Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Erdwissenschaften Master Information
Vertiefung in Mineralogy and Geochemistry
Wahlpflichtmodule Mineralogy und Geochemistry
Innerhalb der Majors Mineralogy and Geochemistry sind mindestens zwei Wahlpflichtmodule zu absolvieren.
Mineralogy and Petrology
Mineralogy and Petrology: Obligatorische Fächer
Die obligatorischen Kurse dieses Moduls finden im Herbstsemester statt.
Mineralogy and Petrology: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4030-00LCrystalline Geology of the Alps Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
W3 KP2GNoch nicht bekannt
KurzbeschreibungGeology of the Central Alps with an emphasis on the Alpine-metamorphic Penninic domain between the External massifs and the Insubric line. Focus: Alpine tectonics, deformation history and metamorphosis.
LernzielUnderstanding the Alpine tectonics, the Geological history incl. deformation and metamorphic history of the central part of the Alps.
InhaltGeographical overview; tectonic units and their relationship; deformation; metamorphosis; deep structure; evolution and geological history from Permian to Oligocene based on observation at three localities: Valmalenco, Cimalunga unit, Bergell intrusion.
SkriptNo script, but a lot of maps and profiles drawn at the blackboard.
101-0302-00LClays in Geotechnics: Problems and ApplicationsW3 KP2GM. Plötze
KurzbeschreibungThis course gives a comprehensive introduction in clay mineralogy, properties, characterising and testing methods as well as applied aspects and problems of clays and clay minerals in geotechnics.
LernzielUpon successful completion of this course the student is able to:
- Describe clay minerals and their fundamental properties
- Describe/propose methods for characterisation of clays and clay minerals
- Draw conclusion about specific properties of clays with a focus to their potential use, problematics and things to consider in geotechnics and engineering geology.
Inhalt- Introduction to clays and clay minerals (importance and application in geosciences, industry and everyday life)
- Origin of clays (formation of clays and clay minerals, geological origin)
- Clay mineral structure, classification and identification incl. methods for investigation (e.g., XRD)
- Properties of clay materials, characterisation and quantification incl. methods for investigation (e.g., cation exchange, rheology, plasticity, shearing, swelling, permeability, retardation and diffusion)
- Clay Minerals in geotechnics: Problems and applications (e.g. soil mechanics, barriers, slurry walls, tunnelling)
SkriptLecture slides and further documents will be provided.
Petrology and Volcanology
Petrology and Volcanology: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4032-00LVolcanologyO3 KP2VB. Ellis
KurzbeschreibungThis course will discuss the processes occurring from magma generation to eruption, covering topics such as magma formation, storage, movement, evolution, ascent in conduit and eruption dynamics. The course will also discuss deposits, and will prepare students to take the volcanology field course. Finally, an introduction on volcanic hazards and volcano monitoring will be presented.
LernzielAfter completion of this course the students should have a good understanding of the dynamics of volcanic systems, from source to surface. The students should understand the main steps involved in generating volcanic activity on Earth, to interpret the depositional processes operating during volcanic eruptions. There will be an emphasis on interpreting volcanic deposits and the role they can play in understanding depositional processes. Students should also be able to discuss potential hazards related to a given volcanic phenomena.
InhaltDuring the course, the following topics are covered:
- Basics of physical volcanology
- Physical properties of magmas
- The role of volatiles in volcanic eruptions
- Fragmentation processes
- Explosive volcanism – dynamics and deposits
- Effusive volcanism – lava flows
- Monitoring techniques used at active volcanoes
- Volcanic hazards

