# Search result: Catalogue data in Autumn Semester 2022

Physics Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Core Courses One Core Course in Experimental or Theoretical Physics from Physics Bachelor is eligible; however, this Core Course from Physics Bachelor cannot be used to compensate for the mandatory Core Course in Experimental or Theoretical Physics. For the category assignment keep the choice "no category" and take contact with the Study Administration (Link) after having received the credits. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Core Courses in Theoretical Physics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

402-0861-00L | Statistical Physics | W | 10 credits | 4V + 2U | E. Demler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This lecture covers the concepts of classical and quantum statistical physics. Several techniques such as second quantization formalism for fermions, bosons, photons and phonons as well as mean field theory and self-consistent field approximation. These are used to discuss phase transitions, critical phenomena and superfluidity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | This lecture gives an introduction in the basic concepts and applications of statistical physics for the general use in physics and, in particular, as a preparation for the theoretical solid state physics education. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Kinetic approach to statistical physics: H-theorem, detailed balance and equilibirium conditions. Classical statistical physics: microcanonical ensembles, canonical ensembles and grandcanonical ensembles, applications to simple systems. Quantum statistical physics: density matrix, ensembles, Fermi gas, Bose gas (Bose-Einstein condensation), photons and phonons. Identical quantum particles: many body wave functions, second quantization formalism, equation of motion, correlation functions, selected applications, e.g. Bose-Einstein condensate and coherent state, phonons in elastic media and melting. One-dimensional interacting systems. Phase transitions: mean field approach to Ising model, Gaussian transformation, Ginzburg-Landau theory (Ginzburg criterion), self-consistent field approach, critical phenomena, Peierls' arguments on long-range order. Superfluidity: Quantum liquid Helium: Bogolyubov theory and collective excitations, Gross-Pitaevskii equations, Berezinskii-Kosterlitz-Thouless transition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes available in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | No specific book is used for the course. Relevant literature will be given in the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0843-00L | Quantum Field Theory ISpecial Students UZH must book the module PHY551 directly at UZH. | W | 10 credits | 4V + 2U | R. Renner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity. Topics include: - Relativistic quantum mechanics - Quantisation of bosonic and fermionic fields - Interactions in perturbation theory - Scattering processes and decays - Elementary processes in QED - Radiative corrections | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Will be provided as the course progresses | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0830-00L | General Relativity Special Students UZH must book the module PHY511 directly at UZH. | W | 10 credits | 4V + 2U | L. Senatore | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Suggested textbooks: C. Misner, K, Thorne and J. Wheeler: Gravitation S. Carroll - Spacetime and Geometry: An Introduction to General Relativity R. Wald - General Relativity S. Weinberg - Gravitation and Cosmology | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Core Courses: Experimental Physics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0257-00L | Advanced Solid State Physics | W | 10 credits | 3V + 2U | A. Zheludev | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course is an extension of the introductory course on solid state physics. The purpose of this course is to learn to navigate the complex collective quantum phases, excitations and phase transitions that are the dominant theme in modern solid state physics. The emphasis is on the main concepts and on specific experimental examples, both classic ones and those from recent research. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The goal is to study how novel phenomena emerge in the solid state. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | = Today's challenges and opportunities in Solid State Physics = Phase transitions and critical phenomena .Main concepts: coherence length, symmetry, order parameter, correlation functions, generalized susceptibility .Landau theory of phase transitions .Fluctuations in Landau theory .Critical exponents: significance, measurement, inequalities, equalities .Scaling, hyperscaling and universality .Quantum phase transitions and quantum criticality =Fermi surface instabilities . The concept of the Landau Fermi liquid in metals . Kohn anomalies . Charge density waves . Metallic ferromagnets and half-metals . Spin density waves . Suprconductivity =Magnetism of insulators .Magnetic interactions in solids and the spin Hamiltonian .Magnetic structures and phase transitions .Spin waves .Quantum magnetism = Electron correlations in solids . Mott insulating state . Phases of the Hubbard model | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | The printed material for this course involves: (1) a self-contained script, distributed electronically at semester start. (2) experimental examples (Power Point slide-style) selected from original publications, distributed at the start of every lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | A list of books will be distributed. Numerous references to useful published scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | This course is for students who like to be engaged in active learning. The "exercise classes" are organized in a non-traditional way: following the idea of "less is more", we will work on only about half a dozen topics, and this gives students a chance to take a look at original literature (provided), and to get the grasp of a topic from a broader perspective. Students report back that this mode of "exercise class" is more satisfying than traditional modes, even if it does not mean less effort. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0442-00L | Quantum Optics | W | 10 credits | 3V + 2U | A. Imamoglu | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics covered include the quantum nature of light, semi-classical and quantum mechanical description of light-matter interaction, laser manipulation of atoms and ions, optomechanics and quantum computation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The course aims to provide the knowledge necessary for pursuing research in the field of Quantum Optics. Fundamental concepts and techniques of Quantum Optics will be linked to modern experimental research. During the course the students should acquire the capability to understand currently published research in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics that are covered include: - coherence properties of light - quantum nature of light: statistics and non-classical states of light - light matter interaction: density matrix formalism and Bloch equations - quantum description of light matter interaction: the Jaynes-Cummings model, photon blockade - laser manipulation of atoms and ions: laser cooling and trapping, atom interferometry, - further topics: Rydberg atoms, optomechanics, quantum computing, complex quantum systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Selected book chapters will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Text-books: G. Grynberg, A. Aspect and C. Fabre, Introduction to Quantum Optics R. Loudon, The Quantum Theory of Light Atomic Physics, Christopher J. Foot Advances in Atomic Physics, Claude Cohen-Tannoudji and David Guéry-Odelin C. Cohen-Tannoudji et al., Atom-Photon-Interactions M. Scully and M.S. Zubairy, Quantum Optics Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0402-00L | Ultrafast Laser Physics | W | 10 credits | 3V + 2U | L. P. Gallmann, S. Johnson, U. Keller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Introduction to ultrafast laser physics with an outlook into cutting edge research topics such as attosecond science and coherent ultrafast sources from THz to X-rays. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Understanding of basic physics and technology for pursuing research in ultrafast laser science. How are ultrashort laser pulses generated, how do they interact with matter, how can we measure these shortest man-made events and how can we use them to time-resolve ultrafast processes in nature? Fundamental concepts and techniques will be linked to a selection of hot topics in current research and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The lecture covers the following topics: a) Linear pulse propagation: mathematical description of pulses and their propagation in linear optical systems, effect of dispersion on ultrashort pulses, concepts of pulse carrier and envelope, time-bandwidth product b) Dispersion compensation: technologies for controlling dispersion, pulse shaping, measurement of dispersion c) Nonlinear pulse propagation: intensity-dependent refractive index (Kerr effect), self-phase modulation, nonlinear pulse compression, self-focusing, filamentation, nonlinear Schrödinger equation, solitons, non-instantaneous nonlinear effects (Raman/Brillouin), self-steepening, saturable gain and absorption d) Second-order nonlinearities with ultrashort pulses: phase-matching with short pulses and real beams, quasi-phase matching, second-harmonic and sum-frequency generation, parametric amplification and generation e) Relaxation oscillations: dynamical behavior of rate equations after perturbation f) Q-switching: active Q-switching and its theory based on rate equations, active Q-switching technologies, passive Q-switching and theory g) Active modelocking: introduction to modelocking, frequency comb versus axial modes, theory for various regimes of laser operation, Haus master equation formalism h) Passive modelocking: slow, fast and ideally fast saturable absorbers, semiconductor saturable absorber mirror (SESAM), designs of and materials for SESAMs, modelocking with slow absorber and dynamic gain saturation, modelocking with ideally fast saturable absorber, Kerr-lens modelocking, soliton modelocking, Q-switching instabilities in modelocked lasers, inverse saturable absorption i) Pulse duration measurements: rf cables and electronics, fast photodiodes, linear system theory for microwave test systems, intensity and interferometric autocorrelations and their limitations, frequency-resolved optical gating, spectral phase interferometry for direct electric-field reconstruction and more j) Noise: microwave spectrum analyzer as laser diagnostics, amplitude noise and timing jitter of ultrafast lasers, lock-in detection k) Ultrafast measurements: pump-probe scheme, transient absorption/differential transmission spectroscopy, four-wave mixing, optical gating and more l) Frequency combs and carrier-envelope offset phase: measurement and stabilization of carrier-envelope offset phase (CEP), time and frequency domain applications of CEP-stabilized sources m) High-harmonic generation and attosecond science: non-perturbative nonlinear optics / strong-field phenomena, high-harmonic generation (HHG), phase-matching in HHG, attosecond pulse generation, attosecond technology: detectors and diagnostics, attosecond metrology (streaking, RABBITT, transient absorption, attoclock), example experiments n) Ultrafast THz science: generation and detection, physics in THz domain, weak-field and strong-field applications o) Brief introduction to other hot topics: relativistic and ultra-high intensity ultrafast science, ultrafast electron sources, free-electron lasers, etc. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Class notes will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisites: Basic knowledge of quantum electronics (e. g., 402-0275-00L Quantenelektronik). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0891-00L | Phenomenology of Particle Physics I | W | 10 credits | 3V + 2U | P. Crivelli, A. de Cosa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Topics to be covered in Phenomenology of Particle Physics I: Relativistic kinematics Decay rates and cross sections The Dirac equation From the S-matrix to the Feynman rules of QED Scattering processes in QED Experimental tests of QED Hadron spectroscopy Unitary symmetries and QCD QCD and alpha_s running QCD in e^+e^- annihilation Experimental tests of QCD in e^+e^- annihilation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Introduction to modern particle physics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Topics to be covered in Phenomenology of Particle Physics I: Relativistic kinematics Decay rates and cross sections The Dirac equation From the S-matrix to the Feynman rules of QED Scattering processes in QED Experimental tests of QED Hadron spectroscopy Unitary symmetries and QCD QCD and alpha_s running QCD in e^+e^- annihilation Experimental tests of QCD in e^+e^- annihilation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | As described in the entity: Lernmaterialien | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Electives | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Electives: Physics and Mathematics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Selection: Solid State Physics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0469-67L | Parametric Phenomena | W | 6 credits | 3G | A. Eichler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | There are numerous physical phenomena that rely on time-dependent Hamiltonians (or parametric driving) to amplify, cool, squeeze or couple resonating systems. In this course, we will introduce parametric phenomena in different fields of physics, ranging from classical engineering ideas to devices proposed for quantum neural networks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | This course is intended for - experimentalists who desire to gain a solid theoretical understanding of nonlinear driven-dissipative systems, - theorists looking to expand their analytical and numerical toolbox, - any scientist interested to learn what lies beyond the harmonic resonator. In the course, the students will grasp the ubiquitous nature of parametric phenomena and apply it to both classical and quantum systems. The students will understand both the theoretical foundations leading to the parametric drive as well as the experimental aspect related to the realizations of the effect. Each student will analyze an independent system using the tools acquired in the course and will present his/her insights to the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | This course will provide a general framework for understanding and linking various phenomena, ranging from the child-on-a-swing problem to quantum limited amplifiers, to optical frequency combs, and to optomechanical sensors used in the LIGO experiment. The course will combine theoretical lectures and the study of important experiments through literature. The students will receive an extended lecture summary as well as numerous MATHEMATICA and Python scripts, including QuTiP notebooks. These tools will enable them to apply analytical and numerical methods to a wide range of systems beyond the duration of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | A full script will be available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The students should be familiar with wave mechanics as well as second quantization. Following the course requires a laptop with Python and MATHEMATICA installed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0526-00L | Ultrafast Processes in Solids | W | 6 credits | 2V + 1U | Y. M. Acremann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Ultrafast processes in solids are of fundamental interest as well as relevant for modern technological applications. The dynamics of the lattice, the electron gas as well as the spin system of a solid are discussed. The focus is on time resolved experiments which provide insight into pico- and femtosecond dynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | After attending this course you understand the dynamics of essential excitation processes which occur in solids and you have an overview over state of the art experimental techniques used to study fast processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 1. Experimental techniques, an overview 2. Dynamics of the electron gas 2.1 First experiments on electron dynamics and lattice heating 2.2 