Suchergebnis: Katalogdaten im Herbstsemester 2022
Umweltnaturwissenschaften Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Atmosphäre und Klima | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
701-0471-01L | Atmosphärenchemie | W | 3 KP | 2G | M. Ammann, T. Peter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0473-00L | Wettersysteme | W | 3 KP | 2G | M. A. Sprenger, F. S. Scholder-Aemisegger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Satellitenbeobachtungen; Analyse vertikaler Sondierungen; Geostrophischer und thermischer Wind; Entstehung und Intensivierung von Tiefdruckwirbel in den mittleren Breiten; globale Zirkulation; Atmosphärische Blockierungswetterlagen; Eulersche und Lagrange Perspektive der Dynamik; Potentielle Vortizität; Alpine Dynamik; Planetare Grenzschicht; Wasserisotopen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studierenden können: - die gängigen Mess- und Analysemethoden der Atmosphärendynamik erklären - mathematische Grundlagen der Atmosphärendynamik beispielhaft erklären - die Dynamik von globalen und synoptisch-skaligen Prozessen erklären - den Einfluss von Gebirgen auf die Atmosphärendynamik erklären - Grundverständnis von stabilen Wasserisotopen als Tracer von feuchtdiabatischen Prozessen in Wettersystemen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Satellitenbeobachtungen; Analyse vertikaler Sondierungen; Geostrophischer und thermischer Wind; Tiefdruckwirbel in den mittleren Breiten; Überblick und Energetik der globalen Zirkulation; Atmosphärische Blockierungswetterlagen; Eulersche und Lagrange Perspektive der Dynamik; Potentielle Vortizität; Alpine Dynamik (Windstürme, Um- und Überströmung von Gebirgen); Planetare Grenzschicht; Wassertransport in der Atmosphäre; Wasserisotopen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Vorlesungsskript + Folien | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Atmospheric Science, An Introductory Survey John M. Wallace and Peter V. Hobbs, Academic Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Grundlagenphysik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0475-00L | Atmosphärenphysik | W | 3 KP | 2G | F. Mahrt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In dieser Veranstaltung werden die Grundlagen der Atmosphärenphysik behandelt. Dies umfasst die Themen: Wolken- und Niederschlagsbildung insb. Vorhersage von Gewitterbildung, Aerosolphysik sowie künstliche Wetterbeeinflussung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studierenden können - die Mechanismen der Gewitterbildung mit Wissen über Feuchteprozesse und Wolkenmikrophysik erklären. - die Bedeutung der Wolken und Aerosolpartikel für die künstliche Niederschlagsbeeinflussung evaluieren. In dem Fach "Atmosphärenphysik" werden die Kompetenzen Prozessverständnis, Systemverständnis und Datenanalyse & Interpretation gelehrt, angewandt und geprüft. Die Kompetenz Messmethoden wird ebenfalls gelehrt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Im ersten Teil werden ausgewählte Konzepte der für atmosphärische Prozesse wichtigen Thermodynamik eingeführt: Die Studierenden lernen das Konzept des thermodynamischen Gleichgewichts kennen und leiten ausgehend vom ersten Hauptsatz der Thermodynamik die Clausius-Clayperon Gleichung her, welche für die Behandlung von Phasenübergängen in Wolken wichtig ist. Ausserdem erlernen die Studierenden die Klassifizierung von Sonderierungen sowie den Umgang mit thermodynamischen Diagrammen (Tephigramm) und die Kennzeichnung charakteristischer Grössen (Wolkenbasis, Wolkenoberkante, freisetzbare Energie, etc.) darin. Das Konzept von atmosphärischen Mischungspozessen wird anhand der Nebelbildung eingeführt. Anhand vom "Luftpaket-Modell" wird das Konzept der Konvektion erarbeitet. Im mittleren Teil des Kurses werden Aerosolpartikel eingeführt. Neben einer Beschreibung der physikalischen Eigenschaften dieser Partikel lernen die Studierenden die Rolle von Aerosolpartikeln für die Wolkenbildung mit Hilfe der Köhler-Theorie kennen. Danach werden mikrophysikalische Prozesse inklusive der Eiskristallbildung diskutiert. Basierend auf diesen Grundlagen werden die Arten der Niederschlagsbildung eingeführt und unterschiedliche Formen von Niederschlag (konvektiv vs. stratiform) diskutiert, welche anhand der Diskussion von Stürmen und deren Entwicklungsstufen vertieft werden. Diese Konzepte werden angewendet, um verschiedene künstliche Wetterbeeinflussungs-Ideen zu verstehen und ihre Machbarkeit abzuschätzen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Powerpoint Folien und Lehrbuchkapitel werden auf moodle bereitgestellt: https://moodle-app2.let.ethz.ch/course/view.php?id=15367 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Lohmann, U., Lüönd, F. and Mahrt, F., An Introduction to Clouds: From the Microscale to Climate, Cambridge Univ. Press, 391 pp., 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Ausgewählte Kapitel werden im Konzept des invertierten Unterrichts durchgeführt (siehe: de.wikipedia.org/wiki/Umgedrehter_Unterricht), dass wir eingangs vorstellen. Wir bieten eine Laborführung an, in der anhand ausgewählter Instrumente erklärt wird, wie einige der in der VL diskuterten Prozesse experimentell gemessen werden. Es gibt ein wöchentliches Zusatztutorium im Anschluss an die LV, welches die Gelegenheit bietet, Unklarheiten aus der Vorlesung zu klären, sowie die Übungsaufgaben vor- und nachzubesprechen. Die Teilnahme daran ist freiwillig, wird aber empfohlen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0461-00L | Numerische Methoden in der Umweltphysik | W | 3 KP | 2G | C. Schär, C. Zeman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Diese Vorlesung vermittelt Grundlagen, welche zur Entwicklung und Anwendung numerischer Modelle im Umweltbereich notwendig sind. Dazu gehört eine Einführung in die mathematische Modellierung gewöhnlicher und partieller Differentialgleichungen, sowie Übungen zur Entwicklung und Programmierung einfacher Modelle mittels der Programmiersprache Python. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Vorlesung vermittelt die Fähigkeit, einfache numerische Verfahren zu entwickeln und in der Programmiersprache Python zu implementieren und umzusetzen. Er vermittelt die Fähigkeit, komplexere Modelle kritisch einzusetzen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Klassifikation numerischer Probleme, Einführung in die Methode der Finiten Differenzen, lineare und nichtlineare Transportgleichung, Zeitschrittverfahren, Nichtlinearität, konservative numerische Verfahren, Uebersicht über andere Verfahren. Beispiele und Uebungen aus diversen Umweltbereichen. Numerikübungen unter Verwendung von Python, 3 Übungsblöcke à 2 Stunden. Python-Kenntnisse werden nicht vorausgesetzt. Musterprogramme und Grafiktools werden abgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Per Web auf Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Literaturliste wird abgegeben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Obligatorische Lehrveranstaltungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Einführungskurs | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1213-00L | Introduction Course to Master Studies Atmosphere and Climate | O | 2 KP | 2G | H. Joos, T. Peter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | New master students are introduced to the atmospheric and climate research field through keynotes given by the programme's professors. In several self-assessment and networking workshops they get to know each other and obtain general information and guidance about the organisation of the MSc programme. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aims of this course are i) to welcome all students to the master program and to ETH, ii) to acquaint students with the faculty teaching in the field of atmospheric and climate science at ETH and at the University of Bern, iii) that the students get to know each other and iv) to assess needs and discuss options for training and eduction of soft-skills during the Master program and to give an overview of the study options in general | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kolloquien | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4095-01L | Colloquium Atmosphere and Climate 1 | O | 1 KP | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4095-02L | Colloquium Atmosphere and Climate 2 | O | 1 KP | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4095-03L | Colloquium Atmosphere and Climate 3 | O | 1 KP | 1K | H. Joos, H. Wernli, D. N. Bresch, D. Domeisen, N. Gruber, R. Knutti, U. Lohmann, T. Peter, C. Schär, S. Schemm, S. I. Seneviratne, M. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students are exposed to different atmospheric science topics and learn how to take part in scientific discussions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Seminare | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1211-01L | Master's Seminar: Atmosphere and Climate 1 Nur für die Zielgruppen: Master Umweltnaturwissenschaften Master Atmospheric and Climate Science | O | 3 KP | 2S | H. Joos, R. Knutti, A. Merrifield Könz, M. A. Wüest | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this seminar, the process of writing a scientific proposal will be introduced. The essential elements of a proposal, including the peer review process, will be outlined and class exercises will train scientific writing skills. Knowledge exchange between class participants is promoted through the preparation of a master thesis proposal and evaluation of each other's work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Training scientific writing skills. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In this seminar, the process of writing a scientific proposal will be introduced. The essential elements of a proposal, including the peer review process, will be outlined and class exercises will train scientific writing skills. Knowledge exchange between class participants is promoted through the preparation of a master thesis proposal and evaluation of each other's work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Attendance is mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1211-02L | Master's Seminar: Atmosphere and Climate 2 Nur für die Zielgruppen: Master Umweltnaturwissenschaften Master Atmospheric and Climate Science | O | 3 KP | 2S | H. Joos, R. Knutti, A. Merrifield Könz, M. A. Wüest | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this seminar, scientific project management is introduced and applied to the master projects. The course concludes with a presentation of all projects including an overview of the scientific content and a discussion of project management techniques related to the master thesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Apply scientific project management techniques to your master project, practice the presentation of scientific results and how to chair other students presentations and lead the discussion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In this seminar, scientific project management is introduced and applied to the master projects. The