Some of these modules are accompanied by exercises
SkriptPresentation slides will be handed out
LiteraturPapers from the literature will be provided
Voraussetzungen / BesonderesSome previous courses in igneous / hard rock geology would be helpful.
Petrology and Volcanology: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4026-00LApplied Mineralogy and Non-Metallic Resources IIW3 KP2GR. Kündig, B. Grobéty
KurzbeschreibungDie wichtigsten Rohstoffgruppen werden aus geologisch-petrographischer Sicht beleuchtet. Die industrielle und technische Rohstoffnutzung sowie wirtschaftliche und rohstoffpolitische Zusammenhänge werden erläutert. Das Verständnis für Umweltaspekte im Zusammenhang mit der Rohstoffnutzung wird gefördert.
LernzielDie Studierenden sollen die wichtigsten mineralischen Rohstoffgruppen aus geologisch-petrographischer Sicht verstehen und die Rohstoffnutzung, insbesondere die industrielle und technische Verwertung/Bedeutung sowie wirtschaftliche und rohstoffpolitische Zusammenhänge kennen lernen.
Das Verständnis für verschiedene Umweltaspekte im Zusammenhang mit der Rohstoffnutzung wird gefördert.
Der Unterricht beinhaltet neben Vorlesungen auch Fallbeispiele und Exkursionen (Industirie, rohstoffverarbeitende Betriebe).
InhaltFrühlingssemester (Applied mineralogy and non-metallic ressources II)

Steine und Erden (Kies, Sand, Splitt), Natursteine, Zementrohstoffe. Fallbeispiele in angewandter Mineralogie (Sanierungen, Projektplanung, reaktive Bohrpfähle); Natursteine (Definitionen, Steinbrüche, Industrie, Produkte und Anforderungen); Zement und Beton (Rohstoffe, Prospektion, Herstellung, Umwelt); Gebrochene Festgesteine (Planung/Umwelt, Langzeitsicherung, Rohstoffpolitik); Exkursion(en).

Herbstsemester (Applied mineralogy and non-metallic ressources I)

Vorkommen, Gewinnung und Anwendung mineralischer Rohstoffe - klassische und unkonventionelle Rohstoffe. Neue Technologien. Industrielle Anwendungen. Weltmarktsituation, Rohstoffländer. Vorräte, mögliche Verknappung. Umweltaspekte (inkl. Belastungen) durch Abbau und Anwendung.
Rohstoffgruppen: Kohle und Kohlenstoff (Kohle, Graphit, Diamant); Erdöl, Erdgas (Oelsande; Teerschiefer); Phosphate/Nitrate (Dünger); Aluminium (Bauxit, Korund); Steinsalz; Kalziumkarbonate; Titanoxide; Borminerale; Tone und Tonminerale; Schwefel; Anhydrit/Gips; Baryt; Fluorit; Asbest; Talk; Glimmer; seltene Erden.
SkriptWird zu den einzelnen Rohstoffarten und entsprechend Methode als Beilagen abgegeben. Skript in Textform und Auswahl von Powerpoint-Folien als Grafiken.
Literatur- Walter L. Pohl (2011): Economic Geology - Principles and Practice. Wiley-Blackwell, 664p.,ISBN 978-1-4443-3663-4
- Harben, P.W. (2002): The Industrial Minerals Handybook. A Guide to Markets,
Specifications & Prices. Industrial Mineral Information, London 412 S., ISBN 1-904333-04-4
- Schweizerische Geotechnische Kommission (1996): Die mineralischen Rohstoffe der
Schweiz.- Herausgegeben von der Schw. Geotech. Komm., Zürich, 522 S., ISBN 3-907997-00-X
- Geotechnische Karte der Schweiz 1:200 000, 2. Aufl. Schweiz. Geotechn. Komm.
- Trueb, L.F. (1996): Die chemischen Elemente - Ein Streifzug durch das Periodensystem. S. Hirzel Verlag, Stuttgart, 416 S., ISBN 3-7776-0674-X
- Kesler, S. E. (1994): Mineral Resources, Economics and the Environment.-
Macmillan College Publishing Company, Inc., New York., 392 S., ISBN 0-02-362842-1
651-4036-00LField Excursion Module Mineral Resources
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through Link only.
W3 KP6PT. Driesner, C. Chelle-Michou
KurzbeschreibungExcursion to areas of active and past mining activity and practical industry courses. Mapping relations between regional/local geology and ore deposit formation in the field and in active mines. Insight into the work of mine and exploration geologists, including geophysical measurements, geochemical data handling, economic evaluation, etc.
LernzielUnderstand the regional and local geology as a framework for ore deposit formation. Detailed field and drill core mapping of hydrothermal veining and alteration. Discuss actual mineral deposits and their position within this framework during mine visits. Study similarities and differences between processes leading to the formation of different ore deposit types. Obtain insight into challenges linking economic geology and mining with social and environmental constraints.
Voraussetzungen / BesonderesCourse plans changing through the years. Subscribe through MyStudies once.

