen das Konzept des thermodynamischen Gleichgewichts kennen und leiten ausgehend vom ersten Hauptsatz der Thermodynamik die Clausius-Clayperon Gleichung her, welche für die Behandlung von Phasenübergängen in atmosphärenphysikalischen Prozessen wichtig ist.

Ausserdem erlernen die Studenten die Klassifizierung von Sonderierungen sowie den Umgang mit thermodynamischen "Charts" und die Kennzeichnung charakteristischer Punkte (LCL etc.) in diesen Diagrammen. Das Konzept von atmosphärischen Mischungspozessen wird anhand der Nebelbildung eingeführt. Anhand vom "Luftpacket-Modell" wird das Konzept der Konvektion erarbeitet.

Im mittleren Teil des Kurses werden Aerosolpartikel eingeführt. Neben einer Beschreibung der physikalischen Eigenschaften dieser Partikel lernen die Studenten die Rolle von Aerosolpartikeln in diversen atmosphärischen Prozessen kennen.
Das Konzept der Köhler-Theorie wird eingefürt und die Bildung von Wolkentröpfchen und Eiskristallen werden diskutiert.

Im dritten Teil des Kurses werden Arten der Niederschlagsbildung eingeführt und unterschiedliche Formen von Niederschlag (konvektiv vs. stratiform) diskutiert, welche anhand der Diskussion von Stürmen und deren Entwicklungsstufen vertieft werden.

Den Abschluss der VL bildet eine Einführung in die Art und Weise wie Wolken und Aerosolpartikel den Energiehaushalt der Erde und somit das Klima beeinflussen.
SkriptPowerpoint Folien und Skript werden bereitgestellt.
LiteraturLohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds:
From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016.
Voraussetzungen / BesonderesWährend der Hälfte des Kurses benutzen wir das Konzept des invertierten Unterrichts (siehe: de.wikipedia.org/wiki/Umgedrehter_Unterricht), dass wir eingangs vorstellen.

Wir bieten eine Laborführung an, in der anhand ausgewählter Instrumente erklärt wird, wie einige der in der VL diskuterten Prozesse experimentell gemessen werden.

Es gibt ein wöchentliches Zusatztutorium im Anschluss an die LV, welches die Gelegenheit bietet, Unklarheiten aus der Vorlesung zu klären, sowie die Übungsaufgaben vor- und nachzubesprechen. Die Teilnahme daran ist freiwillig, wird aber empfohlen.
701-0501-00LPedosphäre Information W3 KP2VR. Kretzschmar
KurzbeschreibungEinführung in die Entstehung und Eigenschaften von Böden in Abhängigkeit von Ausgangsgestein, Relief, Klima und Bodenorganismen. Komplexe Zusammenhänge zwischen den bodenbildenden Prozessen, den physikalischen und chemischen Bodeneigenschaften, Bodenorganismen, und ökologischen Standortseigenschaften von Böden werden erläutert und an Hand von zahlreichen Beispielen illustriert.
LernzielEinführung in die Entstehung und Eigenschaften von Böden in Abhängigkeit von Ausgangsgestein, Relief, Klima und Bodenorganismen. Komplexe Zusammenhänge zwischen den bodenbildenden Prozessen, den physikalischen und chemischen Bodeneigenschaften, Bodenorganismen, und ökologischen Standortseigenschaften von Böden werden erläutert und an Hand von zahlreichen Beispielen illustriert.
InhaltDefinition der Pedosphäre, Bodenfunktionen, Gesteine, Minerale und Verwitterung, Bodenorganismen, organische Bodensubstanz, physikalische Eigenschaften und Funktionen, chemische Eigenschaften und Funktionen, Bodenbildung und Bodenverbreitung, Grundzüge der Bodenklassifikation, Bodenzonen der Erde, Bodenfruchtbarkeit, Bodennutzung und Bodengefährdung.
SkriptSkript wird während der ersten Vorlesung verkauft (15.- SFr).
Literatur- Scheffer F. Scheffer/Schachtschabel - Lehrbuch der Bodenkunde, 16. Auflage, Spektrum Akademischer Verlag, Heidelberg, 2010.

