# Search result: Catalogue data in Autumn Semester 2022

Process Engineering Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Core Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

151-0107-20L | High Performance Computing for Science and Engineering (HPCSE) I | W | 4 credits | 4G | S. M. Martin, J. H. Walther | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course gives an introduction into algorithms and numerical methods for parallel computing on shared and distributed memory architectures. The algorithms and methods are supported with problems that appear frequently in science and engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | With manufacturing processes reaching its limits in terms of transistor density on today’s computing architectures, efficient utilization of computing resources must include parallel execution to maintain scaling. The use of computers in academia, industry and society is a fundamental tool for problem solving today while the “think parallel” mind-set of developers is still lagging behind. The aim of the course is to introduce the student to the fundamentals of parallel programming using shared and distributed memory programming models. The goal is on learning to apply these techniques with the help of examples frequently found in science and engineering and to deploy them on large scale high performance computing (HPC) architectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 1. Hardware and Architecture: Moore’s Law, Instruction set architectures (MIPS, RISC, CISC), Instruction pipelines, Caches, Flynn’s taxonomy, Vector instructions (for Intel x86) 2. Shared memory parallelism: Threads, Memory models, Cache coherency, Mutual exclusion, Uniform and Non-Uniform memory access, Open Multi-Processing (OpenMP) 3. Distributed memory parallelism: Message Passing Interface (MPI), Point-to-Point and collective communication, Blocking and non-blocking methods, Parallel file I/O, Hybrid programming models 4. Performance and parallel efficiency analysis: Performance analysis of algorithms, Roofline model, Amdahl’s Law, Strong and weak scaling analysis 5. Applications: HPC Math libraries, Linear Algebra and matrix/vector operations, Singular value decomposition, Neural Networks and linear autoencoders, Solving partial differential equations (PDEs) using grid-based and particle methods | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Link Class notes, handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | • An Introduction to Parallel Programming, P. Pacheco, Morgan Kaufmann • Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press • Computer Organization and Design, D.H. Patterson and J.L. Hennessy, Morgan Kaufmann • Vortex Methods, G.H. Cottet and P. Koumoutsakos, Cambridge University Press • Lecture notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Students should be familiar with a compiled programming language (C, C++ or Fortran). Exercises and exams will be designed using C++. The course will not teach basics of programming. Some familiarity using the command line is assumed. Students should also have a basic understanding of diffusion and advection processes, as well as their underlying partial differential equations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0125-00L | Hydrodynamics and Cavitation | W | 4 credits | 3G | O. Supponen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course builds on the foundations of fluid dynamics to describe hydrodynamic flows and provides an introduction to cavitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The main learning objectives of this course are: 1. Identify and describe dominant effects in liquid fluid flows through physical modelling. 2. Identify hydrodynamic instabilities and discuss the stability region 3. Describe fragmentation of liquids 4. Explain tension, nucleation and phase-change in liquids. 5. Describe hydrodynamic cavitation and its consequences in physical terms. 6. Recognise experimental techniques and industrial and medical applications for cavitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course gives an overview on the following topics: hydrostatics, capillarity, hydrodynamic instabilities, fragmentation. Tension in liquids, phase change. Cavitation: single bubbles (nucleation, dynamics, collapse), cavitating flows (attached, cloud, vortex cavitation). Industrial applications and measurement techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Literature will be provided in the course material. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Fluid dynamics I & II or equivalent | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0209-00L | Renewable Energy Technologies | W | 4 credits | 3G | A. Steinfeld, E. Casati | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture Notes containing copies of the presented slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0213-00L | Fluid Dynamics with the Lattice Boltzmann Method | W | 4 credits | 3G | I. Karlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations. During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on. Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course). The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others. Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course builds upon three parts: I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples. II Theoretical basis of statistical mechanics and kinetic equations. III Lattice Boltzmann method for real-world applications. The content of the course includes: 1. Background: Elements of statistical mechanics and kinetic theory: Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation; Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids. 2. Basics of the Lattice Boltzmann Method and Simulations: Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures. 3. Hands on: Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc). 4. Practical issues of LBM for fluid dynamics simulations: Lattice Boltzmann simulations of turbulent flows; numerical stability and accuracy. 5. Microflow: Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations. 6. Advanced lattice Boltzmann methods: Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries. 7. Introduction to LB models beyond hydrodynamics: Relativistic fluid dynamics; flows with phase transitions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Lecture notes on the theoretical parts of the course will be made available. Selected original and review papers are provided for some of the lectures on advanced topics. Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0293-00L | Combustion and Reactive Processes in Energy and Materials Technology | W | 4 credits | 2V + 1U + 2A | N. Noiray, F. Ernst, C. E. Frouzakis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course will provide an introduction to the fundamentals and the applications of combustion in energy conversion and nanoparticles synthesis. The content is highly relevant for technologies which cannot be electrified such as long distance aviation and shipping, and which will more and more rely on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The main learning objectives of this course are: 1. Understand the thermodynamic, fluid-dynamic and chemical kinetics fundamentals of combustion processes. 2. Predict relevant parameters for combustion systems, such as laminar and turbulent flame speeds, adiabatic flame temperature or quenching distance. 3. Understand the causal relations of relevant combustion parameters such as the pressure influence on the laminar flame speed. 4. Analyze the challenges of developing sustainable combustion technologies based on carbon-neutral synthetic fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Reaction kinetics, fuel oxidation mechanisms, premixed and diffusion laminar flames, two-phase-flows, turbulence and turbulent combustion, pollutant formation, development of sustainable combustion technologies for power generation, shipping and aviation. Synthesis of materials in flame processes: particles, pigments and nanoparticles. Fundamentals of design and optimization of flame reactors, effect of reactant mixing on product characteristics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | No script available. Instead, material will be provided in lecture slides and the following text book (which can be downloaded for free) will be followed: J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. Teaching language, assignments and lecture slides in English | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | J. Warnatz, U. Maas, R.W. Dibble, "Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlag, 1997. I. Glassman, Combustion, 3rd edition, Academic Press, 1996. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0509-00L | Acoustics in Fluid Media: From Robotics to Additive ManufacturingNote: The previous course title until HS21 "Microscale Acoustofluidics" | W | 4 credits | 3G | D. Ahmed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The course will provide you with the fundamentals of the new and exciting field of ultrasound-based microrobots to treat various diseases. Furthermore, we will explore how ultrasound can be used in additive manufacturing for tissue constructs and robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The course is designed to equip students with skills in the design and development of ultrasound-based manipulation devices and microrobots for applications in medicine and additive manufacturing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0902-00L | Micro- and Nanoparticle Technology Number of participants is limited to 20. Additional ones could be enrolled by permission of the lecturer. | W | 6 credits | 2V + 2U | S. E. Pratsinis, V. Mavrantzas, K. Wegner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Particles are everywhere and nano is the new scale in science & engineering as micro was ~200 years ago. For highly motivated students, this exceptionally demanding class gives a flavor of nanotechnology with hands-on student projects on gas-phase particle synthesis & applications capitalizing on particle dynamics (diffusion, coagulation etc.), shape, size distribution and characterization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | This course aims to familiarize motivated M/BSc students with some of the basic phenomena of particles at the nanoscale, thereby illustrating the links between physics, chemistry, materials science through hands-on experience. Furthermore it aims to give an overview of the field with motivating lectures from industry and academia, including the development of technologies and processes based on particle