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
651-4032-01LVolcanology Field Course Information
Number of participants limited to 20.
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through Link only.
W2 KP6PO. Bachmann
KurzbeschreibungThe course complements the lecture class on physical volcanology, by providing a close look at the field characteristics of volcanic deposits. It is run in a volcanic province, typically in Europe (e.g., Iceland, Greece, Italy, Spain, Germany, France). The course focuses on the field description of many types of volcanic deposits and their edifices.
LernzielAfter completion of this course, the students should be able to differentiate the different types of volcanic rocks in the field, and interpret the eruptive dynamics that led to their deposition. They should also be able to provide some guidance on the type of hazards that a given volcanic edifice or province is most likely to produce.
InhaltThe course involves a weeklong stay in a volcanic province, in most cases situated in Europe. A first part of the course will focus on a guided tour to look at volcanic deposits and learn the characteristics of the area. In a second stage, the students will have to complete some field exercises.
SkriptA field guide and scientific papers pertaining to the area of study will be distributed
Voraussetzungen / BesonderesPrerequisite: This course can only be taken after successful completion of 651-4032-00L Volcanology.

Studierende Geographie und Erdsystemwissenschaften bezahlen den vollen Tarif (keine Subventionen).

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
651-4108-00LApplied GeothermobarometryW3 KP2GA. Galli
KurzbeschreibungThis course aims to give a general introduction on the most important approaches concerning the estimates of pressure and temperature conditions in metamorphic terrains. In particular, pressure-temperature grids, conventional geothermobarometers and metamorphic phase diagrams (pseudosections) are introduced and used to reconstruct the pressure-temperature evolution for case study samples.
LernzielThis course provides an overview on the most used methods in modern geothermobarometry. Students will be introduced to estimates of metamorphic conditions in the field, to calculations of P and T using conventional geothermobarometers and to software for calculating phase equilibria and stable mineral assemblages with thermodynamic data. Advantages and disadvantages of each approach will be discussed with the objective that students will be able to infer the metamorphic evolution of a rock/terrain.
Voraussetzungen / BesonderesThis course partly replaces and combines the courses “Phase Petrology” and “Computational Techniques in Petrology” of Prof. L. Tajcmanová.
Mineral Resources
Mineral Resources: Obligatorische Fächer
Die obligatorischen Kurse dieses Moduls finden im Herbstsemester statt.
Mineral Resources: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4026-00LApplied Mineralogy and Non-Metallic Resources IIW3 KP2GR. Kündig, B. Grobéty
KurzbeschreibungDie wichtigsten Rohstoffgruppen werden aus geologisch-petrographischer Sicht beleuchtet. Die industrielle und technische Rohstoffnutzung sowie wirtschaftliche und rohstoffpolitische Zusammenhänge werden erläutert. Das Verständnis für Umweltaspekte im Zusammenhang mit der Rohstoffnutzung wird gefördert.
LernzielDie Studierenden sollen die wichtigsten mineralischen Rohstoffgruppen aus geologisch-petrographischer Sicht verstehen und die Rohstoffnutzung, insbesondere die industrielle und technische Verwertung/Bedeutung sowie wirtschaftliche und rohstoffpolitische Zusammenhänge kennen lernen.
Das Verständnis für verschiedene Umweltaspekte im Zusammenhang mit der Rohstoffnutzung wird gefördert.
Der Unterricht beinhaltet neben Vorlesungen auch Fallbeispiele und Exkursionen (Industirie, rohstoffverarbeitende Betriebe).
InhaltFrühlingssemester (Applied mineralogy and non-metallic ressources II)

