Suchergebnis: Katalogdaten im Herbstsemester 2022

Mathematik Bachelor Information
Bachelor-Studium (Studienreglement 2021)
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-1261-07LAnalysis I: eine Variable Information Belegung eingeschränkt - Details anzeigen O10 KP6V + 3UG. Felder
KurzbeschreibungEinführung in die Differential- und Integralrechnung in einer reellen Veränderlichen: Grundbegriffe des mathematischen Denkens, Zahlen, Folgen und Reihen, topologische Grundbegriffe, stetige Funktionen, differenzierbare Funktionen, gewöhnliche Differentialgleichungen, Riemannsche Integration.
LernzielMathematisch exakter Umgang mit Grundbegriffen der Differential-und Integralrechnung.
LiteraturH. Amann, J. Escher: Analysis I
https://link.springer.com/book/10.1007/978-3-7643-7756-4

J. Appell: Analysis in Beispielen und Gegenbeispielen
https://link.springer.com/book/10.1007/978-3-540-88903-8

R. Courant: Vorlesungen über Differential- und Integralrechnung
https://link.springer.com/book/10.1007/978-3-642-61988-5

O. Forster: Analysis 1
https://link.springer.com/book/10.1007/978-3-658-00317-3

H. Heuser: Lehrbuch der Analysis
https://link.springer.com/book/10.1007/978-3-322-96828-9

K. Königsberger: Analysis 1
https://link.springer.com/book/10.1007/978-3-642-18490-1

W. Walter: Analysis 1
https://link.springer.com/book/10.1007/3-540-35078-0

V. Zorich: Mathematical Analysis I (englisch)
https://link.springer.com/book/10.1007/978-3-662-48792-1

A. Beutelspacher: "Das ist o.B.d.A. trivial"
https://link.springer.com/book/10.1007/978-3-8348-9599-8

H. Schichl, R. Steinbauer: Einführung in das mathematische Arbeiten
https://link.springer.com/book/10.1007/978-3-642-28646-9
402-1701-00LPhysik IO7 KP4V + 2UW. Wegscheider
KurzbeschreibungDiese Vorlesung stellt eine erste Einführung in die Physik dar und behandelt Themen der klassischen Mechanik.
LernzielAneignung von Kenntnissen der physikalischen Grundlagen in der klassischen Mechanik. Fertigkeiten im Lösen von physikalischen Fragen anhand von Übungsaufgaben.
252-0847-00LInformatik Information O5 KP2V + 2UC. Cotrini Jimenez, F. Friedrich Wicker
KurzbeschreibungDie Vorlesung bietet eine Einführung in das Programmieren mit einem Fokus auf systematischem algorithmischem Problemlösen. Lehrsprache ist C++. Es wird keine Programmiererfahrung vorausgesetzt.
LernzielPrimäres Lernziel der Vorlesung ist die Befähigung zum Programmieren mit C++. Studenten beherrschen nach erfolgreichem Abschluss der Vorlesung die Mechanismen zum Erstellen eines Programms, sie kennen die fundamentalen Kontrollstrukturen, Datenstrukturen und verstehen, wie man ein algorithmisches Problem in ein Programm abbildet. Sie haben eine Vorstellung davon, was "hinter den Kulissen" passiert, wenn ein Programm übersetzt und ausgeführt wird.
Sekundäre Lernziele der Vorlesung sind das Computer-basierte, algorithmische Denken, Verständnis der Möglichkeiten und der Grenzen der Programmierung und die Vermittlung der Denkart eines Computerwissenschaftlers.
InhaltWir behandeln fundamentale Datentypen, Ausdrücke und Anweisungen, (Grenzen der) Computerarithmetik, Kontrollanweisungen, Funktionen, Felder, zusammengesetze Strukturen und Zeiger. Im Teil zur Objektorientierung werden Klassen, Vererbung und Polymorhpie behandelt, es werden exemplarisch einfache dynamische Datentypen eingeführt.
Die Konzepte der Vorlesung werden jeweils durch Algorithmen und Anwendungen motiviert und illustriert.
SkriptEin Skript in englischer Sprache wird semesterbegleitend herausgegeben. Das Skript und die Folien werden auf der Vorlesungshomepage zum Herunterladen bereitgestellt. Übungen werden online gelöst und abgegeben.
LiteraturBjarne Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010
Stephen Prata: C++ Primer Plus, Sixth Edition, Addison Wesley, 2012
Andrew Koenig and Barbara E. Moo: Accelerated C++, Addison-Wesley, 2000.
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-1151-00LLineare Algebra I Information Belegung eingeschränkt - Details anzeigen O7 KP4V + 2UP. Biran, M. Einsiedler
KurzbeschreibungEinführung in die Theorie der Vektorräume für Studierende der Mathematik und der Physik: Grundlagen, Vektorräume, lineare Abbildungen, Lösungen linearer Gleichungen, Matrizen, Determinanten, Endomorphismen, Eigenwerte, Eigenvektoren.
Lernziel- Beherrschung der Grundkonzepte der Linearen Algebra
- Einführung ins mathematische Arbeiten
Inhalt- Grundlagen
- Vektorräume und lineare Abbildungen
- Lineare Gleichungssysteme und Matrizen
- Determinanten
- Endomorphismen und Eigenwerte
SkriptWe will provide German lecture notes and an English translation at latest at the start of the semester.
LiteraturAuf der Webseite der Vorlesung wird spätestens zu Semesterbeginn ein Skript von M. Aka und eine englische Übersetzung zur Verfügung gestellt. Hier sind einige alternative Empfehlungen:
- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8
- H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: https://www.degruyter.com/search?query=kowalsky+michler
- S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. Link