technology with introduction to design methods of mechanical processes, scale-up laws and optimal use of materials and energy. Most importantly, this course aims to develop the creativity and sharpen the communication skills of motivated students through their individual projects, a PERFECT preparation for the M/BSc thesis (e.g. efficient & critical literature search, effective oral/written project presentations), the future profession itself and even life, in general, are always there! | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The course objectives are best met primarily through the individual student projects which may involve experiments, simulations or critical & quantitative reviews of the literature. Projects are conducted individually under the close supervision of MSc, PhD or post-doctoral students. Therein, a 2-page proposal is submitted within the first two semester weeks addressing explicitly, at least, 10 well-selected research articles and thoughtful meetings with the project supervisor. The proposal address 3 basic questions: a) how important is the project; b) what has been done already in that field and c) what will be done by the student. Detailed feedback on each proposal is given by the supervisor, assistant and professor two weeks later. Towards the end of the semester, a 10-minute oral presentation is given by the student followed by 10 minutes Q&A. A 10-page final report is submitted by noon of the last day of the semester. The project supervisor will provide guidance throughout the course. Lectures include some of the following: - Overview & Project Presentation - Particle Size Distribution - Particle Diffusion - Coagulation - Agglomeration & Coalescence - Particle Growth by Condensation - Control of particle size & structure during gas-phase synthesis - Multi-scale design of aerosol synthesis of particles - Particle Characterization - Aerosol manufacture of nanoparticles - Forces acting on Single Particles in a Flow Field - Fixed and Fluidized Beds - Separations of Solid-Liquid & Solid-Gas systems - Emulsions/droplet formation/microfluidics - Gas Sensors - Coaching for proposal & report writing as well as oral presentations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Smoke, Dust and Haze, S.K. Friedlander, Oxford, 2nd ed., 2000 Aerosol Technology, W. Hinds, Wiley, 2nd Edition, 1999. Aerosol Processing of Materials, T. Kodas M. Hampden-Smith, Wiley, 1999. History of the Manufacture of Fine Particles in High-Temperature Aerosol Reactors in Aerosol Science and Technology: History and Reviews, ed. D.S. Ensor & K.N. Lohr, RTI Press, Ch. 18, pp. 475-507, 2011. Flame aerosol synthesis of smart nanostructured materials, R. Strobel, S. E. Pratsinis, J. Mater. Chem., 17, 4743-4756 (2007). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | FluidMechanik I, Thermodynamik I&II & "clean" 5th semester BSc student standing in D-MAVT (no block 1 or 2 obligations). Students attending this course are expected to allocate sufficient additional time within their weekly schedule to successfully conduct their project. As exceptional effort will be required! Having seen "Chasing Mavericks" (2012) by Apted & Henson, "Unbroken" (2014) by Angelina Jolie and, in particular, "The Salt of the Earth" (2014) by Wim Wenders might be helpful and even motivating. These movies show how methodic effort can bring superior and truly unexpected results (e.g. stay under water for 5 minutes to overcome the fear of riding huge waves or merciless Olympic athlete training that help survive 45 days on a raft in Pacific Ocean followed by 2 years in a Japanese POW camp during WWII). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0905-00L | Medical Technology Innovation - From Concept to Clinics | W | 4 credits | 3G | I. Herrmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Project-oriented learning on how to develop technological solutions to address unmet clinical needs. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | After completing the course, you will be able to effectively collaborate with medical doctors in order to identify important unmet clinical needs. You will be able to ideate and develop appropriate engineering solutions and implementation strategies for real-world clinical problems. This lecture aims to prepare you for typical engineering challenges in the real-world where - in addition to the development of an elegant solution -interdisciplinary team work and effective communication play a key role. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | will be available on the moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | will be available on the moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | On site presence during (most) of the lectures highly encouraged! Graded innovation project will require on-site presence. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0913-00L | Introduction to Photonics | W | 4 credits | 2V + 2U | R. Quidant, J. Ortega Arroyo | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course introduces students to the main concepts of optics and photonics. Specifically, we will describe the laws obeyed by optical waves and discuss how to use them to manipulate light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Photonics, the science of light, has become ubiquitous in our lives. Control and manipulation of light is what enables us to interact with the screen of our smart devices and exchange large amounts of complex information. Photonics has also taken a preponderant role in cutting-edge science, allowing for instance to image nanospecimens, detect diseases or sense very tiny forces. The purpose of this course is three-fold: (i) We first aim to provide the fundamentals of photonics, establishing a solid basis for more specialised courses. (ii) Beyond theoretical concepts, our intention is to have students develop an intuition on how to manipulate light in practise. (iii) Finally, the course highlights how the taught concepts apply to modern research as well as to everyday life technologies (LCD screens, polarisation sun glasses, anti-reflection coating etc...). Content, including videos of laboratory experiments, has been designed to be approachable by students from a diverse set of science and engineering backgrounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | I- BASICS OF WAVE THEORY 1) General concepts 2) Differential wave equation 3) Wavefront 4) Plane waves and Fourier decomposition of optical fields 5) Spherical waves and Huygens-Fresnel principle II- ELECTROMAGNETIC WAVES 1) Maxwell equations 2) Wave equation for EM waves 3) Dielectric permittivity 4) Refractive index 5) Nonlinear optics 6) Polarisation and polarisation control III- PROPAGATION OF LIGHT 1) Waves at an interface 2) The Fresnel equations 3) Total internal reflection 4) Evanescent waves 5) Dispersion diagram IV- INTERFERENCES 1) General considerations 2) Temporal and spatial coherence 3) The Young double slit experiment 4) Diffraction gratings 5) The Michelson interferometer 6) Multi-wave interference 7) Antireflecting coating and interference filters 8) Optical holography V- LIGHT MANIPULATION 1) Optical waveguides 2) Photonic crystals 3) Metamaterials and metasurfaces 4) Optical cavities VI- INTRODUCTION TO OPTICAL MICROSCOPY 1) Basic concepts 2) Direct and Fourier imaging 3) Image formation 4) Fluorescence microscopy 5) Scattering-based microscopy 6) Digital holography 7) Computational imaging VII- OPTICAL FORCES AND OPTICAL TWEEZERS 1) History of optical forces 2) Theory of optical trapping 3) Atom cooling 4) Optomechanics 5) Plasmonic trapping 6) Applications of optical tweezers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Optics (Hecht) - Pearson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Physics I, Physics II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0917-00L | Mass Transfer | W | 4 credits | 2V + 2U | S. E. Pratsinis, V. Mavrantzas, C.‑J. Shih | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0927-00L | Rate-Controlled Separations in Fine Chemistry | W | 6 credits | 3V + 1U | M. Mazzotti, V. Becattini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life sicence processes in particular, fine chemistry and biotechnology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | The class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Handouts during the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Recommendations for text books will be covered in the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0951-00L | Process Design and Safety | W | 4 credits | 2V + 1U | F. Trachsel, C. Hutter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The lecture Process Design and Saftey deals with the fundamentals of project management, scale-up, dimensioning and safety of chemical process equipment and plants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The objective of the lecture is to expound the engineering design approach of important elements in chemical plant design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Fundamentals in Chemical engineering Design; Project Management, Cost estimate, Materials and Corrosion, Piping and Armatures, Pumps, Reactors and Scale-up, Safety of chemical processes, Patents | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | The lecture slides will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Coulson and Richardson's: Chemical Engineering , Vol 6: Chemical Engineering Design, (1996) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | A 1-day excursion including a visit of a chemical plant will be part of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-0957-00L | Practica in Process Engineering I | W | 2 credits | 2P | S. A. Meyer, M. Tibbitt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | Practical training at pilot facilities for fundamental processing steps, typical laboratory and pilot facility experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | Getting acquainted with unit operations, measuring tools and data processing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | 4 modules in total (3 from Prof. Norris, 1 from Prof. Mark Tibbitt) Details and dates will be communicated at the beginning of the semester. Residence Time Distribution Tibbitt Perovskite Nanocrystals - Synthesis and Characterization Norris ICP Elemental Analysis Norris Scanning Electron Microscope Imaging (SEM) Norris | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lecture notes | Scripts of the specific practice will be available shortly before the modules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | Own scripts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