Steine und Erden (Kies, Sand, Splitt), Natursteine, Zementrohstoffe. Fallbeispiele in angewandter Mineralogie (Sanierungen, Projektplanung, reaktive Bohrpfähle); Natursteine (Definitionen, Steinbrüche, Industrie, Produkte und Anforderungen); Zement und Beton (Rohstoffe, Prospektion, Herstellung, Umwelt); Gebrochene Festgesteine (Planung/Umwelt, Langzeitsicherung, Rohstoffpolitik); Exkursion(en).

Herbstsemester (Applied mineralogy and non-metallic ressources I)

Vorkommen, Gewinnung und Anwendung mineralischer Rohstoffe - klassische und unkonventionelle Rohstoffe. Neue Technologien. Industrielle Anwendungen. Weltmarktsituation, Rohstoffländer. Vorräte, mögliche Verknappung. Umweltaspekte (inkl. Belastungen) durch Abbau und Anwendung.
Rohstoffgruppen: Kohle und Kohlenstoff (Kohle, Graphit, Diamant); Erdöl, Erdgas (Oelsande; Teerschiefer); Phosphate/Nitrate (Dünger); Aluminium (Bauxit, Korund); Steinsalz; Kalziumkarbonate; Titanoxide; Borminerale; Tone und Tonminerale; Schwefel; Anhydrit/Gips; Baryt; Fluorit; Asbest; Talk; Glimmer; seltene Erden.
SkriptWird zu den einzelnen Rohstoffarten und entsprechend Methode als Beilagen abgegeben. Skript in Textform und Auswahl von Powerpoint-Folien als Grafiken.
Literatur- Walter L. Pohl (2011): Economic Geology - Principles and Practice. Wiley-Blackwell, 664p.,ISBN 978-1-4443-3663-4
- Harben, P.W. (2002): The Industrial Minerals Handybook. A Guide to Markets,
Specifications & Prices. Industrial Mineral Information, London 412 S., ISBN 1-904333-04-4
- Schweizerische Geotechnische Kommission (1996): Die mineralischen Rohstoffe der
Schweiz.- Herausgegeben von der Schw. Geotech. Komm., Zürich, 522 S., ISBN 3-907997-00-X
- Geotechnische Karte der Schweiz 1:200 000, 2. Aufl. Schweiz. Geotechn. Komm.
- Trueb, L.F. (1996): Die chemischen Elemente - Ein Streifzug durch das Periodensystem. S. Hirzel Verlag, Stuttgart, 416 S., ISBN 3-7776-0674-X
- Kesler, S. E. (1994): Mineral Resources, Economics and the Environment.-
Macmillan College Publishing Company, Inc., New York., 392 S., ISBN 0-02-362842-1
651-4036-00LField Excursion Module Mineral Resources
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through Link only.
W3 KP6PT. Driesner, C. Chelle-Michou
KurzbeschreibungExcursion to areas of active and past mining activity and practical industry courses. Mapping relations between regional/local geology and ore deposit formation in the field and in active mines. Insight into the work of mine and exploration geologists, including geophysical measurements, geochemical data handling, economic evaluation, etc.
LernzielUnderstand the regional and local geology as a framework for ore deposit formation. Detailed field and drill core mapping of hydrothermal veining and alteration. Discuss actual mineral deposits and their position within this framework during mine visits. Study similarities and differences between processes leading to the formation of different ore deposit types. Obtain insight into challenges linking economic geology and mining with social and environmental constraints.
Voraussetzungen / BesonderesCourse plans changing through the years. Subscribe through MyStudies once.