- Brady N.C. and Weil, R.R. The Nature and Properties of Soils. 14th ed. Prentice Hall, 2007.
Voraussetzungen / BesonderesVoraussetzungen: Grundlagen in Chemie, Biologie und Geologie.
752-4001-00LMikrobiologie Information W2 KP2VM. Schuppler, S. Schlegel, J. Vorholt-Zambelli
KurzbeschreibungVermittlung der Grundlagen im Fach Mikrobiologie mit Schwerpunkt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie.
LernzielVermittlung der Grundlagen im Fach Mikrobiologie.
InhaltDer Schwerpunkt liegt auf den Themen: Bakterielle Zellbiologie, Molekulare Genetik, Wachstumsphysiologie, Biochemische Diversität, Phylogenie und Taxonomie, Prokaryotische Vielfalt, Interaktion zwischen Menschen und Mikroorganismen sowie Biotechnologie.
SkriptWird von den jeweiligen Dozenten ausgegeben.
LiteraturDie Behandlung der Themen erfolgt auf der Basis des Lehrbuchs Brock, Biology of Microorganisms
Praktika, Semesterarbeiten, Proseminare, Exkursionen
Weitere Praktika ergeben sich aus den Wahlfächerpaketen, die individuell beim Studiendelegierten zu beantragen sind.
NummerTitelTypECTSUmfangDozierende
529-0011-04LAllgemeine Chemie (Praktikum) Belegung eingeschränkt - Details anzeigen
Obligatorische Belegung bis spätestens 19. September 2016.