Ansonsten empfehlen wir diese allgemeine Einführung in das mathematische Arbeiten:
- H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9
Obligatorische Fächer
Prüfungsblock 1
NummerTitelTypECTSUmfangDozierende
401-2303-00LFunktionentheorie Information O6 KP3V + 2UE. Kowalski
KurzbeschreibungComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
LernzielWorking knowledge of functions of one complex variables; in particular applications of the residue theorem.
LiteraturB. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010

Th. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2003-00LAlgebra I Information O7 KP3V + 2UR. Pink
KurzbeschreibungEinführung in die grundlegenden Begriffe und Resultate der Gruppentheorie, der Ringtheorie und der Körpertheorie.
LernzielEinführung in grundlegende Begriffe und Resultate aus der Theorie der Gruppen, der Ringe und der Körper.
InhaltGruppentheorie: Grundbegriffe und Beispiele von Gruppen, Untergruppen, Quotientengruppen, Homomorphismen, Gruppenoperationen, Sylowsätze, Anwendungen

Ringtheorie: Grundbegriffe und Beispiele von Ringen,
Ringhomomorphismen, Ideale, Faktorringe, euklidische Ringe, Hauptidealringe, faktorielle Ringe, Anwendungen

Körpertheorie: Grundbegriffe und Beispiele von Körpern, Körpererweiterungen, algebraische Erweiterungen, Anwendungen
LiteraturG. Fischer: Lehrbuch der Algebra, Vieweg Verlag
Karpfinger-Meyberg: Algebra, Spektrum Verlag
S. Bosch: Algebra, Springer Verlag
B.L. van der Waerden: Algebra I und II, Springer Verlag
S. Lang, Algebra, Springer Verlag
A. Knapp: Basic Algebra, Springer Verlag
J. Rotman, "Advanced modern algebra, 3rd edition, part 1"
http://bookstore.ams.org/gsm-165/
J.F. Humphreys: A Course in Group Theory (Oxford University Press)
G. Smith and O. Tabachnikova: Topics in Group Theory (Springer-Verlag)
M. Artin: Algebra (Birkhaeuser Verlag)
R. Lidl and H. Niederreiter: Introduction to Finite Fields and their Applications (Cambridge University Press)
401-2653-21LNumerische Mathematik I Information Belegung eingeschränkt - Details anzeigen O7 KP3V + 2UC. Schwab
KurzbeschreibungDieser Kurs gibt eine Einführung in numerische Methoden für Studierende der Mathematik im 3. Semester. Abgedeckt werden Methoden der linearen Algebra (lineare Gleichungssysteme, Matrixeigenwertprobleme) sowie der Analysis (Nullstellensuche von Funktionen sowie numerische Interpolation, Integration und Approximation) in Theorie und Implementierung.
LernzielKenntnis der grundlegenden numerischen Verfahren sowie `numerische Kompetenz':
Anwendung der numerischen Verfahren zur Problemloesung,
Mathematische Beweistechniken fuer den Nachweis von Stabilitaet, Konsistenz u. Konvergenz der Verfahren sowie deren MATLAB Implementierung.