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link
651-4024-00LMineral Resources IIW3 KP2GC. Chelle-Michou, T. Driesner
KurzbeschreibungMagmatic-hydrothermal ore formation from plate-tectonic scale to fluid inclusions, with a focus on porphyry-Cu-Au deposits, epithermal precious-metal deposits and granite-related Sn-W deposits
LernzielRecognise and interpret ore-forming processes in hand samples. Understand the string of processes that contribute to metal enrichment mainly along active plate margins, from lithosphere dynamics through magma evolution, fluid separation, subsolidus fluid evolution, and alteration and mineral precipitation by interaction of magmatic fluids with country rocks and the hydrosphere. Understand connection to active volcanism and geothermal processes. Insight into modern research approaches including field mapping, analytical techniques and modelling in preparation for MSc projects.
InhaltDetailed program of contents will be updated yearly.
SkriptShort notes are distributed in class
LiteraturExtensive reference list distributed with course notes
Voraussetzungen / BesonderesBuilds on BSc integration course "Integrierte Erdsysteme" and MSc course "Mineral Resources I", as essential introductions to the principles of hydrothermal ore formation in sedimentary basins and to orthomagmatic metal enrichment. Reflected Light Microscopy and Ore Deposit Practical, coordinated with Mineral Resources I, is recommended but not essential. BSc students intending to study the module Mineral Resources in their MSc program should take both courses "Mineral Resources I and II" during their MSc studies.
Geochemistry
Geochemistry: Obligatorische Fächer
NummerTitelTypECTSUmfangDozierende
651-4226-00LGeochemical and Isotopic Tracers of the Earth System Belegung eingeschränkt - Details anzeigen O3 KP2VD. Vance
KurzbeschreibungThe unit will investigate the geochemical approaches used to understand the dynamics of the surface Earth, with an emphasis on geochemical archives preserved in ocean sediments. The class will be organised into four themes, each treating a different aspect of surface Earth chemistry and how it is recorded in archives - mainly ocean sediments but also including others ice-cores and loess.
LernzielThe unit is designed with the particular aim of providing a firm grounding in the geochemical methods used to observe and trace the Earth System, now and in the past. Students will gain a basic understanding of the relevant geochemical techniques through at least one 1.5 hour lecture for each theme, and will encourage students to think about their application and interpretation from first principles. But the emphasis will be placed on independent learning by the student through their own research, and the presentation of that research to the class. For each theme, we will use particular time periods in Earth history as case studies. All students will investigate one of these tools in depth themselves, including the application of that tool to problems and questions in the history of the surface Earth.
InhaltThe themes covered in the class will include:
Tracing the large-scale controls on ocean chemistry through time using analytical tools, mass balance and box models;
How ocean physics, chemistry and biology can explain the record of atmospheric chemistry preserved in Quaternary ice-cores;
Tracking global-scale aspects of the carbon cycle through time, concentrating on processes on the continents, such as chemical weathering, how their record is preserved in the oceans, and using the Cenozoic as a case study;
What secular variation in ocean redox tells us about large-scale biogeochemical cycles, using the Mesozoic as a case study.