The finite lifetime of excited states 2.3 Detection of lifetime effects 2.4 Dynamical properties of reactions and adsorbents 3. Dynamics of the lattice 3.1 Phonons 3.2 Non-thermal melting 4. Dynamics of the spin system 4.1 Laser induced ultrafast demagnetization 4.2 Ultrafast spin currents generated by lasers 4.3 Landau-Lifschitz-Dynamics 4.4 Laser induced switching 5. Correlated materials | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | will be distributed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | relevant publications will be cited | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The lecture can also be followed by interested non-physics students as basic concepts will be introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0535-00L | Introduction to Magnetism | W | 6 credits | 3G | A. Vindigni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Atomic paramagnetism and diamagnetism, intinerant and local-moment interatomic coupling, magnetic order at finite temperature, spin precession, approach to equilibrium through thermal and quantum dynamics, dipolar interaction in solids. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | - Apply concepts of quantum-mechanics to estimate the strength of atomic magnetic moments and their interactions - Identify the mechanisms from which exchange interaction originates in solids (itinerant and local-moment magnetism) - Evaluate the consequences of the interplay between competing interactions and thermal energy - Apply general concepts of statistical physics to determine the origin of bistability in realistic magnets - Discriminate the dynamic responses of a magnet to different external stimuli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The lecture ''Introduction to Magnetism'' is a regular course of the Physics MSc program and aims at letting students familiarize themselves with the basic principles of quantum and statistical physics that determine the behavior of real magnets. Understanding why only few materials are magnetic at finite temperature will be the leitmotiv of the course. We will see that defining in a formal way what "being magnetic" means is essential to address this question properly. Theoretical concepts will be applied to few selected nano-sized magnets, which will serve as clean reference systems. At the end of this course students should have acquired the basic knowledge needed to develop a research project in the field of magnetism or to attend effectively more advanced courses on this topic. Preliminary contents for the HS21: - Magnetism in atoms (quantum-mechanical origin of atomic magnetic moments, intra-atomic exchange interaction) - Magnetism in solids (mechanisms producing inter-atomic exchange interaction in solids, crystal field). - Spin resonance and relaxation (Larmor precession, resonance phenomena, quantum tunneling, Bloch equation, superparamagnetism) - Magnetic order at finite temperatures (Ising and Heisenberg models, low-dimensional magnetism) - Dipolar interaction in solids (shape anisotropy, dipolar frustration, origin of magnetic domains) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Learning material will be made available through a dedicated RStudioServer and through Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Students are assumed to possess a basic background knowledge in quantum mechanics, solid-state and statistical physics as well as classical electromagnetism. Students will have the opportunity to self-assess their understanding through quizzes and interactive tutorials, mostly inspired by topics of current research in nanoscale magnetism. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0595-00L | Semiconductor Nanostructures | W | 6 credits | 2V + 1U | T. M. Ihn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | At the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures: 1. The integer quantum Hall effect 2. Conductance quantization in quantum point contacts 3. the Aharonov-Bohm effect 4. Coulomb blockade in quantum dots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 1. Introduction and overview 2. Semiconductor crystals: Fabrication and molecular beam epitaxy 3. Band structures of semiconductors 4. k.p-theory, effective mass, envelope functions 5. Heterostructures and band engineering, doping 6. Surfaces and metal-semiconductor contacts, fabrication of semiconductor nanostructures 7. Heterostructures and two-dimensional electron gases 8. Drude Transport and scattering mechanisms 9. Single- and bilayer graphene 10. Electron transport in quantum point contacts; Landauer-Büttiker description, ballistic transport experiments 11. Interference effects in Aharonov-Bohm rings 12. Electron in a magnetic field, Shubnikov-de Haas effect 13. Integer quantum Hall effect 14. Coulomb blockade and quantum dots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | T. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | In addition to the lecture notes, the following supplementary books can be recommended: 1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998) 2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997) 3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997) 4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003) 5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991) 6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisit. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0317-00L | Semiconductor Materials: Fundamentals and Fabrication | W | 6 credits | 2V + 1U | S. Schön, W. Wegscheider | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course gives an introduction into the fundamentals of semiconductor materials. The main focus is on state-of-the-art fabrication and characterization methods. The course will be continued in the spring term with a focus on applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Basic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 1. Fundamentals of Solid State Physics 1.1 Semiconductor materials 1.2 Band structures 1.3 Carrier statistics in intrinsic and doped semiconductors 1.4 p-n junctions 1.5 Low-dimensional structures 2. Bulk Material growth of Semiconductors 2.1 Czochalski method 2.2 Floating zone method 2.3 High pressure synthesis 3. Semiconductor Epitaxy 3.1 Fundamentals of Epitaxy 3.2 Molecular Beam Epitaxy (MBE) 3.3 Metal-Organic Chemical Vapor Deposition (MOCVD) 3.4 Liquid Phase Epitaxy (LPE) 4. In situ characterization 4.1 Pressure and temperature 4.2 Reflectometry 4.3 Ellipsometry and RAS 4.4 LEED, AES, XPS 4.5 STM, AFM 5. The invention of the transistor - Christmas lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The "compulsory performance element" of this lecture is a short presentation of a research paper complementing the lecture topics. Several topics and corresponding papers will be offered on the moodle page of this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0447-00L | Quantum Science with Superconducting Circuits | W | 6 credits | 2V + 1U | A. Wallraff, J.‑C. Besse, C. Hellings | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Superconducting Circuits provide a versatile experimental platform to explore the most intriguing quantum-physical phenomena and constitute one of the prime contenders to build quantum computers. Students will get a thorough introduction to the underlying physical concepts, the experimental setting, and the state-of-the-art of quantum computing in this emerging research field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Based on today’s most advanced solid state platform for quantum control, the students will learn how to engineer quantum coherent devices and how to use them to process quantum information. The students will acquire both analytical and numerical methods to model the properties and phenomena observed in these systems. The course is positioned at the intersection between quantum physics and engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Introduction to Quantum information Processing -- Superconducting Qubits -- Quantum Measurements -- Experimental Setup & Noise Mitigation -- Open Quantum Systems -- Multi-Qubit Systems: Entangling gates & Characterization -- Quantum Error Correction -- Near-term Applications of Quantum Computers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | All students and researchers with a general interest in quantum information science, quantum optics, and quantum engineering are welcome to this course. Basic knowledge of quantum physics is a plus, but not a strict requirement for the successful participation in this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Selection: Quantum Electronics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0442-05L | Advanced Topics in Quantum Optics Number of participants limited to 25. | W | 4 credits | 2G | T. Esslinger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The lecture will cover current topics and scientific papers in the wider field of quantum optics in an interactive format. First, the research area will be introduced, then several papers of this field will be presented by the students in the style of a journal club. Selected papers will be contrasted and their strengths and weaknesses discussed by the students in panel discussions. Furthermore, r | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The aim of the lecture is to deepen and broaden the knowledge about current research in the field of quantum optics. In addition, it will also be discussed and critically examined how research results are communicated via publications and lectures and which techniques are used in the process. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | We will select topical fields in quantum optics and quantum science and discuss recently published work. Topics: - Atoms or ions-based quantum computing - Quantum simulation - Opto-mechanics - Driven and dissipative quantum systems - Cavity based atom-light interaction - Topological photonics The interactive part of the lecture will include presentations of recent papers, panel discussions of recent papers and the writing of a critical assessment of an arXiv paper in the style of a referee report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0444-00L | Dissipative Quantum SystemsDoes not take place this semester. | W | 6 credits | 2V + 1U | A. Imamoglu | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course builds up on the material covered in the Quantum Optics course. The emphasis will be on quantum optics in condensed-matter systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The course aims to provide the knowledge necessary for pursuing advanced research in the field of Quantum Optics in condensed matter systems. Fundamental concepts and techniques of Quantum Optics will be linked to experimental research in systems such as quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Description of open quantum systems using master equation and quantum trajectories. Decoherence and quantum measurements. Dicke superradiance. Dissipative phase transitions. Spin photonics. Signatures of electron-phonon and electron-electron interactions in optical response. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | C. Cohen-Tannoudji et al., Atom-Photon-Interactions (recommended) Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (recommended) A collection of review articles (will be pointed out during the lecture) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Masters level quantum optics knowledge | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0457-00L | Quantum Technologies for Searches of New Physics | W | 6 credits | 2V + 1U | P. Crivelli, D. Kienzler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Recent years have witnessed incredible progress in the development of new quantum technologies driven by their application in quantum information, metrology, high precision spectroscopy and quantum sensing. This course will present how these emerging technologies are powerful tools to address open questions of the Standard Model in a complementary way to what is done at the high energy frontier. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The aim of this course is to equip students of different backgrounds with a solid base to follow this rapidly developing and exciting multi-disciplinary field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The first lectures will be dedicated to review the open questions of the Standard Model and the different Beyond Standard Model extensions which can be probed with quantum technologies. This will include searches for dark sector, dark matter, axion and axion-like particles, new gauge bosons (e.g Dark photons) and extra short-range forces. The main part of the course will introduce the following (quantum) technologies and systems, and how they can be used for probing New Physics. - Cold atoms - Trapped ions - Atoms interferometry - Atomic clocks - Cold molecules and molecular clocks - Exotic Atoms - Anti-matter - Quantum Sensors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The preceding attendance of introductory particle physics, quantum mechanics and quantum electronics courses at the bachelor level is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0464-00L | Optical Properties of Semiconductors | W | 8 credits | 2V + 2U | G. Scalari, T. Smolenski | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course presents a comprehensive discussion of optical processes in semiconductors. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The rich physics of the optical properties of semiconductors, as well as the advanced processing available on these material, enabled numerous applications (lasers, LEDs and solar cells) as well as the realization of new physical concepts. Systems that will be covered include quantum dots, exciton-polaritons, quantum Hall fluids and graphene-like materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Electronic states in III-V materials and quantum structures, optical transitions, excitons and polaritons, novel two dimensional semiconductors, spin-orbit interaction and magneto-optics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisites: Quantum Mechanics I, Introduction to Solid State Physics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0465-58L | Intersubband Optoelectronics | W | 6 credits | 2V + 1U | G. Scalari | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Intersubband transitions in quantum wells are transitions between states created by quantum confinement in ultra-thin layers of semiconductors. Because of its inherent taylorability, this system can be seen as the "ultimate quantum designer's material". | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The goal of this lecture is to explore both the rich physics as well as the application of these system for sources and detectors. In fact, devices based on intersubband transitions are now unlocking large area of the electromagnetic spectrum. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The lecture will treat the following chapters: - Introduction: intersubband optoelectronics as an example of quantum engineering -Technological aspects - Electronic states in semiconductor quantum wells - Intersubband absorption and scattering processes - Mid-Ir and THz ISB Detectors -Mid-infrared and THz photonics: waveguides, resonators, metamaterials - Quantum Cascade lasers: -Mid-IR QCLs -THZ QCLs (direct and non-linear generation) -further electronic confinement: interlevel Qdot transitions and magnetic field effects -Strong light-matter coupling in Mid-IR and THz range | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | The reference book for the lecture is "Quantum Cascade Lasers" by Jerome Faist , published by Oxford University Press. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Mostly the original articles, other useful reading can be found in: -E. Rosencher and B. Vinter, Optoelectronics , Cambridge Univ. Press -G. Bastard, Wave mechanics applied to semiconductor heterostructures, Halsted press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Requirements: A basic knowledge of solid-state physics and of quantum electronics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0467-00L | Quantum Science with Rydberg Atoms | W | 4 credits | 2V | W. Xu | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Experimental platforms based on Rydberg atoms is promising for implementing quantum technologies, including quantum nonlinear optics, quantum simulation, quantum computation and sensing. This course covers the basic properties of Rydberg atoms, the state-of-art experimental systems based on Rydberg atoms, and their variety applications for implementing quantum information science. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | By the end of this course, students will be able to • Learn the basic properties of Rydberg atoms and explain the advantages of using Rydberg atoms for quantum science. • Learn several experimental schemes to build the state-or-art quantum hardware based on Rydberg atoms, including free-space approach, Rydberg atoms in an optical cavity, and programmable arrays of Rydberg atoms. • Discuss several near-term applications in quantum information science, including how to use the arrays of Rydberg atoms to simulate quantum many-body systems and to perform quantum logic operations for quantum computation, how to facilitate precise control over individual photons with Rydberg atoms, and so on. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | This course will focus on quantum science with Rydberg atoms. It aims to cover both theoretical and experimental aspects. Topics which will be covered include: • A brief review of quantum technologies • Properties of Rydberg atoms • Quantum nonlinear optics with Rydberg atoms o Engineering photon-photon interactions with Rydberg polaritons in free space o Performing photonic quantum gate operations with Rydberg atoms in optical cavity systems • Quantum simulation with arrays of Rydberg atoms o Simulating quantum spin models with arrays of Rydberg atoms (including the study on quantum phase transitions, quantum dynamics, and so on) • Quantum computation with Rydberg atoms o Encoding qubits with atoms and performing quantum gate operations with Rydberg atoms o Start-of-art schemes for achieving general purpose quantum computation and current limitations o Near-term applications in quantum optimizations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | This course requires a good working knowledge in non-relativistic quantum mechanics. Prior knowledge of quantum optics is recommended but not required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0468-15L | Nanomaterials for Photonics | W | 6 credits | 2V + 1U | R. Grange | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The lecture describes various nanomaterials (semiconductor, metal, dielectric, carbon-based...) for photonic applications (optoelectronics, plasmonics, ordered and disordered structures...). It starts with concepts of light-matter interactions, then the fabrication methods, the optical characterization techniques, the description of the properties and the state-of-the-art applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The students will acquire theoretical and experimental knowledge about the different types of nanomaterials (semiconductors, metals, dielectric, carbon-based, ...) and their uses as building blocks for advanced applications in photonics (optoelectronics, plasmonics, photonic crystal, ...). Together with the exercises, the students will learn (1) to read, summarize and discuss scientific articles related to the lecture, (2) to estimate order of magnitudes with calculations using the theory seen during the lecture, (3) to prepare a short oral presentation and report about one topic related to the lecture, and (4) to imagine an original photonic device. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 1. Introduction to nanomaterials for photonics a. Classification of nanomaterials b. Light-matter interaction at the nanoscale c. Examples of nanophotonic devices 2. Wave physics for nanophotonics a. Wavelength, wave equation, wave propagation b. Dispersion relation c. Interference d. Scattering and absorption e. Coherent and incoherent light 3. Analogies between photons and electrons a. Quantum wave description b. How to confine photons and electrons c. Tunneling effects 4. Characterization of Nanomaterials a. Optical microscopy: Bright and dark field, fluorescence, confocal, High resolution: PALM (STORM), STED b. Light scattering techniques: DLS c. Near field microscopy: SNOM d. Electron microscopy: SEM, TEM e. Scanning probe microscopy: STM, AFM f. X-ray diffraction: XRD, EDS 5. Fabrication of nanomaterials a. Top-down approach b. Bottom-up approach 6. Plasmonics a. What is a plasmon, Drude model b. Surface plasmon and localized surface plasmon (sphere, rod, shell) c. Theoretical models to calculate the radiated field: electrostatic approximation and Mie scattering d. Fabrication of plasmonic structures: Chemical synthesis, Nanofabrication e. Applications 7. Organic and inorganic nanomaterials a. Organic quantum-confined structure: nanomers and quantum dots. b. Carbon nanotubes: properties, bandgap description, fabrication c. Graphene: motivation, fabrication, devices d. Nanomarkers for biophotonics 8. Semiconductors a. Crystalline structure, wave function b. Quantum well: energy levels equation, confinement c. Quantum wires, quantum dots d. Optical properties related to quantum confinement e. Example of effects: absorption, photoluminescence f. Solid-state-lasers: edge emitting, surface emitting, quantum cascade 9. Photonic crystals a. Analogy photonic and electronic crystal, in nature b. 1D, 2D, 3D photonic crystal c. Theoretical modelling: frequency and time domain technique d. Features: band gap, local enhancement, superprism... 10. Nanocomposites a. Effective medium regime b. Metamaterials c. Multiple scattering regime d. Complex media: structural colour, random lasers, nonlinear disorder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Slides and book chapter will be available for downloading | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | References will be given during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Basics of solid-state physics (i.e. energy bands) can help |

- Page 1 of 7 All