InhaltRundungsfehler, lineare Gleichungssysteme, nichtlineare Gleichungen (Skalar und Systeme), Interpolation, Extrapolation, lineare und nichtlineare Ausgleichsrechnung, elementare Optimierungsverfahren, numerische Integration.
SkriptSkript zur Vorlesung sowie Leseliste sind auf der Webseite der Vorlesung verfügbar.
LiteraturSkript wird eingeschriebenen Studierenden des ETH BSc Mathematik zur
Verfuegung gestellt.
_Zusaetzlich_ wird empfohlen:
Quarteroni, Sacco und Saleri, Numerische Mathematik 1 + 2, Springer Verlag 2002.
Voraussetzungen / BesonderesZulassungsbedingungen:
bestandene Pruefungen
Lineare Algebra I , Analysis I in ETH BSc MATH
u.
Linear Algebra II, Analysis II in ETH BSc MATH

Woechentliche Hausuebungsserien sind integraler
Bestandteil des Kurses; die Hausuebungen
involvieren MATLAB Programmieraufgaben, u.
werden bewertet.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
Prüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-2283-00LAnalysis III (Masstheorie) Information O6 KP3V + 2UF. Da Lio
KurzbeschreibungAbstrakte Mass- und Integrationstheorie, inklusive: Satz von Caratheodory, Lebesgue-Mass, Radon-Mass, Hausdorff-Mass, Konvergenzsätze, L^p-Räume, Satz von Radon-Nikodym, Produktmasse und Satz von Fubini
LernzielGrundlagen der abstrakten Mass- und Integrationstheorie
InhaltMaßräume (Lebesgue-Maß, Hausdorff-Maß,
Radonmessung)
• Messbare Funktionen: Definition und Eigenschaften
• Integration: Definition, Eigenschaften, Konvergenzsätze, L^p-Räume, Lebesgue-L^p-Räume
• Produktmaße und multiple Integrale. Fubini und
Tonelli-Theoreme, Faltungen
• Differenzierung der Maßnahmen (falls zeitlich möglich)
SkriptDie Vorlesung folgt dem Skript von der Dozentin
(https://people.math.ethz.ch/~fdalio/Measuremainfile.pdf)
Literatur1. Lecture notes by Professor Michael Struwe (http://www.math.ethz.ch/~struwe/Skripten/AnalysisIII-SS2007-18-4-08.pdf)
2. L. Evans and R.F. Gariepy "Measure theory and fine properties of functions"
3. Walter Rudin "Real and complex analysis"
4. R. Bartle The elements of Integration and Lebesgue Measure
5. P. Cannarsa & T. D'Aprile: Lecture notes on Measure Theory and Functional Analysis. http://www.mat.uniroma2.it/~cannarsa/cam_0607.pdf
Voraussetzungen / BesonderesAnalyse 1 & 2 und Grundbegriffe der Topologie
Ergänzungsfächer
NummerTitelTypECTSUmfangDozierende
402-2883-00LPhysik IIIW7 KP4V + 2UY. Chu
KurzbeschreibungEinführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik.
LernzielGrundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt.
InhaltEinführung in die Quantenphysik: Planck’sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson and Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen.

Optik/Wellenoptik: Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer.

Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator

Quantenmechanische Atomphysik: Coulombpotential in der Schrödinger-Gleichung, Wasserstoffatom, Atomorbitale, Spin, Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, Molekülorbitale und Kovalente Bindung

Statistische Physik: Wahrscheinlichkeitsverteilungen, Ideales Gas, Äquipartitionsgesetz, Zustandsdichte, Maxwell-Boltzmann-Verteilung, Fermi-Dirac-Statistik für Fermionen, Bose-Einstein-Statistik für Bosonen, Elektronengas, Herleitung Planck’sche Strahlungsgesetz (Photonengas)
SkriptIm Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt.
Wir werden die Quantenmechanik anhand der Schrödinger-Gleichung mit den klassischen elektro-magnetischen Wellen vergleichen. Zu den klassischen Wellen werden Ergänzungsunterlagen verteilt.
LiteraturM. Alonso, E. J. Finn
Quantenphysik und Statistische Physik
R. Oldenbourg Verlag, München
5. Auflage
ISBN 978-3-486-71340-4
402-2203-01LAllgemeine Mechanik Information W7 KP4V + 2UM. Gaberdiel
KurzbeschreibungBegriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Hamiltonsche Mechanik, kanonische Transformationen, Hamilton-Jacobi-Gleichung, Kreisel, relativistische Raum-Zeit-Struktur,.
LernzielGrundlegendes Verständnis der Mechanik im Rahmen der Langrange'schen und Hamilton'schen Formulierung. Detailliertes Verständnis wichtiger Anwendungen, insbesondere des Keplerproblems, der Physik von starren Körpern (Kreisel), sowie von Schwingungsphänomenen.
252-0057-00LTheoretische Informatik Information W7 KP4V + 2UJ. Hromkovic, H.‑J. Böckenhauer, D. Komm
KurzbeschreibungKonzepte zur Beantwortung grundlegender Fragen wie: a) Was ist völlig automatisiert machbar (algorithmisch lösbar) b) Wie kann man die Schwierigkeit von Aufgaben (Problemen) messen? c) Was ist Zufall und wie kann er nützlich sein? d) Was ist Nichtdeterminisus und welche Rolle spielt er in der Informatik? e) Wie kann man unendliche Objekte durch Automaten und Grammatiken endlich darstellen?
LernzielVermittlung der grundlegenden Konzepte der Informatik in ihrer geschichtlichen Entwicklung
InhaltDie Veranstaltung ist eine Einführung in die Theoretische Informatik, die die grundlegenden Konzepte und Methoden der Informatik in ihrem geschichtlichen Zusammenhang vorstellt. Wir präsentieren Informatik als eine interdisziplinäre Wissenschaft, die auf einer Seite die Grenzen zwischen Möglichem und Unmöglichem und die quantitativen Gesetze der Informationsverarbeitung erforscht und auf der anderen Seite Systeme entwirft, analysiert, verifiziert und implementiert.

Die Hauptthemen der Vorlesung sind:

- Alphabete, Wörter, Sprachen, Messung der Informationsgehalte von Wörtern, Darstellung von algorithmischen Aufgaben
- endliche Automaten, reguläre und kontextfreie Grammatiken
- Turingmaschinen und Berechenbarkeit
- Komplexitätstheorie und NP-Vollständigkeit
- Algorithmenentwurf für schwere Probleme
SkriptDie Vorlesung ist detailliert durch das Lehrbuch "Theoretische Informatik" bedeckt.
LiteraturBasisliteratur:
1. J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014.