course concludes with a presentation of all projects including an overview of the scientific content and a discussion of project management techniques related to the master thesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Attendance is mandatory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wettersysteme und atmosphärische Dynamik | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1221-00L | Dynamics of Large-Scale Atmospheric Flow | W | 4 KP | 2V + 1U | H. Wernli, L. Papritz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Vorlesung vermittelt die Grundlagen der Dynamik von aussertropischen Wettersystemen (quasi-geostrophische Dynamik, potentielle Vorticity, Rossby-Wellen, barokline Instabilität). Grundlegende Konzepte werden formal eingeführt, quantitativ angewendet und mit realen Beispielen illustriert und vertieft. Übungen (quantitativ und qualitativ) sind ein wesentlicher Bestandteil des Kurses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Verständnis für dynamische Prozesse in der Atmosphäre sowie deren mathematisch-physikalische Formulierung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Atmosphärenphysik II behandelt vor allem die dynamischen Prozesse in der Erdatmosphäre. Diskutiert werden die Bewegungsgesetze der Atmosphäre und die Dynamik und Wechselwirkungen von synoptischen Systemen - also den wetterbestimmenden Hoch- und Tiefdruckgebieten. Mathematische Grundlage hierfuer ist insbesondere die Theorie der quasi-geostrophischen Bewegung, die im Rahmen der Vorlesung hergeleitet und interpretiert wird. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Dynamics of large-scale atmospheric flow | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Holton J.R., An introduction to Dynamic Meteorogy. Academic Press, fourth edition 2004, - Pichler H., Dynamik der Atmosphäre, Bibliographisches Institut, 456 pp. 1997 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Physik I, II, Umwelt Fluiddynamik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4053-05L | Boundary Layer Meteorology | W | 4 KP | 3G | M. Rotach, P. Calanca | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The Planetary Boundary Layer (PBL) constitutes the interface between the atmosphere and the Earth's surface. Theory on transport processes in the PBL and their dynamics is provided. The course starts by providing the theoretical background and reviewing idealized concepts. These are contrasted to real world applications and discussed in the context of current research issues. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Overall goals of this course are given below. Focus is on the theoretical background and idealized concepts. Students have basic knowledge on atmospheric turbulence and theoretical as well as practical approaches to treat Planetary Boundary Layer flows. They are familiar with the relevant processes (turbulent transport, forcing) within, and typical states of the Planetary Boundary Layer. Idealized concepts are known as well as their adaptations under real surface conditions (as for example over complex topography). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Introduction - Turbulence - Statistical tratment of turbulence, turbulent transport - Conservation equations in a turbulent flow - Closure problem and closure assumptions - Scaling and similarity theory - Spectral characteristics - Concepts for non-ideal boundary layer conditions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | available (i.e. in English) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Stull, R.B.: 1988, "An Introduction to Boundary Layer Meteorology", (Kluwer), 666 pp. - Panofsky, H. A. and Dutton, J.A.: 1984, "Atmospheric Turbulence, Models and Methods for Engineering Applications", (J. Wiley), 397 pp. - Kaimal JC and Finningan JJ: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp. - Wyngaard JC: 2010, Turbulence in the Atmosphere, Cambridge University Press, 393pp. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Umwelt-Fluiddynamik (701-0479-00L) (environment fluid dynamics) or equivalent and basic knowledge in atmospheric science | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Klimaprozesse und -wechselwirkungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1235-00L | Cloud Microphysics Number of participants limited to 20. The lecture takes place if a minimum of 7 students register for it. Priority is given to PhD students majoring in Atmospheric and Climate Sciences, and remaining open spaces will be offered to the following groups: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences All participants will be on the waiting list at first. Enrollment is possible until 14.09.2022. All students will be informed on 15./16.09.2022, if they can participate in the lecture. The waiting list is active until 30.09.2022 | W | 4 KP | 2V + 1U | Z. A. Kanji, N. Shardt, Y. Wang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Clouds are a fascinating atmospheric phenomenon central to the hydrological cycle and the Earth`s climate. Interactions between cloud particles can result in precipitation, glaciation or evaporation of the cloud depending on its microstructure and microphysical processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The learning objective of this course is that students understand the formation of clouds and precipitation and can apply learned principles to interpret atmospheric observations of clouds and precipitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | see: http://www.iac.ethz.ch/edu/courses/master/modules/cloud-microphysics.html and: https://moodle-app2.let.ethz.ch/course/view.php?id=15424 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | This course will be designed as a reading course in 1-2 small groups of 10 students maximum. It will be based on the textbook below. The students are expected to read chapters of this textbook prior to the class so that open issues, fascinating and/or difficult aspects can be discussed in depth. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Lamb and Verlinde: PHYSICS AND CHEMISTRY OF CLOUDS, Cambridge University Press, 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Target group: Doctoral and Master students in Atmosphere and Climate | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1251-00L | Land-Climate Dynamics Number of participants limited to 36. The target groups are the following: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences Priority is given to the target groups until 19.09.2022. The waiting list is active until 02.10.2022. | W | 3 KP | 2G | S. I. Seneviratne, R. Padrón Flasher, P. Sieber | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy, water and carbon balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Powerpoint slides will be made available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atmosphärische Zusammensetzung und Kreisläufe | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1233-00L | Stratospheric Chemistry | W | 4 KP | 2V + 1U | T. Peter, G. Chiodo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Vorlesung vermittelt einen Überblick über die vielfältigen Reaktionen, die in der Gasphase, in stratosphärischen Aerosoltröpfchen und polaren Wolken ablaufen. Dabei steht das stratosphärische Ozon und dessen Beeinflussung durch natürliche und anthropogene Effekte im Mittelpunkt, besonders die durch FCKW verursachte Ozonzerstörung in polaren Breiten sowie Kopplungen mit dem Treibhauseffekt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studierenden erarbeiten sich ein Grundverständnis der stratosphärischen Reaktionen in der Gasphase sowie von Reaktionen und Prozessen in stratosphärischen Aerosoltröpfchen und polaren Wolken. Die Studierenden kennen die wichtigsten Aspekte der stratosphärischen Zirkulation sowie des Teibhauseffekts in der Tropos- und Stratosphäre. Sie kennen und verstehen Kopplungsmechnismen zwischen stratosphärischer Ozonchemie und Klimawandel. Desweiteren vertiefen die Studierenden fundamentale Konzepte der Stratosphärenchemie anhand von kurzen Präsentationen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Kurze Darstellung der thermodynamischen und kinetischen Grundlagen chemischer Reaktionen: bi- und termolekulare Reaktionen, Photodissoziation. Vorstellung des chemischen Familienkonzepts: aktive Spezies, deren Quellgase und Revervoirgase. Detaillierte Betrachtung der reinen Sauerstofffamilie (ungerader Sauerstoff) gemäss der Chapman-Chemie. Radikalreaktionen der Sauerstoffspezies mit Stickoxiden, aktiven Halogenen (Chlor und Brom) und ungeradem Wasserstoff. Ozonabbauzyklen. Methanabbau und Ozonproduktion in der unteren Stratosphäre (Photosmog-Reaktionen). Heterogene Chemie auf dem Hintergrundaerosol und deren Bedeutung für hohen Flugverkehr. Chemie und Dynamik des Ozonlochs: Bildung polarer stratosphärischer Wolken und Chloraktivierung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Unterlagen werden in den Vorlesungsstunden ausgeteilt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Basseur, G. und S. Solomon, Aeronomy of the Middle Atmosphere, Kluwer Academic Publishers, 3rd Rev edition (December 30, 2005). - John H. Seinfeld and Spyros N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York, 1998. - WMO, Scientific Assessment of Ozone Depletion: 2014, Report No. 55, Geneva, 2015. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzungen: Grundlagen in physikalischer Chemie sind notwendig, und ein Überblick äquivalent zu der Bachelor-Vorlesung "Atmosphärenchemie" (LV 701-0471-01) werden erwartet. Die Vorlesung 701-1233-00 V beginnt in der ersten Semesterwoche. Die Uebungen 701-1233-00 U erst in der zweiten Semesterwoche. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1239-00L | Aerosols I: Physical and Chemical Principles | W | 4 KP | 2V + 1U | M. Gysel Beer, D. Bell, E. Weingartner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Aerosols I deals with basic physical and chemical properties of aerosol particles. The importance of aerosols in the atmosphere and in other fields is discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Physical and chemical principles: The students... - know the processes and physical laws of aerosol dynamics. - understand the thermodynamics of phase equilibria and chemical equilibria. - know the photo-chemical formation of particulate matter from inorganic and organic precursor gases. Experimental methods: The students... - know the most important chemical and physical measurement instruments. - understand the underlying chemistry and physics. Environmental impacts: The students... - know the major sources of atmospheric aerosols, their chemical composition and key physical properties. - know the most important climate impacts of atmospheric aerosols. are aware of the health impacts of atmospheric aerosols. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | materiel is distributed during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Kulkarni, P., Baron, P. A., and Willeke, K.: Aerosol Measurement - Principles, Techniques, and Applications. Wiley, Hoboken, New Jersey, 2011. - Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John Wiley & Sons, Inc., New York, 1999. - Colbeck I. (ed.) Physical and Chemical Properties of Aerosols, Blackie Academic & Professional, London, 1998. - Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken, John Wiley & Sons, Inc., 2006 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Klimageschichte und Paläoklimatologie | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W | 4 KP | 2G | H. Stoll, I. Hernández Almeida, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course spans 5 thematic modules: 1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present? 2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere? 3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? 4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hydrologie und Wasserkreislauf | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1251-00L | Land-Climate Dynamics Number of participants limited to 36. The target groups are the following: - PhD student Environmental sciences - MSc in Atmospheric and climate science - MSc in Environmental sciences Priority is given to the target groups until 19.09.2022. The waiting list is active until 02.10.2022. | W | 3 KP | 2G | S. I. Seneviratne, R. Padrón Flasher, P. Sieber | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy, water and carbon balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Powerpoint slides will be made available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1253-00L | Analysis of Climate and Weather Data | W | 3 KP | 2G | C. Frei | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis. Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the thoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interprete results critically. Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis. The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results. R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Documentation and supporting material: - slides used during the lecture - excercise sets and solutions - R-packages with software and example datasets for workshop sessions All material is made available via the lecture web-page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | For complementary reading: - Wilks D.S., 2011: Statistical Methods in the Atmospheric Science. (3rd edition). Academic Press Inc., Elsevier LTD (Oxford) - Coles S., 2001: An introduction to statistical modeling of extreme values. Springer, London. 208 pp. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0468-10L | Watershed Modelling | W | 6 KP | 4G | P. Molnar | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Watershed Modelling is a practical course on numerical water balance models for a range of catchment-scale water resource applications. The course covers GIS use in watershed analysis, models types from conceptual to physically-based, parameter calibration and model validation, and analysis of uncertainty. The course combines theory (lectures) with a series of practical tasks (exercises). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The main aim of the course is to provide practical training with watershed models for environmental engineers. The course is built on thematic lectures (2 hrs a week) and practical exercises (2 hrs a week). Theory and concepts in the lectures are underpinned by many examples from scientific studies. A comprehensive exercise block builds on the lectures with a series of 4 practical tasks to be conducted during the semester in group work. Exercise hours during the week focus on explanation of the tasks. The course is evaluated 50% by performance in the graded exercises and 50% by a semester-end oral examination (30 mins) on watershed modelling concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The first part (A) of the course is on watershed properties analysed from DEMs, and on global sources of hydrological data for modelling applications. Here students learn about GIS applications (ArcGIS, Q-GIS) in hydrology - flow direction routines, catchment morphometry, extracting river networks, and defining hydrological response units. In the second part (B) of the course on conceptual watershed models students build their own simple bucket model (Matlab, Python), they learn about performance measures in modelling, how to calibrate the parameters and how to validate models, about methods to simulate stochastic climate to drive models, uncertainty analysis. The third part (C) of the course is focussed on physically-based model components. Here students learn about components for soil water fluxes and evapotranspiration, they practice with a fully-distributed physically-based model Topkapi-ETH, and learn about other similar models at larger scales. They apply Topkapi-ETH to an alpine catchment and study simulated discharge, snow, soil moisture and evapotranspiration spatial patterns. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | There is no textbook. Learning materials consist of (a) video-recording of lectures; (b) lecture presentations; and (c) exercise task documents that allow independent work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Literature consist of collections from standard hydrological textbooks and research papers, collected by the instructors on the course moodle page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic Hydrology in Bachelor Studies (engineering, environmental sciences, earth sciences). Basic knowledge of Matlab (Python), ArcGIS (Q-GIS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|
- Seite 1 von 10 Alle