Students will be encouraged to become familiar with the range of modern geochemical tools used to investigate key scientific questions within the above themes, such as radiogenic isotopes, stable isotopes, speciation of elements in the oceans and in sediments.
SkriptFor lectures on the basic aspects of each theme, slides will be available in advance of the lectures.
LiteraturAbout two thirds of the class will be devoted to student presentations of particular geochemical methods they have researched themselves, with the aid of published papers available online and as guided by the teaching team.
Voraussetzungen / BesonderesThis class builds on ETH Bachelors classes in oceanography, in geochemistry and in earth system science. Those who have not taken similar classes in their Bachelors may need to familiarise themselves with basic concepts in order to take full advantage of this class. Basic reading material will be compiled that those who might need them can consult - but it is the responsibility of the student to do the catching up.
Geochemistry: Wahlpflichtfächer
NummerTitelTypECTSUmfangDozierende
651-4228-00LTopics in Planetary SciencesW3 KP2GH. Busemann, A. Rozel, M. Schönbächler, P. Tackley
KurzbeschreibungThe course is based on reading and understanding research papers. Topics vary and cover e.g. planetary geophysics, geochemistry and dynamics including new results from space missions or models of the dynamical evolution of planetary bodies as well as planet and solar system formation.
Each selected research paper is presented by a student, who then also leads an open discussion on the topic.
LernzielThe goal of the course is to discuss topics in planetary sciences in-depth, which were not covered in the general planetary science courses. The course particularly aims at training the student's ability to critically evaluate research papers, to summarize the findings concisely in an oral presentation, to discuss the science in a group and give constructive feedback on presentations.
The course should enable the students to better understand the presented research, even if not in their fields of expertise and to convey scientific results to students with a distinct study direction (geology, geochemistry or geophysics).
InhaltTopics, relevant papers selected typically from the recent literature by the lecturers, will vary. Suggestions from students are welcome, but have to be discussed with a lecturer before the topics are listed and distributed. Special introductions are given to discuss good presentation practise.

Topics could include, e.g.:
- Formation of the solar system and the terrestrial planets
- Evolution of terrestrial bodies (Mercury, Venus, Moon, Mars, Vesta and the other asteroids)
- Active asteroids/main-belt comets, icy moons (Ganymede, Callisto, Enceladus), comets and the outer solar system
- Geophysical, geomorphologic and geochemical exploration of planetary bodies (e.g., remote sensing, meteorite studies, seismology, modelling)
- exoplanets and transiting bodies from outside the solar system
Voraussetzungen / BesonderesThe students are expected to have passed either course 651-4010-00L Planetary Physics and Chemistry or course 651-4227-00L Planetary Geochemistry.
651-4004-00LThe Global Carbon Cycle - ReducedW3 KP2GT. I. Eglinton, L. Bröder, R. G. Hilton
KurzbeschreibungThe carbon cycle connects different reservoirs of C, including life on Earth, atmospheric CO2, and economically important geological reserves of C. Much of this C is in reduced (organic) form, and is composed of complex chemical structures that reflect diverse biological activity, processes and transformations.
LernzielA wealth of information is held within the complex organic molecules, both in the context of the contemporary carbon cycle and its links to is other biogeochemical cycles, as well as in relation to Earth's history, the evolution of life and climate on this planet.

In this course we will learn about the role of reduced forms of carbon in the global cycle, how these forms of carbon are produced, move around the planet, and become sequestered in the geological record, and how they can be used to infer biological activity and conditions on this planet in the geologic past. The course encompasses a range of spatial and temporal scales, from molecular to global, and from the contemporary environment to earliest life.
Voraussetzungen / BesonderesThis course is good preparation for the combined Field-Lab Course: "651-4044-02 P Geomicrobiology and Biogeochemistry Field Course" and "651-4044-01 P Geomicrobiology and Biogeochemistry Lab Practical"
651-4044-04LMicropalaeontology and Molecular PalaeontologyW3 KP2GH. Stoll, C. De Jonge, T. I. Eglinton, I. Hernández Almeida
KurzbeschreibungThe course aims to provide an introduction to the key micropaleontological and molecular fossils from marine and terrestrial niches, and the use of these fossils for reconstructing environmental and evolutionary changes.
LernzielThe course aims to provide an introduction to the key micropaleontological and molecular fossils from marine and terrestrial niches, and the use of these fossils for reconstructing environmental and evolutionary changes.

