Search result: Catalogue data in Autumn Semester 2022
| Environmental Sciences Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major in Atmosphere and Climate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 701-0471-01L | Atmospheric Chemistry | W | 3 credits | 2G | M. Ammann, T. Peter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | This self-study course provides an introduction to atmospheric chemistry at bachelor level. It introduces the fundamentals of gas phase reactions, the concept of solubility and reactions in aerosols and in clouds. It explains the chemical and physical processes responsible for global (e.g. stratospheric ozone depletion) as well as regional environmental problems (e.g. urban air pollution). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students will understand the basics of gas phase reactions and of reactions and processes in aerosols and clouds. The students will understand the most important chemical processes in the troposphere and the stratosphere. The students will also acquire a good understanding of atmospheric environmental problems including air pollution, tropospheric ozone formation, stratospheric ozone destruction and the relationship between air pollution and climate change. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | - Origin and properties of the atmosphere: structure, large scale dynamics, UV radiation - Thermodynamics and kinetics of gas phase reactions: enthalpy and free energy of reactions, rate laws, mechanisms of bimolecular and termolecular reactions. - Tropospheric photochemistry: Photolysis reactions, photochemical O3 formation, role and budget of HOx, dry and wet deposition - Aerosols and clouds: chemical properties, primary and secondary aerosol sources, phase transfer kinetics, solubility and hygroscopicity, N2O5 chemistry, SO2 oxidation, secondary organic aerosols - Air quality: role of planetary boundary layer, summer- versus winter-smog, environmental problems, legislation, long-term trends - Stratospheric chemistry: Chapman cycle, Brewer-Dobson circulation, catalytic ozone destruction cycles, polar ozone hole, Montreal protocol - Global aspects: global budgets of ozone, methane, CO and NOx, air quality - climate interactions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Lecture materials (slides and annotations) of the most recent corresponding bachelor course are provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Basic courses in chemistry and physics are expected | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-0473-00L | Weather Systems | W | 3 credits | 2G | M. A. Sprenger, F. S. Scholder-Aemisegger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; Potential Vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer; water isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students are able to - explain basic measurement and analysis techniques that are relevant in atmospheric dynamics - to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena - to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features - to explain how mountains influence the atmospheric flow on different scales - basic understanding of stable water isotopes as tracers for moist adiabatic processes in weather systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | Satellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; Potential Vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer; water vapour transport in the atmosphere; water isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Lecture notes and slides | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | Atmospheric Science, An Introductory Survey John M. Wallace and Peter V. Hobbs, Academic Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Basic physics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-0475-00L | Atmospheric Physics | W | 3 credits | 2G | F. Mahrt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | This course covers the basics of atmospheric physics, which consist of: cloud and precipitation formation especially prediction of thunderstorm development, aerosol physics as well as artificial weather modification. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Students are able - to explain the mechanisms of thunderstorm formation using knowledge of thermodynamics and cloud microphysics. - to evaluate the significance of clouds and aerosol particles for artificial weather modification. n the course "Atmospheric Physics", the competencies of process understanding, system understanding and data analysis & interpretation are taught, applied and examined. The competence measurement methods is taught as well. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | The course starts with introducing selected concepts of thermodynamics for atmospheric processes: The students learn the concept of the thermodynamic equilibrium and derive the Clausius-Clayperon equation from the first law of thermodynamics. This equation is central for the phase transitions in clouds. Students also learn to classify radiosondes with the help the thermodynamic charts (tephigrams) and to identify cloud base, cloud top, available convective energy in them. Atmospheric mixing processes are introduced for fog formation. The concept of the air parcel is used to understand convection. Aerosol particles are introduced in terms of their physical properties and their role in cloud formation based on Köhler theory. Thereafter cloud microphysical processes including ice nucleation are discussed. With these basics, the different forms of precipitation formation (convective vs. stratiform) is discussed as well as the formation and different stages of severe convective storms. The concepts are applied to understand and judge the validity of different proposed articifical weather modification ideas. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Powerpoint slides and chapters from the textbook will be made available on moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=15367 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | Lohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds: From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | For certain capters we'll use the concept of "flipped classroom" (en.wikipedia.org/wiki/Flipped_classroom), which we introduce at the beginning. We offer a lab tour, in which we demonstrate how some of the processes discussed in the lectures are measured with instruments. There is a additional tutorial right after each lecture to give you the chance to ask further questions and discuss the exercises. The participation is recommended but voluntary. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-0461-00L | Numerical Methods in Environmental Physics | W | 3 credits | 2G | C. Schär, C. Zeman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | This lecture conveys the mathematical basis necessary for the development and application of numerical models in the field of Environmental Science. The lecture material includes an introduction into numerical techniques for solving ordinary and partial differential equations, as well as exercises aimed at the realization of simple models using the computer language Python. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Ability to develop simple numerical schemes and to implement these schemes using the programming language Python. Ability to critically use more complex numerical models. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | Classification of numerical problems, introduction to finite-difference methods, linear and nonlinear tranport equation, time integration schemes, non-linearity, conservative numerical techniques, overview of other methods. Examples and exercises from a diverse cross-section of Environmental Science. Three exercises, each two hours in length, are integrated into the lecture. The implementation language is Python (previous experience not necessary, a Phython introduction is provided). Example programs and graphics tools are supplied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Per Web auf Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | List of literature is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mandatory Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction Course | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1213-00L | Introduction Course to Master Studies Atmosphere and Climate | O | 2 credits | 2G | H. Joos, T. Peter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | New master students are introduced to the atmospheric and climate research field through keynotes given by the programme's professors. In several self-assessment and networking workshops they get to know each other and obtain general information and guidance about the organisation of the MSc programme. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The aims of this course are i) to welcome all students to the master program and to ETH, ii) to acquaint students with the faculty teaching in the field of atmospheric and climate science at ETH and at the University of Bern, iii) that the students get to know each other and iv) to assess needs and discuss options for training and eduction of soft-skills during the Master program and to give an overview of the study options in general | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colloquia | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 651-4095-01L | Colloquium Atmosphere and Climate 1 | O | 1 credit | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 651-4095-02L | Colloquium Atmosphere and Climate 2 | O | 1 credit | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 651-4095-03L | Colloquium Atmosphere and Climate 3 | O | 1 credit | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Seminars | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1211-01L | Master's Seminar: Atmosphere and Climate 1 Target groups only: Master Environmental Science Master Atmospheric and Climate Science | O | 3 credits | 2S | H. Joos, R. Knutti, A. Merrifield Könz, M. A. Wüest | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | In this seminar, the process of writing a scientific proposal will be introduced. The essential elements of a proposal, including the peer review process, will be outlined and class exercises will train scientific writing skills. Knowledge exchange between class participants is promoted through the preparation of a master thesis proposal and evaluation of each other's work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Training scientific writing skills. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | In this seminar, the process of writing a scientific proposal will be introduced. The essential elements of a proposal, including the peer review process, will be outlined and class exercises will train scientific writing skills. Knowledge exchange between class participants is promoted through the preparation of a master thesis proposal and evaluation of each other's work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Attendance is mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1211-02L | Master's Seminar: Atmosphere and Climate 2 Target groups only: Master Environmental Science Master Atmospheric and Climate Science | O | 3 credits | 2S | H. Joos, R. Knutti, A. Merrifield Könz, M. A. Wüest | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | In this seminar, scientific project management is introduced and applied to the master projects. The course concludes with a presentation of all projects including an overview of the scientific content and a discussion of project management techniques related to the master thesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Apply scientific project management techniques to your master project, practice the presentation of scientific results and how to chair other students presentations and lead the discussion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | In this seminar, scientific project management is introduced and applied to the master projects. The course concludes with a presentation of all projects including an overview of the scientific content and a discussion of project management techniques related to the master thesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Attendance is mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weather Systems and Atmospheric Dynamics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1221-00L | Dynamics of Large-Scale Atmospheric Flow | W | 4 credits | 2V + 1U | H. Wernli, L. Papritz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | This lecture course is about the fundamental aspects of the dynamics of extratropical weather systems (quasi-geostropic dynamics, potential vorticity, Rossby waves, baroclinic instability). The fundamental concepts are formally introduced, quantitatively applied and illustrated with examples from the real atmosphere. Exercises (quantitative and qualitative) form an essential part of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Understanding of dynamic processes of large-scale atmospheric flow and their mathematical-physical formulation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | Dynamical Meteorology is concerned with the dynamical processes of the earth's atmosphere. The fundamental equations of motion in the atmosphere will be discussed along with the dynamics and interactions of synoptic system - i.e. the low and high pressure systems that determine our weather. The motion of such systems can be understood in terms of quasi-geostrophic theory. The lecture course provides a derivation of the mathematical basis along with some interpretations and applications of the concept. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Dynamics of large-scale atmospheric flow | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | - Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004, - Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Physics I, II, Environmental Fluid Dynamics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 651-4053-05L | Boundary Layer Meteorology | W | 4 credits | 3G | M. Rotach, P. Calanca | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | available (i.e. in English) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Climate Processes and Feedbacks | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1235-00L | Cloud Microphysics Number of participants limited to 20. The lecture takes place if a minimum of 7 students register for it. Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences All participants will be on the waiting list at first. Enrollment is possible until 14.09.2022. All students will be informed on 15./16.09.2022, if they can participate in the lecture. The waiting list is active until 30.09.2022 | W | 4 credits | 2V + 1U | Z. A. Kanji, N. Shardt, Y. Wang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html and: https://moodle-app2.let.ethz.ch/course/view.php?id=15424 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | This course will be designed as a reading course in 1-2 small groups of 10 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | Lamb and Verlinde: PHYSICS AND CHEMISTRY OF CLOUDS, Cambridge University Press, 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Target group: Doctoral and Master students in Atmosphere and Climate | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1251-00L | Land-Climate Dynamics Number of participants limited to 36. The target groups are the following: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences Priority is given to the target groups until 19.09.2022. The waiting list is active until 02.10.2022. | W | 3 credits | 2G | S. I. Seneviratne, R. Padrón Flasher, P. Sieber | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy, water and carbon balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Powerpoint slides will be made available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atmospheric Composition and Cycles | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1233-00L | Stratospheric Chemistry | W | 4 credits | 2V + 1U | T. Peter, G. Chiodo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | The lecture gives an overview on the manifold reactions which occur in the gas phase, in stratospheric aerosol droplets and in polar cloud particles. The focus is on the chemistry of stratospheric ozone and its influence through natural and anthropogenic effects, especially the ozone depletion caused by FCKW in mid-latitude and polar regions as well as the coupling with the greenhouse effect. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students will understand the gas phase reactions in the stratosphere as well as reactions and processes in aerosol droplets and polar stratospheric clouds. The students will understand the most important aspects of stratospheric dynamics and the greenhouse gas effect in troposphere and stratosphere. The students will also aquire a good understanding of the coupling between stratospheric ozone and climate change. Furthermore, they will practise to explain fundamental concepts in stratospheric chemistry by means of scientific paper presentations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | Short presentation of thermodynamical and kinetic basics of chemical reactions: bi- and termolecular reactions, photo-dissociation. Introduction to the chemical family concept: active species, their source gases and reservoir gases. Detailed treatment of the pure oxygen family (odd oxygen) according to the Chapman chemistry. Radical reactions of the oxygen species with nitric oxide, active halogens (chlorine and bromine) and odd hydrogen. Ozone depletion cycles. Methane depletion and ozone production in the lower stratosphere (photo-smog reactions). Heterogeneous chemistry on the background aerosol and its significance for heavy air traffic. Chemistry and dynamics of the ozone hole: Formation of polar stratospheric clouds and chloride activation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Documents are provided in the contact hours. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | - Basseur, G. und S. Solomon, Aeronomy of the Middle Atmosphere, Kluwer Academic Publishers, 3rd Rev edition (December 30, 2005). - John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998. - WMO, Scientific Assessment of Ozone Depletion: 2014, Report No. 55, Geneva, 2015. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Prerequisites: Basics in physical chemistry are required and an overview equivalent to the bachelor course in atmospheric chemistry (lecture 701-0471-01) is expected. 701-1233-00 V starts in the first week of the semester. The exercises 701-1233-00 U will start only in the 2nd week of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1239-00L | Aerosols I: Physical and Chemical Principles | W | 4 credits | 2V + 1U | M. Gysel Beer, D. Bell, E. Weingartner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | Aerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Physical and chemical principles: The students... - know the processes and physical laws of aerosol dynamics. - understand the thermodynamics of phase equilibria and chemical equilibria. - know the photo-chemical formation of particulate matter from inorganic and organic precursor gases. Experimental methods: The students... - know the most important chemical and physical measurement instruments. - understand the underlying chemistry and physics. Environmental impacts: The students... - know the major sources of atmospheric aerosols, their chemical composition and key physical properties. - know the most important climate impacts of atmospheric aerosols. are aware of the health impacts of atmospheric aerosols. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | materiel is distributed during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | - Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurement - Principles, Techniques, and Applications. Wiley, Hoboken, New Jersey, 2011. - Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc., New York, 1999. - Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998. - Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken, John Wiley & Sons, Inc., 2006 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Climate History and Paleoclimatology | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 651-4057-00L | Climate History and Palaeoclimatology | W | 4 credits | 2G | H. Stoll, I. Hernández Almeida, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | The course spans 5 thematic modules: 1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present? 2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere? 3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? 4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hydrology and Water Cycle | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1251-00L | Land-Climate Dynamics Number of participants limited to 36. The target groups are the following: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences Priority is given to the target groups until 19.09.2022. The waiting list is active until 02.10.2022. | W | 3 credits | 2G | S. I. Seneviratne, R. Padrón Flasher, P. Sieber | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy, water and carbon balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Powerpoint slides will be made available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 701-1253-00L | Analysis of Climate and Weather Data | W | 3 credits | 2G | C. Frei | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | An introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis. Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | Students understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the thoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interprete results critically. Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis. The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results. R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | Documentation and supporting material: - slides used during the lecture - excercise sets and solutions - R-packages with software and example datasets for workshop sessions All material is made available via the lecture web-page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | For complementary reading: - Wilks D.S., 2011: Statistical Methods in the Atmospheric Science. (3rd edition). Academic Press Inc., Elsevier LTD (Oxford) - Coles S., 2001: An introduction to statistical modeling of extreme values. Springer, London. 208 pp. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 102-0468-10L | Watershed Modelling | W | 6 credits | 4G | P. Molnar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Abstract | Watershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning objective | The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from scientific studies. A comprehensive exercise block builds on the lectures with a series of 4 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 50% by performance in the graded exercises and 50% by a semester-end oral examination (30 mins) on watershed modelling concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Content | The first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models at larger scales. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lecture notes | There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Literature | Literature consist of collections from standard hydrological textbooks and research papers, collected by the instructors on the course moodle page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Prerequisites / Notice | Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences). Basic knowledge of Matlab (Python), ArcGIS (Q-GIS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Page
1
of
10
All