529-0613-01L | Process Simulation and Flowsheeting | W | 6 credits | 3G | G. Guillén Gosálbez | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | This course encompasses the theoretical principles of chemical process simulation and optimization, as well as its practical application in process analysis. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages (Aspen) are introduced for solving process flowsheeting and optimization problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | This course aims to develop the competency of chemical engineers in process flowsheeting, process simulation and process optimization. Specifically, students will develop the following skills: - Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes. - Modeling of general chemical processes and systems: students should be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior. - Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able to develop criteria to correctly use commercial software packages and critically evaluate their results. - Process optimization: the students will learn how to formulate optimization problems in mathematical terms, the main type of optimization problems that exist (i.e., LP, NLP, MILP and MINLP) and the fundamentals of the optimization algorithms implemented in commercial solvers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Content | Overview of process simulation and flowsheeting: - Definition and fundamentals - Fields of application - Case studies Process simulation: - Modeling strategies of process systems - Mass and energy balances and degrees of freedom of process units and process systems Process flowsheeting: - Flowsheet partitioning and tearing - Solution methods for process flowsheeting - Simultaneous methods - Sequential methods Process optimization and analysis: - Classification of optimization problems - Linear programming, LP - Non-linear programming, NLP - Mixed-integer linear programming, MILP - Mixed-integer nonlinear programming, MINLP Commercial software for simulation (Aspen Plus): - Thermodynamic property methods - Reaction and reactors - Separation / columns - Convergence, optimisation & debugging | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literature | An exemplary literature list is provided below: - Biegler, L.T., Grossmann, I.E., Westerberg, A.W. Systematic methods of chemical process design, Prentice Hall International PTR (1997). - Douglas, J.M. Conceptual design of chemical processes, McGraw-Hill (1988). - Edgar, T. F., Himmelblau, D. M. Optimization of chemical process, Mcgraw Hill Chemical Engineering Series (2001). - Haydary, J. Chemical Process Design and Simulation, Wiley (2019). - Seider, W.D., Seader, J.D., Lwin, D.R., Widagdo, S. Product and process design principles: synthesis, analysis, and evaluation, John Wiley & Sons, Inc. (2010). - Sinnot, R.K., Towler, G. Chemical Engineering Design, Butterworth-Heinemann (2009). - Smith, R. Chemical process design and integration, Wiley (2005). - Turton, R., A. Shaeiwitz, Bhattacharyya, D., Whiting, W. Synthesis and Design of Chemical Processes, Prentice Hall (2013). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Prerequisites / Notice | A basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Multidisciplinary Courses The students are free to choose individually Master’s courses from the Course Catalogue of ETH Zurich, ETH Lausanne and the Universities of Zurich (Link) and St. Gallen. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

» Course Catalogue of ETH Zurich | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Semester Project | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-1008-00L | Semester Project Process Engineering Only for Process Engineering MSc. The subject of the Master Thesis and the choice of the supervisor (ETH-professor) are to be approved in advance by the tutor. | O | 8 credits | 17A | Professors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. Tutors propose the subject of the project, elaborate the project plan, and define the roadmap together with their students, as well as monitor the overall execution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The semester project is designed to train the students in the solution of specific engineering problems. This makes use of the technical and social skills acquired during the master's program. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Industrial Internship | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

151-1090-00L | Industrial InternshipAccess to the company list and request for recognition under Link. No registration required via myStudies. | O | 8 credits | external organisers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Abstract | The main objective of the minimum twelve-week internship is to expose Master’s students to the industrial work environment. The aim of the Industrial Internship is to apply engineering knowledge to practical situations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Objective | The aim of the Industrial Internship is to apply engineering knowledge to practical situations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Science in Perspective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

» see Science in Perspective: Type A: Enhancement of Reflection Capability | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

» Recommended Science in Perspective (Type B) for D-MAVT | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

» see Science in Perspective: Language Courses ETH/UZH |

- Page 1 of 2 All