Search result: Catalogue data in Autumn Semester 2022
MAS in Medical Physics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compulsory Courses (for both Specialisations) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
465-0957-00L | Anatomy and Physiology for Medical Physicists I | O | 2 credits | 2V | F. Kuhn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to structure and function of the human body. The lectures will be based on current clinical practices in Radiology, Neuroradiology and Nuclear Medicine. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Physiological and anatomical knowledge of the human body to ensure the correct understanding of basic concepts and to facilitate the collaboration of medical physicists and other health professionals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 'Anatomy and physiology for medical physicists I & II' provides insights into structure and function of the human body. The content is presented in an accessible manner targeted to physicist working in a medical environment. The lectures will be based on current clinical practices in Radiology, Neuroradiology and Nuclear Medicine. After an introduction to cells and tissues the following systems will be addressed: 1) Support & Movement (musculoskeletal system, biomechanics); 2) Neuroscience (central and peripheral nervous system); 3) Auto-regulation (endocrine system) & Internal Transport (blood & cardiovascular system); 4) Environmental Exchange (respiratory, urinary, digestive & reproductive system). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
465-0953-00L | Biostatistics | O | 4 credits | 2V + 1U | B. Sick | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course deals with simple quantitative and graphical as well as more complex methods of biostatistics. Contents: Descriptive statistics, testing hypotheses, confidence intervals, correlation, simple and multiple linear regression, classification and prediction, diagnostic tests, measurement of agreement, causality versus association. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - know the commonly used methods in biostatistics - perform simple data analysis with R | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0385-10L | Biomedical Imaging | O | 6 credits | 5G | S. Kozerke, K. P. Prüssmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to diagnostic medical imaging based on electromagnetic and acoustic fields including X-ray planar and tomographic imaging, radio-tracer based nuclear imaging techniques, magnetic resonance imaging and ultrasound-based procedures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Upon completion of the course students are able to: • Explain the physical and mathematical foundations of diagnostic medical imaging systems • Characterize system performance based on signal-to-noise ratio, contrast-to-noise ratio and transfer function • Design a basic diagnostic imaging system chain including data acquisition and data reconstruction • Identify advantages and limitations of different imaging methods in relation to medical diagnostic applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | • Introduction (intro, overview, history) • Signal theory and processing (foundations, transforms, filtering, signal-to-noise ratio) • X-rays (production, tissue interaction, contrast, modular transfer function) • X-rays (resolution, detection, digital subtraction angiography, Radon transform) • X-rays (filtered back-projection, spiral computed tomography, image quality, dose) • Nuclear imaging (radioactive tracer, collimation, point spread function, SPECT/PET) • Nuclear imaging (detection principles, image reconstruction, kinetic modelling) • Magnetic Resonance (magnetic moment, spin transitions, excitation, relaxation, detection) • Magnetic Resonance (plane wave encoding, Fourier reconstruction, pulse sequences) • Magnetic Resonance (contrast mechanisms, gradient- and spin-echo, applications) • Ultrasound (mechanical wave generation, propagation in tissue, reflection, transmission) • Ultrasound (spatial and temporal resolution, phased arrays) • Ultrasound (Doppler shift, implementations, applications) • Summary, example exam questions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Analysis, Linear algebra, Physics, Basics of signal theory, Basic skills in Matlab/Python programming | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
465-0966-00L | Physics in Radiodiagnostic and Nuclear Medicine | O | 2 credits | 3G | F. Bochud | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course is dedicated to introduce MAS students from Medical Physics to the field of radiodiagnostic and nuclear medicine. Dedicated practicals will illustrate the theory with an emphasis on the relationship between dose and image quality as well as the security problems related to the work with radiations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This 1-week theory and practical class offers the possibility to enjoy a variety of research and clinical areas in diagnostic and nuclear medicine. It gives insight into practical concepts and techniques that are discussed thoroughly as the class is performed within actual laboratories with real radiation sources. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course starts with the physical basis of radiography (from X-ray production to image detectors) and continues with the basic parameters of image quality in radiography (contrast, resolution, noise) and their measurement methods. Specific applications of radiation diagnostic are then considered separately. The physics of fluoroscopy and mammography is presented with emphasis on the type of detectors. Computer tomography starts from mono- to multi-detector row technology and finishes with the dose indicators and the impacts of acquisition parameters on patient dose. Nuclear medicine is approached through the production and labeling of radiopharmaceuticals before explaining the aspects related to quality control like the stability of the compounds, nuclide- and radionuclide purity as well as apyrogeneicity and sterility. Imaging aspects of nuclear medicine are treated in details for SPECT and PET through the instrumentation, the reconstruction algorithms and the corresponding image quality. Finally, the aspects related to patient dose and radiation protection of the personnel are considered separately for diagnostic radiology and nuclear medicine. The general frameworks of external as well as internal irradiation are presented and practical examples of dose calculations are explained. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specialisation in Radiation Therapy | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0341-00L | Medical Physics I | O | 6 credits | 2V + 1U | P. Manser | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | For students of the MAS in Medical Physics (Specialization A) the performance assessment is offered at the earliest in the second year of the studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0943-00L | Radiobiology | O | 2 credits | 2V | M. Pruschy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | By the end of this course the participants will be able to: a) interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer b) understand factors which underpin the differing radiosensitivities of different tumors c) follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents d) understand differences in the radiation response of normal tissue versus tumor tissue e) understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Einführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenwirkung auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlenzytogenetik: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenrisiko: Strahlensyndrome, Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Beilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literaturliste wird abgegeben. Für NDS-Absolventen empfohlen: Hall EJ; Giacchia A: Radiobiology for the Radiologist, 7th Edition, 2011 Basic Clinical Radiobiology, edited by Joiner, van der Kogel, 2018 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The former number of this course unit is 465-0951-00L. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Work | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
465-0956-00L | Dosimetry Does not take place this semester. Only for MAS in Medical Physics | O | 4 credits | 6G | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Dosimetry in radiotherapy. Planning and implementation of a percutaneous radiation exposure on an anthropomorphic phantom. Verification of the resulting dose distribution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Praktische Umsetzung der Lerninhalte der Vorlesungen Medizinphysik I & II bezüglich Dosimetrie bei perkutanen Strahlenexpositinen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Dosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Die Kursunterlagen werden im Blockkurs abgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzung: Besuch der Vorlesung Medizinische Physik I | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Specialisation in General Medical Physics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major in Radiation Therapy | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0341-00L | Medical Physics I | W | 6 credits | 2V + 1U | P. Manser | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the fundamentals of medical radiation physics. Functional chain due to radiation exposure from the primary physical effect to the radiobiological and medically manifest secondary effects. Dosimetric concepts of radiation protection in medicine. Mode of action of radiation sources used in medicine and its illustration by means of Monte Carlo simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding the functional chain from primary physical effects of ionizing radiation to clinical radiation effects. Dealing with dose as a quantitative measure of medical exposure. Getting familiar with methods to generate ionizing radiation in medicine and learn how they are applied for medical purposes. Eventually, the lecture aims to show the students that medical physics is a fascinating and evolving discipline where physics can directly be used for the benefits of patients and the society. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture is covering the basic principles of ionzing radiation and its physical and biological effects. The physical interactions of photons as well as of charged particles will be reviewed and their consequences for medical applications will be discussed. The concept of Monte Carlo simulation will be introduced in the excercises and will help the student to understand the characteristics of ionizing radiation in simple and complex situations. Fundamentals in dosimetry will be provided in order to understand the physical and biological effects of ionizing radiation. Deterministic as well as stochastic effects will be discussed and fundamental knowledge about radiation protection will be provided. In the second part of the lecture series, we will cover the generation of ionizing radiation. By this means, the x-ray tube, the clinical linear accelarator, and different radioactive sources in radiology, radiotherapy and nuclear medicine will be addressed. Applications in radiolgoy, nuclear medicine and radiotherapy will be described with a special focus on the physics underlying these applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | For students of the MAS in Medical Physics (Specialization A) the performance assessment is offered at the earliest in the second year of the studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0943-00L | Radiobiology | W | 2 credits | 2V | M. Pruschy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The purpose of this course is to impart basic knowledge in radiobiology in order to handle ionizing radiation and to provide a basis for predicting the radiation risk. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | By the end of this course the participants will be able to: a) interpret the 5 Rs of radiation oncology in the context of the hallmarks of cancer b) understand factors which underpin the differing radiosensitivities of different tumors c) follow rational strategies for combined treatment modalities of ionizing radiation with targeted agents d) understand differences in the radiation response of normal tissue versus tumor tissue e) understand different treatment responses of the tumor and the normal tissue to differential clinical-related parameters of radiotherapy (dose rate, LET etc.). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Einführung in die Strahlenbiologie ionisierender Strahlen: Allgemeine Grundlagen und Begriffsbestimmungen; Mechanismen der biologischen Strahlenwirkung; Strahlenwirkung auf Zellen, Gewebe und Organe; Modifikation der biologischen Strahlenwirkung; Strahlenzytogenetik: Chromosomenveränderungen, DNA-Defekte, Reparaturprozesse; Molekulare Strahlenbiologie: Bedeutung inter- und intrazellulärer Signalübermittlungsprozesse, Apoptose, Zellzyklus-Checkpoints; Strahlenrisiko: Strahlensyndrome, Krebsinduktion, Mutationsauslösung, pränatale Strahlenwirkung; Strahlenbiologische Grundlagen des Strahlenschutzes; Nutzen-Risiko-Abwägungen bei der medizinischen Strahlenanwendung; Prädiktive strahlenbiologische Methoden zur Optimierung der therapeutischen Strahlenanwendung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Beilagen mit zusammenfassenden Texten, Tabellen, Bild- und Grafikdarstellungen werden abgegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literaturliste wird abgegeben. Für NDS-Absolventen empfohlen: Hall EJ; Giacchia A: Radiobiology for the Radiologist, 7th Edition, 2011 Basic Clinical Radiobiology, edited by Joiner, van der Kogel, 2018 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The former number of this course unit is 465-0951-00L. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Work | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
465-0956-00L | Dosimetry Does not take place this semester. Only for MAS in Medical Physics | W | 4 credits | 6G | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Dosimetry in radiotherapy. Planning and implementation of a percutaneous radiation exposure on an anthropomorphic phantom. Verification of the resulting dose distribution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Praktische Umsetzung der Lerninhalte der Vorlesungen Medizinphysik I & II bezüglich Dosimetrie bei perkutanen Strahlenexpositinen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Dosimetrie in der Strahlentherapie. Planung und Durchführung einer perkutanen Strahlenexposition an einem anthropomorphen Phantom. Überprüfung der resultierenden Dosisverteilungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Die Kursunterlagen werden im Blockkurs abgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzung: Besuch der Vorlesung Medizinische Physik I | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
465-0800-00L | Practical Work Only for MAS in Medical Physics | W | 4 credits | external organisers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electives | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 credits | 3G | M. Stampanoni, F. Marone Welford | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples. The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments. The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Available online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be indicated during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0941-00L | Physics and Mathematics of Radiotherapy Planning (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: PHY471 https://www.uzh.ch/cmsssl/en/studies/application/chmobilityin.html Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 6 credits | 3G | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This lecture will provide a detailed introduction to radiotherapy treatment planning. The course considers the physical interactions of radiation in tissue, the mathematical aspects of treatment planning and additional aspects of central importance for radiotherapy planning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students shall develop a thorough understanding of the foundations of radiotherapy from a physics and mathematics perspective, focusing on algorithmic components. After completing the course students should be able to implement the main components of a radiotherapy treatment planning system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Radiotherapy is one of the main treatment options against cancer. Today, more than 50% of cancer patients receive radiation as part of their treatment. Modern radiotherapy is a highly technology driven field. Research and development in medical physics has improved the precision of radiotherapy substantially. Using intensity-modulated radiotherapy (IMRT), radiation can be delivered precisely to tumors while minimizing radiation exposure of heathy organs surrounding the tumor. Thereby, medical physics has provided radiation oncologists with new curative treatment approaches where previously only palliative treatments were possible. This lecture will provide a detailed introduction to radiotherapy treatment planning and will consists of three blocks: 1. The first part of the course considers the physical interactions of radiation in tissue. The physical interactions give rise to dose calculation algorithms, which are used to calculate the absorbed radiation dose based on a CT scan of the patient. 2. The second part considers the mathematical aspects of treatment planning. Mathematical optimization techniques are introduced, which are used in intensity-modulated radiotherapy to determine the external radiation fields that optimally irradiate the tumor while minimizing radiation dose to healthy organs. 3. The third part deals with additional aspects of central importance for radiotherapy planning. This includes biomedical imaging techniques for treatment planning and target delineation as well as image registration algorithms. The lectures are followed by computational exercises where students implement the main components of a radiotherapy treatment planning systems in two dimensions in Matlab. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and handouts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic programming skills in Matlab (or willingness to learn) are needed for the exercises. Basic knowledge of calculus is needed, approximately corresponding to the 3rd year of a bachelor degree in physics, mathematics, computer science, engineering or comparable discipline. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0674-00L | Physics in Medical Research: From Atoms to Cells | W | 6 credits | 2V + 1U | B. K. R. Müller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Scanning probe and diffraction techniques allow studying activated atomic processes during early stages of epitaxial growth. For quantitative description, rate equation analysis, mean-field nucleation and scaling theories are applied on systems ranging from simple metallic to complex organic materials. The knowledge is expanded to optical and electronic properties as well as to proteins and cells. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The lecture series is motivated by an overview covering the skin of the crystals, roughness analysis, contact angle measurements, protein absorption/activity and monocyte behaviour. As the first step, real structures on clean surfaces including surface reconstructions and surface relaxations, defects in crystals are presented, before the preparation of clean metallic, semiconducting, oxidic and organic surfaces are introduced. The atomic processes on surfaces are activated by the increase of the substrate temperature. They can be studied using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The combination with molecular beam epitaxy (MBE) allows determining the sizes of the critical nuclei and the other activated processes in a hierarchical fashion. The evolution of the surface morphology is characterized by the density and size distribution of the nanostructures that could be quantified by means of the rate equation analysis, the mean-field nucleation theory, as well as the scaling theory. The surface morphology is further characterized by defects and nanostructure's shapes, which are based on the strain relieving mechanisms and kinetic growth processes. High-resolution electron diffraction is complementary to scanning probe techniques and provides exact mean values. Some phenomena are quantitatively described by the kinematic theory and perfectly understood by means of the Ewald construction. Other phenomena need to be described by the more complex dynamical theory. Electron diffraction is not only associated with elastic scattering but also inelastic excitation mechanisms that reflect the electronic structure of the surfaces studied. Low-energy electrons lead to phonon and high-energy electrons to plasmon excitations. Both effects are perfectly described by dipole and impact scattering. Thin-films of rather complex organic materials are often quantitatively characterized by photons with a broad range of wavelengths from ultra-violet to infra-red light. Asymmetries and preferential orientations of the (anisotropic) molecules are verified using the optical dichroism and second harmonic generation measurements. Recently, ellipsometry has been introduced to on-line monitor film thickness, and roughness with sub-nanometer precision. These characterisation techniques are vital for optimising the preparation of medical implants. Cell-surface interactions are related to the cell adhesion and the contractile cellular forces. Physical means have been developed to quantify these interactions. Other physical techniques are introduced in cell biology, namely to count and sort cells, to study cell proliferation and metabolism and to determine the relation between cell morphology and function. X rays are more and more often used to characterise the human tissues down to the nanometer level. The combination of highly intense beams only some micrometers in diameter with scanning enables spatially resolved measurements and the determination of tissue's anisotropies of biopsies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major in Biomechanics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0386-00L | Biomedical Engineering | W | 4 credits | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the basic vocabulary of biomedical engineering and getting familiar with concepts that govern common medical instruments and the most important organs from an engineering point of view. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. It also serves as an introduction to the field for students of the ITET, MAVT, HEST and other bachelor programs. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | History of BME and the role of biomedical engineers. Ethical issues related to BME. Biomedical sensors both wearable and also biochemical sensors. Bioelectronics: Nernst equation, Donnan equilibrium, equivalent circuits of biological membranes and bioelectronic devices. Bioinformatics: genomic and proteomic tools, databases and basic calculations. Equations describing basic reactions and enzyme kinetics. Medical optics: Optical components and systems used in hospitals. Basic concepts of tissue engineering and organ printing. Biomaterials and their medical applications. Function of the heart and the circulatory system. Transport and exchange of substances in the human body, compartment modeling. The respiratory system. Bioimaging. Orthopedic biomechanics. Lectures (2h), discussion of practical exercises (1h) and homework exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND moodle page of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No specific requirements, BUT ITET, MAVT, PHYS students will have to learn a lot of new words related to biochemistry, biology and medicine, while HEST and BIOL students will have to grasp basic engineering concepts (circuits, equations, etc.). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0965-00L | Micro and Nano-Tomography of Biological Tissues | W | 4 credits | 3G | M. Stampanoni, F. Marone Welford | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture introduces the physical and technical know-how of X-ray tomographic microscopy. Several X-ray imaging techniques (absorption-, phase- and darkfield contrast) will be discussed and their use in daily research, in particular biology, is presented. The course discusses the aspects of quantitative evaluation of tomographic data sets like segmentation, morphometry and statistics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to the basic concepts of X-ray tomographic imaging, image analysis and data quantification at the micro and nano scale with particular emphasis on biological applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Synchrotron-based X-ray micro- and nano-tomography is today a powerful technique for non-destructive, high-resolution investigations of a broad range of materials. The high-brilliance and high-coherence of third generation synchrotron radiation facilities allow quantitative, three-dimensional imaging at the micro and nanometer scale and extend the traditional absorption imaging technique to edge-enhanced and phase-sensitive measurements, which are particularly suited for investigating biological samples. The lecture includes a general introduction to the principles of tomographic imaging from image formation to image reconstruction. It provides the physical and engineering basics to understand how imaging beamlines at synchrotron facilities work, looks into the recently developed phase contrast methods, and explores the first applications of X-ray nano-tomographic experiments. The course finally provides the necessary background to understand the quantitative evaluation of tomographic data, from basic image analysis to complex morphometrical computations and 3D visualization, keeping the focus on biomedical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Available online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be indicated during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1651-00L | Clinical and Movement Biomechanics Number of participants limited to 50. | W | 4 credits | 3G | N. Singh, R. List, P. Schütz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Measurement and modeling of the human movement during daily activities and in a clinical environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students are able to analyse the human movement from a technical point of view, to process the data and perform modeling with a focus towards clinical application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course includes study design, measurement techniques, clinical testing, accessing movement data and anysis as well as modeling with regards to human movement. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1985-00L | Trauma Biomechanics | W | 4 credits | 2V + 1U | K.‑U. Schmitt, M. H. Muser | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Trauma biomechanics in an interdisciplinary research field investigating the biomechanics of injuries and related subjects such as prevention. The lecture provides an introduction to the basic principles of trauma biomechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to the basic principles of trauma biomechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This lecture serves as an introduction to the field of trauma biomechanics. Emphasis is placed on the interdisciplinary nature of impact biomechanics, which uses the combination of fundamental engineering principles and advanced medical technologies to develop injury prevention measures. Topics include: accident statistics and accident reconstruction, biomechanical response of the human to impact loading, injury mechanisms and injury criteria, test methods (including crash tests), computer simulations, aspects of vehicle safety. Real world examples mainly from automobile safety are used to augment lecture material. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Schmitt K-U, et al. "Trauma Biomechanics - An Introduction to Injury Biomechanics", Springer Publ. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Work | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
465-0800-00L | Practical Work Only for MAS in Medical Physics | O | 4 credits | external organisers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The practical work is designed to train the students in the solution of a specific problem and provides insights in the field of the selected MAS specialization. Tutors propose the subject of the project, the project plan, and the roadmap together with the student, as well as monitor the overall execution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The practical work is aimed at training the student’s capability to apply and connect specific skills acquired during the MAS specialization program towards the solution of a focused problem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electives | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0524-00L | Continuum Mechanics I | W | 4 credits | 2V + 1U | A. E. Ehret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture deals with constitutive models that are relevant for the design and analysis of structures. These include anisotropic linear elasticity, linear viscoelasticity, plasticity and viscoplasticity. The basic concepts of homogenization and laminate theory are introduced. Theoretical models are complemented by examples of engineering applications and experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic theories for solving continuum mechanics problems of engineering applications, with particular focus on constitutive models. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Anisotropic elasticity, Linear elastic and linear viscous material behavior, Viscoelasticity, Micro-macro modelling, Laminate theory, Plasticity, Viscoplasticity, Examples of engineering applications, Comparison with experiments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes |
- Page 1 of 5 All