Suchergebnis: Katalogdaten im Herbstsemester 2022
Biologie Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlvertiefungen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlvertiefung: Ökologie und Evolution | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Obligatorische Konzeptkurse | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
701-2413-00L | Evolutionary Genetics | O | 6 KP | 4V | T. Städler, A. Widmer, S. Fior, M. Fischer, J. Stapley | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The concept course 'Evolutionary Genetics' consists of two lectures that jointly provide an introduction to the fields of population and quantitative genetics (emphasis on basic concepts) and ecological genetics (more emphasis on evolutionary and ecological processes of adaptation and speciation). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of the course is to provide students with a solid introduction to the fields of population genetics, quantitative genetics, and ecological genetics. The concepts and research methods developed in these fields have undergone profound transformations; they are of fundamental importance in our understanding of evolutionary processes, both past and present. Students should gain an appreciation for the concepts, methods and explanatory power of evolutionary genetics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Population genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory. Quantitative genetics - Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem. Ecological Genetics - Concepts and methods for the study of genetic variation and its role in adaptation, reproductive isolation, hybridization and speciation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Hamilton, M.B. 2009. Population Genetics. Wiley-Blackwell, Chichester, U.K. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlpflicht Masterkurse | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1409-00L | Research Seminar: Ecological Genetics Minimum number of participants is 5. | W | 2 KP | 1S | S. Fior | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Im diesem Forschungsseminar werden aktuelle Publikationen diskutiert, die relevante Themen aus der Ökologischen Genetik untersuchen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Unser Ziel ist es, dass die Teilnehmenden einen Einblick in aktuelle Forschungsfragen und Ansätze in Ökologischer Genetik erhalten und dabei lernen, wissenschaftliche Publikationen kritisch zu diskutieren und zu würdigen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | keines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | wird verteilt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Eine regelmässige und aktive Teilnahme an den Diskussionen, sowie die Präsentation eines wissenschaftlichen Artikels sind Voraussetzung für die erfolgreiche Teilnahme an diesem Kurs. Es ist empfohlen, dass Teilnehmende zuvor erfolgreich den Kurs Evolutionary Genetics (701-2413-00) oder Ecological Genetics (701-1413-01) absolviert haben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-5121-00L | Insect Ecology | W | 2 KP | 2V | C. De Moraes, N. Stanczyk | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This is an introductory class on insect ecology. During the course you will learn about insect interactions with, and adaptations to, their environment and other organisms, and the importance of insect roles in our ecosystems. This course includes lectures, small group discussions and outside readings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of the course is to gain an understanding of how insects have specialised and adapted to occupy diverse environmental niches and become vital to ecosystem processes. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions and examining insect ecology in an evolutionary context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Provided to students through Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Selected required readings (peer reviewed literature). Optional recommended readings with additional information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0625-01L | Applied Analysis of Variance and Experimental Design | W | 5 KP | 2V + 1U | L. Meier | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants will be able to plan and analyze efficient experiments in the fields of natural sciences. They will gain practical experience by using the software R. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Principles of experimental design, one-way analysis of variance, contrasts and multiple comparisons, multi-factor designs and analysis of variance, complete block designs, Latin square designs, random effects and mixed effects models, split-plot designs, incomplete block designs, two-series factorials and fractional designs, power. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | G. Oehlert: A First Course in Design and Analysis of Experiments, W.H. Freeman and Company, New York, 2000. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software R, for which an introduction will be held. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0649-00L | Applied Statistical Regression | W | 5 KP | 2V + 1U | M. Dettling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies. The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A script will be available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Faraway (2005): Linear Models with R Faraway (2006): Extending the Linear Model with R Draper & Smith (1998): Applied Regression Analysis Fox (2008): Applied Regression Analysis and GLMs Montgomery et al. (2006): Introduction to Linear Regression Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held. In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0301-00L | Angewandte Systemökologie Die Teilnehmerzahl ist auf 35 Studierende beschränkt. Die Warteliste wird am 02.10.2022 gelöscht. | W | 3 KP | 2V | A. Gessler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Dieser Kurs vertieft das ökologische Systemwissen, das nötig ist, um angewandte Lösungen für aktuelle Umweltprobleme zu hinterfragen. Unser zentrales Anliegen ist es, den Respekt der Teilnehmer vor Komplexität mit einem Sinn für Möglichkeiten zu balancieren, indem wir Beispiele aus dem weiten Lösungsraum ökologischer Systeme darstellen, wie z.B. grüne Infrastruktur im Wassermanagement. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Am Ende der Vorlesung... ...können Sie Ihre Recherche strukturieren und Sie wissen, wie Sie ein komplexes Umweltproblem analysieren können. Sie können die lösungs-relevanten Fragen formulieren und Antworten finden (unterstützt durch Diskussionen, Input der Dozenten und aus der Literatur), und Sie können Ihre Schlussfolgerungen klar und sorgfältig darstellen. ...verstehen Sie die Komplexität der Interaktionen und Strukturen in Ökosystemen. Sie wissen wie Ökosystemprozesse, Funktionen und Dienste interagieren und sich über vielfältige Raum- und Zeitskalen hinweg beeinflussen (im Allgemeinen, und im Detail für einige ausgewählte Beispiele). ...verstehen Sie, dass Biodiversität und die Interaktionen zwischen Organismen ein integraler Bestandteil von Ökosystemen sind. Ihnen ist bewusst, dass die Verbindung zwischen Biodiversität und Prozess/Funktion/Dienst selten vollständig verstanden ist. Sie wissen wie man aufrichtig mit diesem Verständnismangel umgeht und können dennoch Lösungswege finden, kritisch analysieren und darstellen. ...verstehen Sie die Wichtigkeit von Ökosystemdiensten für die Gesellschaft. ...haben Sie einen Überblick über die Methoden in der Ökosystemforschung und einen tieferen Einblick in einige ausgewählte Techniken z.B. in die ökologische Beobachtung, Manipulation und Modellierung. ...haben Sie sich mit der Ökologie als junge und zentrale Disziplin für drängende angewandte Gesellschaftsfragen auseinandergesetzt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Dieser Kurs vertieft das ökologische Systemwissen, das nötig ist um angewandte Lösungen für aktuelle Umweltprobleme zu hinterfragen. Wir werden die Komplexität aktueller Umweltprobleme kritisch erfassen, und dabei grundlegende ökologische Konzepte und Prinzipien illustrieren. Unser zentrales Anliegen ist es, den Respekt der Teilnehmer vor Komplexität mit einem Sinn für Möglichkeiten zu balancieren, indem wir Beispiele aus dem weiten Lösungsraum ökologischer Systeme darstellen, wie z.B. grüne Infrastruktur im Wassermanagement. Der Kurs ist in vier grössere Themengebiete untergliedert: (1) Integriertes Wassermanagement -- Grüne Infrastruktur (Optionen im Landschaftsmanagement) als Alternativen zu technischen Lösungen (z.B. Staudämme) im Umgang mit Überflutungen und Dürren; (2) Feuerdynamik, der Wasserkreislauf und Biodiversität -- Die überraschende Dynamik der Lebenszyklen einzelner Arten und Populationen in trockenen Landschaften; (3) "Rückverwilderung", z.B. die Wiedereinführung grosser Räuber (z.B. Wölfe) oder grosser Weidetiere (z.B. Bisons) in Schutzgebieten -- ein Naturschutztrend mit überraschenden Effekten; (4) Die Kopplung von aquatischen und terrestrischen Systemen: Kohlenstoff-, Stickstoff- und Phosphorflüsse von globaler Wichtigkeit auf Landschaftsebene. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Fallbeschreibungen, ein kommentiertes Glossar, und eine Liste der Literatur und weiter Quellen pro Fall. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Es ist nicht unbeding notwendig die folgenden Bücher zu leihen/kaufen. Wir stellen immer wieder Auszüge und weiterführende Literatur während des Kurses bereit. Agren GI and Andersson FO (2012) Principles of Terrestrial Ecosystem Ecology, Cambridge University Press. Chapin et al. (2011), Principles of Terrestrial Ecosystem Ecology, Springer. Schulze et al. (2005) Plant Ecology; Springer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Der Kurs kombiniert Elemente des klassischen Vorlesungsformats, Gruppendiskussionen und Problem Based Learning. Es ist hilfreich, aber nicht zwingend notwendig, wenn Sie mit der Methode des "Siebensprung" (siehe z.B. Veranstaltung 701-0352-00L "Analyse und Beurteilung der Umweltverträglichkeit" von Christian Pohl et al.) vertraut sind. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-6215-00L | Using R for Data Analysis and Graphics (Part I) | W | 1.5 KP | 1G | M. Mächler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides the first part an introduction to the statistical/graphical/data science software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will be able to use the software R for simple data analysis and graphics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R. Part I of the course covers the following topics: - What is R? - R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics; - Types of data: numeric, character, logical and categorical data, missing values; - Simple (statistical) functions: summary, mean, var, etc., simple statistical tests; - Writing simple functions; - Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots. The course focuses on practical work at the computer with R. We will make use of the graphical user interface RStudio: www.rstudio.org Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course resources will be provided via the Moodle web learning platform. Subscribing via Mystudies *automatically* makes you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=18279 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-6217-00L | Using R for Data Analysis and Graphics (Part II) | W | 1.5 KP | 1G | M. Mächler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions. Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will be able to use the software R efficiently for data analysis, graphics and simple programming | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course provides the second part of an introduction to the statistical software R (https://www.r-project.org/) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R. Part II of the course builds on part I and covers the following additional topics: - Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects; - More on R functions; - Applying functions to elements of vectors, matrices and lists; - Object oriented programming with R: classes and methods; - Tayloring R: options - Extending basic R: packages The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge of R equivalent to "Using R .. (part 1)" ( = 401-6215-00L ) is a prerequisite for this course. The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should *automatically* make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15522 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-4504-00L | Plant Pathology I | W | 2 KP | 2G | B. McDonald | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will understand: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems as a basis for implementing disease management strategies in agroecosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Course description: Plant Pathology I will focus on pathogen-plant interactions, epidemiology, disease assessment, and disease development in agroecosystems. Themes will include: 1) how pathogens attack plants and; 2) how plants defend themselves against pathogens; 3) factors driving the development of epidemics in agroecosystems. Topics under the first theme will include pathogen life cycles, disease cycles, and an overview of plant pathogenic nematodes, viruses, bacteria, and fungi. Topics under the second theme will include plant defense strategies, host range, passive and active defenses, and chemical and structural defenses. Topics under the third theme will include the disease triangle and cultural control strategies. Lecture Topics and Tentative Schedule Week 1 The nature of plant diseases, symbiosis, parasites, mutualism, biotrophs and necrotrophs, disease cycles and pathogen life cycles. Week 2 Nematode attack strategies and types of damage. Viral pathogens, classification, reproduction and transmission, attack strategies and types of damage. Examples TMV, BYDV. Bacterial pathogens and phytoplasmas, classification, reproduction and transmission. Week 3 Bacterial attack strategies and symptoms. Example bacterial diseases: fire blight, Agrobacterium crown gall, soft rots. Fungal and oomycete pathogens, classification, growth and reproduction, sexual and asexual spores, transmission. Week 4 Fungal and oomycete life cycles, disease cycles, infection processes, colonization, phytotoxins and mycotoxins. Attack strategies of fungal necrotrophs and biotrophs. Symptoms and signs of fungal infection. Example fungal diseases: potato late blight. Week 5 Example fungal diseases: wheat stem rust, grape powdery mildew, wheat septoria tritici blotch. Plant defense mechanisms, host range and non-host resistance. Passive structural and chemical defenses, preformed chemical defenses. Active structural defense, histological and cellular (papillae). Week 6 Active chemical defense, hypersensitive response, pathogenesis-related (PR) proteins, phytoalexins and disease resistance. Pisatin and pisatin demethylase. Local and systemic acquired resistance (LAR, SAR), induced systemic resistance (ISR), signal molecules, defense activators (Bion). Pathogen effects on food quality. Positive and negative transformations. Week 7 Negative pathogen impacts on crop yield and quality. Pathogen effects on food safety. Mycotoxins in the food chain. Aflatoxin, patulin safety assessment and action thresholds. Epidemiology: historical epidemics. Week 8 Epidemiology: Disease pyramid, environmental effects on epidemic development, plant effects on development of epidemics, including resistance, physiology, density, uniformity. Week 9 Disease assessment: incidence and severity measures, keys, diagrams, scales, measurement errors. Correlations between incidence and severity. Molecular detection and diagnosis of pathogens. Host indexing, serology, monoclonal and polyclonal antibodies, ELISA. Week 10 Molecular detection and diagnosis of pathogens: PCR, rDNA and loop-mediated isothermal amplification. Strategies for minimizing disease risks: calculating disease thresholds, disease forecasting systems. Week 11 Strategies for minimizing disease risks: lowering epidemic risk, ecological risk assessment, natural and synthetic pesticides. Disease control strategies: economic thresholds, overview of control strategies. Week 12 Physical control methods. Cultural control methods: avoidance, tillage practices, crop sanitation. Week 13 Cultural control methods: fertilizers, crop rotations. Week 14 Open lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Detailed lecture notes (~160 pages) will be available for purchase at the cost of reproduction at the start of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
636-0017-00L | Computational Biology | W | 6 KP | 3G + 2A | T. Vaughan, C. Magnus, T. Stadler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The aim of the course is to provide up-to-date knowledge on how we can study biological processes using genetic sequencing data. Computational algorithms extracting biological information from genetic sequence data are discussed, and statistical tools to understand this information in detail are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Attendees will learn which information is contained in genetic sequencing data and how to extract information from this data using computational tools. The main concepts introduced are: * stochastic models in molecular evolution * phylogenetic & phylodynamic inference * maximum likelihood and Bayesian statistics Attendees will apply these concepts to a number of applications yielding biological insight into: * epidemiology * pathogen evolution * macroevolution of species | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course consists of four parts. We first introduce modern genetic sequencing technology, and algorithms to obtain sequence alignments from the output of the sequencers. We then present methods for direct alignment analysis using approaches such as BLAST and GWAS. Second, we introduce mechanisms and concepts of molecular evolution, i.e. we discuss how genetic sequences change over time. Third, we employ evolutionary concepts to infer ancestral relationships between organisms based on their genetic sequences, i.e. we discuss methods to infer genealogies and phylogenies. Lastly, we introduce the field of phylodynamics, the aim of which is to understand and quantify population dynamic processes (such as transmission in epidemiology or speciation & extinction in macroevolution) based on a phylogeny. Throughout the class, the models and methods are illustrated on different datasets giving insight into the epidemiology and evolution of a range of infectious diseases (e.g. HIV, HCV, influenza, Ebola). Applications of the methods to the field of macroevolution provide insight into the evolution and ecology of different species clades. Students will be trained in the algorithms and their application both on paper and in silico as part of the exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides will be available on moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The course is not based on any of the textbooks below, but they are excellent choices as accompanying material: * Yang, Z. 2006. Computational Molecular Evolution. * Felsenstein, J. 2004. Inferring Phylogenies. * Semple, C. & Steel, M. 2003. Phylogenetics. * Drummond, A. & Bouckaert, R. 2015. Bayesian evolutionary analysis with BEAST. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge in linear algebra, analysis, and statistics will be helpful. Programming in R will be required for the project work (compulsory continuous performance assessments). In case you do not have any previous experience with R, we strongly recommend to get familiar with R prior to the semester start. For the D-BSSE students, we highly recommend the voluntary course „Introduction to Programming“, which takes place in Basel before the start of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1471-00L | Ecological Parasitology Number of participants limited to 20. A minimum of 6 students is required that the course will take place. Waiting list will be deleted on 30.09.2022. | W | 3 KP | 1V + 1P | F. Feijen, J. Jokela, C. Vorburger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Course focuses on the ecology and evolution of macroparasites and their hosts. Through lectures and practical work, students learn about diversity and natural history of parasites, adaptations of parasites, ecology of host-parasite interactions, applied parasitology, and human macroparasites in the modern world. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | 1. Identify common macroparasites in invertebrates. 2. Understand ecological and evolutionary processes in host-parasite interactions. 3. Conduct parasitological research | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Lectures: 1. Diversity and natural history of parasites (i.e. systematic groups and life-cycles). 2. Adaptations of parasites (e.g. evolution of life-cycles, host manipulation). 3. Ecology of host-parasite interactions (e.g. parasite communities, effects of environmental changes). 4. Ecology and evolution of parasitoids and their applications in biocontrol 5. Human macroparasites (schistosomiasis, malaria). Practical exercises: 1. Examination of parasites in molluscs (identification and examination of host exploitation strategies). 2. Examination of parasites in amphipods (identification and examination of effects on hosts). 3. Examination of parasitoids of aphids. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The three practicals will take place at the 04.10.2022, the 18.10.2022 and the 08.11.2022 at Eawag Dübendorf from 08:15 - 12:00. Note that each practical takes 2 hours longer than the weekly lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1703-00L | Evolutionary Medicine for Infectious Diseases Number of participants limited to 35. Waiting list will be deleted 02.10.2022. | W | 3 KP | 2G | A. Hall | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course explores infectious disease from both the host and pathogen perspective. Through short lectures, reading and active discussion, students will identify areas where evolutionary thinking can improve our understanding of infectious diseases and, ultimately, our ability to treat them effectively. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will learn to (i) identify evolutionary explanations for the origins and characteristics of infectious diseases in a range of organisms and (ii) evaluate ways of integrating evolutionary thinking into improved strategies for treating infections of humans and animals. This will incorporate principles that apply across any host-pathogen interaction, as well as system-specific mechanistic information, with particular emphasis on bacteria and viruses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | We will cover several topics where evolutionary thinking is relevant to understanding or treating infectious diseases. This includes: (i) determinants of pathogen host range and virulence, (ii) dynamics of host-parasite coevolution, (iii) pathogen adaptation to evade or suppress immune responses, (iv) antimicrobial resistance, (v) evolution-proof medicine. For each topic there will be a short (< 20 minutes) introductory lecture, before students independently research the primary literature and develop discussion points and questions, followed by interactive discussion in class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The focus is on primary literature, but for some parts the following text books provide good background information: Schmid Hempel 2011 Evolutionary Parasitology Stearns & Medzhitov 2016 Evolutionary Medicine | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | A basic understanding of evolutionary biology, microbiology or parasitology will be advantageous but is not essential. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
636-0009-00L | Evolutionary Dynamics | W | 6 KP | 2V + 1U + 2A | N. Beerenwinkel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Evolutionary dynamics is concerned with the mathematical principles according to which life has evolved. This course offers an introduction to mathematical modeling of evolution, including deterministic and stochastic models, with an emphasis on tumor evolution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal of this course is to understand and to appreciate mathematical models and computational methods that provide insight into the evolutionary process in general and tumor evolution in particular. Students should analyze and evaluate models and their application critically and be able to design new models. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Evolution is the one theory that encompasses all of biology. It provides a single, unifying concept to understand the living systems that we observe today. We will introduce several types of mathematical models of evolution to describe gene frequency changes over time in the context of different biological systems, focusing on asexual populations. Viruses and cancer cells provide the most prominent examples of such systems and they are at the same time of great biomedical interest. The course will cover some classical mathematical population genetics and population dynamics, and also introduce several new approaches. This is reflected in a diverse set of mathematical concepts which make their appearance throughout the course, all of which are introduced from scratch. Topics covered include the quasispecies equation, evolution of HIV, evolutionary game theory, evolutionary stability, evolutionary graph theory, tumor evolution, stochastic tunneling, genetic progression of cancer, diffusion theory, fitness landscapes, branching processes, and evolutionary escape. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | No. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Evolutionary Dynamics. Martin A. Nowak. The Belknap Press of Harvard University Press, 2006. - Evolutionary Theory: Mathematical and Conceptual Foundations. Sean H. Rice. Sinauer Associates, Inc., 2004. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Basic mathematics (linear algebra, calculus, probability) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0328-00L | Advanced Ecological Processes Nur für Studierende der folgenden Studienprogramme: Biologie Master Lehrdiplom Biologie Umweltnaturwissenschaften Master UZH MNF Biologie UZH MNF Geographie /Erdwissenschaften | W | 4 KP | 2V | J. Hille Ris Lambers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course presents theoretical and empirical approaches to understanding the ecological processes structuring populations and communities. Central problems covered include species interactions, spatial structure, resource dynamics, and ecological responses to environmental change. These and other topics will be explored from basic and applied perspectives. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will understand how ecological processes operate in natural communities. They will appreciate how mathematical theory, field experimentation, and observational studies combine to generate a predictive science of ecological processes, and how this predictive science informs conservation and management decisions. Upon completing the course, students will be able to: Understand the factors determining the outcome of species interactions in communities, and how this information informs management. Apply theoretical knowledge on species interactions to predict the potential outcomes of novel species introductions. Understanding the role of spatial structure in mediating population dynamics and persistence, species interactions, and patterns of species diversity. Use population and community models to predict the stability of interactions between predators and prey and between different competitors. Understand the conceptual basis of predictions concerning how ecological communities will respond to global change. Discuss the types of conceptual advances ecology as a science can realistically achieve, and how these relate to the applications of the discipline. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Lectures supplemented with readings from the primary literature and occasional computer exercises will focus on understanding central processes in community ecology. Topics will include demographic and spatial structure, consumer resource interactions, food webs, competition, mutualism, invasion, the maintenance of species diversity, and species effects on ecosystem processes. Each of these more conceptual topics will be discussed in concert with their applications to the conservation and management of species and communities in a changing world. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Zusätzliche Konzeptkurse | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0313-00L | Microbiology (Part I) | W | 3 KP | 2V | W.‑D. Hardt, L. Eberl, B. Nguyen, J. Piel, M. Pilhofer, A. Vagstad | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Updated handouts will be provided during the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Current literature references will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | English The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0309-00L | Concepts in Modern Genetics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH. Please mind the ETH enrolment deadlines for UZH students: Link | W | 6 KP | 4V | Y. Barral, D. Bopp, A. Hajnal, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course focuses on the concepts of classical and modern genetics and genomics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Scripts and additional material will be provided during the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1299-00L | Bioinformatics | W | 6 KP | 4G | S. Sunagawa, P. Beltrao, A. Blasimme, V. Boeva, A. Kahles, C. von Mering, N. Zamboni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Students will study bioinformatic concepts in the areas of genomics, metagenomics, proteomics, biological networks, biostatistics and bioethics. Through integrated lectures, practical hands-on sessions and homework assignments, students will also be trained in analytical and programming skills to meet the emerging increase in data-driven knowledge generation in biology in the 21st century. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will have an advanced understanding of the underlying concepts behind modern bioinformatic analyses at genome, metagenome and proteome-wide scales. They will be familiar with the most common data types, where to access them, and how to analytically work with them to address contemporary questions in the field of biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Course participants have already acquired basic programming skills in UNIX, Python and R. Students bring their own computer with keyboard, internet access (browser) and software to connect to the ETH network via VPN. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlvertiefung: Mikrobiologie und Immunologie | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Obligatorische Konzeptkurse | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0313-00L | Microbiology (Part I) | O | 3 KP | 2V | W.‑D. Hardt, L. Eberl, B. Nguyen, J. Piel, M. Pilhofer, A. Vagstad | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Updated handouts will be provided during the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Current literature references will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | English The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0317-00L | Immunology I | O | 3 KP | 2V | M. Kopf, A. Oxenius | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in strukturelle und funktionelle Eigenschaften des Immunsystems. Grundlegendes Verständnis der Mechanismen und der Regulation einer Immunantwort. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Einführung in strukturelle und funktionelle Eigenschaften des Immunsystems. Grundlegendes Verständnis der Mechanismen und der Regulation einer Immunantwort. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Einleitung und historischer Hintergrund - Angeborene und adaptive Immunantwort, Zellen und Organe des Immunsystems - B Zellen und Antikörper - Generation von Diversität - Antigen-Präsentation und Histoinkompatibilitätsantigene (MHC) - Thymus und T Zellselektion - Autoimmunität - Zytotoxische T Zellen und NK Zellen - Th1 und Th2 Zellen, regulatorische T Zellen - Allergien - Hypersensitivititäten - Impfungen und immun-therapeutische Interventionen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Die Studenten haben elekronischen Zugriff auf die Vorlesungsunterlagen. Der Link ist unter "Lernmaterialien" zu finden. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Kuby, Immunology, 9th edition, Freemen + Co., New York, 2020 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Immunology I (WS) und Immunology II (SS) werden für D-BIOL Studenten in einer Sessionsprüfung als eine Lerneinheit geprüft. Alle anderen Studenten schreiben Einzelprüfungen für Immunologie I und Immunologie II. Alle Prüfungen (kombinierte Prüfung Immunologie I und II, Einzelprüfungen) werden in jeder Prüfungssession angeboten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlpflicht Masterkurse | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0223-00L | Immunology III | W | 4 KP | 2V | M. Kopf, S. B. Freigang, S. R. Leibundgut, F. Mair, A. Oxenius, C. Schneider, E. Slack, R. Spörri, L. Tortola | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Diese Vorlesung liefert einen detaillierten Einblick in die - Entwicklung von T Zellen und B Zellen - Dynamik einer Immunantwort bei akuten und chronischen Infektionen - Mechanismen von Immunpathologie - neue Impfstoffstrategien | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Sie verstehen - die Entwicklung, Aktivierung, und Differenzierung verschiedener Typen von T Zellen und deren Effektormechanismen während einer Immunantwort - die Erkennung von pathogenen Mikroorganismen und molekulare Ereignisse nach Infektion einer Zelle - Ereignisse und Signale für die Reifung von naiven B Zellen zu antikörperproduzierenden Plasmazellen und Gedächtniszellen, - Optimierung von B Zellantworten durch das intelligente Design neuer Impfstoffe | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | o Development and selection of CD4 and CD8 T cells, natural killer T cells (NKT), and regulatory T cells (Treg) o NK T cells and responses to lipid antigens o Differentiation, characterization, and function of CD4 T cell subsets such as Th1, Th2, and Th17 o Overview of cytokines and their effector function o Co-stimulation (signals 1-3) o Dendritic cells o Evolution of the "Danger" concept o Cells expressing Pattern Recognition Receptors and their downstream signals o T cell function and dysfunction in acute and chronic viral infections | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Unterlagen zur Vorlesung sind erhältlich bei: https://moodle-app2.let.ethz.ch/course/view.php?id=2581¬ifyeditingon=1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Immunology I and II recommended but not compulsory |
- Seite 1 von 9 Alle