The course will include laboratory exercises with microscopy training: identification of plantonic foraminifera and the application of transfer functions, identification of calcareous nannoliths and estimation of water column structure and productivity with n-ratio, identification of major calcareous nannofossils for Mesozoic-cenozoic biostratigraphy, Quaternary radiolarian assemblages and estimation of diversity indices.
The course will include laboratory exercises on molecular markers include study of chlorin extracts, alkenone and TEX86 distributions and temperature reconstruction, and terrestrial leaf wax characterization, using GC-FID, LC-MS, and spectrophotometry.
InhaltMicropaleontology and Molecular paleontology
1. Introduction to the domains of life and molecular and mineral fossils. Genomic classifications of domains of life. Biosynthesis and molecular fossils and preservation/degradation. Biomineralization and mineral fossils and preservation/dissolution. Review of stable isotopes in biosynthesis.
2. The planktic niche – primary producers. Resources and challenges of primary production in the marine photic zone – light supply, nutrient supply, water column structure and niche partitioning. Ecological strategies and specialization, bloom succession, diversity and size gradients in the modern ocean. Introduction to principal mineralizing phytoplankton – diatoms, coccolithophores, dynoflagellates, as well as cyanobacteria. Molecular markers including alkenones, long-chain diols and sterols, IP25, pigments, diatom UV-absorbing compounds. Application of fossils and markers as environmental proxies. Long term evolutionary evidence for originations, radiations, and extinctions in microfossils and biomarkers; evolution of size trends in phytoplankton over Cenozoic, geochemical evidence for evolution of carbon concentrating mechanisms. Introduction to nannofossil biostratigraphy.
3. The planktic niche – heterotrophy from bacteria to zooplankton. Resources and challenges of planktic heterotrophy – food supply, oxygen availability, seasonal cycles, seasonal and vertical niche partitioning. Introduction to principal mineralizing zooplankton planktic foraminifera and radiolaria: ecological strategies and specialization, succession, diversity and size gradients in the modern ocean. Morphometry and adaptations for symbiont hosting. Molecular records such as isorenieratene and Crenoarcheota GDGT; the debate of TEX86 temperature production. Long term evolutionary evidence for originations, radiations, and extinctions in microfossils; evolution of size and form, basic biostratigraphy. Molecular evidence of evolution including diversification of sterol/sterine assemblages.
4. The benthic niche – continental margins. Resources and challenges of benthic heterotrophy – food supply, oxygen, turbulence and substrate. Principal mineralizing benthic organisms – benthic foraminifera and ostracods. Benthic habitat gradients (infaunal and epifaunal; shallow to deep margin. Microbial redox ladder in sediments. Molecular markers of methanogenesis and methanotrophy, Anamox markers, pristine/phytane redox indicator. Applications of benthic communities for sea level reconstructions. Major originations and extinctions.
5. The benthic niche in the abyssal ocean. Resources and challenges of deep benthic heterotrophy. Benthic foraminifera, major extinctions and turnover events. Relationship to deep oxygen level and productivity.
6. Terrestrial dry niches -soils and trees. Resources and challenges - impacts of temperature, humidity, CO2 and soil moisture on terrestrial vegetation and microbial reaction and turnover. Introduction to pollen and molecular markers for soil pH, humidity, leaf wax C3-C4 community composition and hydrology. Long term evolution of C4 pathway, markers for angiosperm and gymnosperm evolution.
7. Terrestrial aquatic environments – resources and challenges. Lake systems, seasonal mixing regimes, eutrophication, closed/open systems. Introduction to lacustrine diatoms, chironomids, testate amoeba. Molecular markers in lake/box environments including paleogenomics of communities.
SkriptA lab and lecture manual will be distributed at the start of the course and additional material will be available in the course Moodle
LiteraturKey references from primary literature will be provided as pdf on the course moodle.
Voraussetzungen / BesonderesTiming: The course starts on February 19 and ends on May 28. Prerequisites: Recall and remember what you learned in introductory chemistry and biology
  •  Seite  1  von  1