Informationen zum Praktikum am Begrüssungstag.
O8 KP12PH. V. Schönberg, E. C. Meister
KurzbeschreibungQualitative Analyse (Kationen- und Anionennachweis), Säure-Base-Gleichgewicht (pH- Wert, Titrationen, Puffer), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Redoxreaktionen (Synthese, Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese, komplexometrische Titration)
Auswertung von Messdaten, Aggregatzustände (Dampfdruck, Leitfähigkeitsmessungen, Kalorimetrie)
LernzielQualitative Analyse (einfacher Kationen- und Anionentrennungsgang, Nachweis von Kationen und Anionen), Säure-Base-Gleichgewicht (Säure- und Basenstärke, pH- und pKa-Werte, Titrationen, Puffer, Kjeldahlbestimmung), Fällungsgleichgewichte (Gravimetrie, Potentiometrie, Leitfähigkeit), Oxidationszahlen und Redoxverhalten (Synthese), Redoxtitrationen, galvanische Elemente), Metallkomplexe (Synthese von Komplexen, Ligandaustauschreaktionen, Komplexometrische Titration)
Auswertung von Messdaten (Messfehler, Mittelwert, Fehlerbetrachtung), Aggregatzustände (Dampfdruck), Eigenschaften von Elektrolyten (Leitfähigkeitsmessungen), Thermodynamik (Kalorimetrie)
InhaltDas Praktikum in allgemeiner Chemie soll die Studierenden in wissenschaftliches Arbeiten einführen und sie mit einfachen experimentellen Arbeiten im Laboratorium vertraut machen. Dabei sollen erste Erfahrungen mit dem Reaktionsverhalten von Stoffen gemacht werden. Neben einer Reihe von quantitativen Versuchen vermitteln qualitative Versuche Kenntnisse über die chemischen Eigenschaften von Substanzen. Die einzelnen Versuche sind so ausgewählt, dass ein möglichst vielfältiger Überblick über Substanzklassen und Phänomene der Chemie erhalten wird. In einem physikalisch – chemischen Teil des Praktikums werden Versuche zum Verhalten von Substanzen in ihren Aggregatzuständen durchgeführt und die Änderung ausgesuchter physikalischer Grössen erfasst und diskutiert.
SkriptLink
Voraussetzungen / BesonderesElektronische Einschreibung obligatorisch bis spätestens 1 Woche vor Semesterbeginn
529-0129-00LAnorganische und Organische Chemie II Belegung eingeschränkt - Details anzeigen
Belegung nur möglich bis 1 Woche vor Semsterbeginn.
W11 KP16PA. Mezzetti, A. Togni
KurzbeschreibungEinführung in die experimentellen Methoden der Anorganischen Chemie.
LernzielDas Praktikum bietet einen Einblick in verschiedene Arbeitsgebiete der anorganischen Chemie an: Festkörperchemie, metallorganische Chemie, Kinetik, und andere. Ein Schwerpunkt liegt auf der Synthese von anorganischen Verbindungen, deren Charakterisierung und Analyse. Die gesamte Arbeit wird in wissenschaftlich abgefassten Berichten dargelegt.
InhaltAnorganisch-chemischer Teil: Synthese und Analyse von Elementorganischen Verbindungen, Metallkomplexen und Metallorganischen Verbindungen. Einführung in die Schlenk-Technik, Festkörpersynthese und Kinetik. Einführung in die Chemiebibliothek: Umgang mit Literaturdatenbanken und Spektrenbibliotheken.
Organische Synthese mit metallorganischen Verbindungen und Katalyse: Versuche im Rahmen ausgewählter Schwerpunktprojekte (mögliche Projekte: Rh-katalysierte asymmetrische Hydrierung von Enamiden, Mn-katalysierte Epoxidierung von Olefinen, Cu-katalysierte Diels-Alder Reaktionen, Synthese von Organoborverbindungen und Pd-katalysierte Kupplung mit Halogeniden, Ru-katalysierte Transfer-Hydrierung).
SkriptEine Anleitung wird im Praktikum verteilt.
Voraussetzungen / BesonderesVoraussetzungen:
- Praktikum Allgemeine Chemie (1. Semester, 529-0011-04)
- Praktikum Anorg. und Org. Chemie I (2. Sem., 529-0230)
- Belegung Vorl. Anorganische Chemie 1 (3. Sem., 529-0121)
Falls nötig wird die Aufnahme nach der Gesamtnote der 1. Basisprüfung priorisiert.
5. Semester (Physikalisch-Chemische Richtung)
Praktika, Semesterarbeiten, Proseminare, Exkursionen
Weitere Praktika ergeben sich aus den Wahlfächerpaketen, die individuell beim Studiendelegierten zu beantragen sind.
NummerTitelTypECTSUmfangDozierende
402-0241-00LFortgeschrittenes Experimentieren I Information Belegung eingeschränkt - Details anzeigen
WICHTIG: Diese Lehrveranstaltung darf nur einmal in Rahmen des Bachelor-Studiums belegt werden.
W9 KP18PC. Grab, T. M. Ihn
KurzbeschreibungDas Praktikum ist die Grundschulung für selbständiges Experimentieren. Dazu gehören Planung, Aufbau, Durchführung, Auswertung und Interpretation physikalischer Experimente, sowie die Abschätzung der Messgenauigkeit. Schriftliche Anleitungen der einzelnen Versuche sind vorhanden.
Lernziel
529-0450-00LSemesterarbeitW18 KP18ADozent/innen
KurzbeschreibungSemesterarbeiten dienen der Vertiefung in einem spezifischen Fachbereich; die Themen werden von den Studierenden individuell nach ihren Fächerpaketen gewählt.
LernzielDie Studierenden werden mit der wissenschaftlichen Arbeit vertraut gemacht und vertiefen ihr Wissen in einem Fachgebiet.
529-0020-00LResearch ProjectW20 KP20ADozent/innen
KurzbeschreibungIn a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.
LernzielStudents are accustomed to scientific work and they get to know one specific research field.
Bachelor-Arbeit
NummerTitelTypECTSUmfangDozierende
529-0400-00LBachelor-ArbeitO15 KP15DDozent/innen
KurzbeschreibungDie Bachelorarbeit stellt den Abschluss des Bachelorstudiums dar. Sie ist eine wissenschaftliche und selbständige Arbeit unter der Leitung einer Dozentin oder eines Dozenten des gewählten Fachgebietes.
LernzielDie Bachelor-Arbeit soll dazu dienen, das Wissen in einem bestimmten Fachgebiet zu vertiefen und die Fähigkeit zu selbständiger, strukturierter und wissenschaftlicher Tätigkeit fördern.