2. J. Hromkovic: Theoretical Computer Science. Springer 2004.

Weiterführende Literatur:
3. M. Sipser: Introduction to the Theory of Computation, PWS Publ. Comp.1997
4. J.E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie.
Pearson 2002.
5. I. Wegener: Theoretische Informatik. Teubner
Weitere Übungen und Beispiele:
6. A. Asteroth, Ch. Baier: Theoretische Informatik
Voraussetzungen / BesonderesWährend des Semesters werden zwei freiwillige Probeklausuren gestellt.
227-0045-00LSignal- und Systemtheorie I Belegung eingeschränkt - Details anzeigen W4 KP2V + 2UH. Bölcskei
KurzbeschreibungSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
LernzielEinführung in die mathematische Signaltheorie und Systemtheorie.
InhaltSignaltheorie und Systemtheorie (zeitkontinuierlich und zeitdiskret): Signalanalyse im Zeit- und Frequenzbereich, Signalräume, Hilberträume, verallgemeinerte Funktionen, lineare zeitinvariante Systeme, Abtasttheoreme, zeitdiskrete Signale und Systeme, digitale Filterstrukturen, diskrete Fourier-Transformation (DFT), endlich-dimensionale Signale und Systeme, schnelle Fouriertransformation (FFT).
SkriptVorlesungsskriptum, Übungsskriptum mit Lösungen.
Wahlpflichtfächer
kein Angebot in diesem Semester
Bachelor-Studium (Studienreglement 2016)
Obligatorische Fächer
Prüfungsblock I
Im Prüfungsblock I muss entweder die Lerneinheit 402-2883-00L Physik III oder die Lerneinheit 402-2203-01L Allgemeine Mechanik gewählt und zur Prüfung angemeldet werden. (Die andere der beiden Lerneinheiten kann im ETH Bachelor-Studiengang Mathematik belegt, aber weder in myStudies zur Prüfung angemeldet noch für den Studiengang angerechnet werden.)
Für 252-0851-00L Algorithmen und Komplexität siehe Link
NummerTitelTypECTSUmfangDozierende
401-2303-00LFunktionentheorie Information O6 KP3V + 2UE. Kowalski
KurzbeschreibungComplex functions of one variable, Cauchy-Riemann equations, Cauchy theorem and integral formula, singularities, residue theorem, index of closed curves, analytic continuation, special functions, conformal mappings, Riemann mapping theorem.
LernzielWorking knowledge of functions of one complex variables; in particular applications of the residue theorem.
LiteraturB. Palka: "An introduction to complex function theory."
Undergraduate Texts in Mathematics. Springer-Verlag, 1991.

E.M. Stein, R. Shakarchi: Complex Analysis. Princeton University Press, 2010

Th. Gamelin: Complex Analysis. Springer 2001

E. Titchmarsh: The Theory of Functions. Oxford University Press

D. Salamon: "Funktionentheorie". Birkhauser, 2011. (In German)

L. Ahlfors: "Complex analysis. An introduction to the theory of analytic functions of one complex variable." International Series in Pure and Applied Mathematics. McGraw-Hill Book Co.

K.Jaenich: Funktionentheorie. Springer Verlag

R.Remmert: Funktionentheorie I. Springer Verlag

E.Hille: Analytic Function Theory. AMS Chelsea Publications
401-2333-00LMathematische Methoden der Physik I Information O6 KP3V + 2UT. H. Willwacher
KurzbeschreibungFourierreihen. Lineare partielle Differentialgleichungen der mathematischen Physik. Fouriertransformation. Spezielle Funktionen und Eigenfunktionenentwicklungen. Distributionen. Ausgewählte Probleme aus der Quantenmechanik.
Lernziel
402-2883-00LPhysik IIIW7 KP4V + 2UY. Chu
KurzbeschreibungEinführung in das Gebiet der Quanten- und Atomphysik und in die Grundlagen der Optik und statistischen Physik.
LernzielGrundlegende Kenntnisse in Quanten- und Atomphysik und zudem in Optik und statistischer Physik werden erarbeitet. Die Fähigkeit zur eigenständigen Lösung einfacher Problemstellungen aus den behandelten Themengebieten wird erreicht. Besonderer Wert wird auf das Verständnis experimenteller Methoden zur Beobachtung der behandelten physikalischen Phänomene gelegt.
InhaltEinführung in die Quantenphysik: Planck’sche Strahlung (Wärmestrahlung), Photonen, Photoelektrischer Effekt, Thomson and Rutherford Streuung, Compton Streuung, Bohrsche Atommodell, de-Broglie Materiewellen.

Optik/Wellenoptik: Linsen, Abbildungssysteme, Brechung und Fermatsches Prinzip, Beugung, Interferenz, Fabry-Perot, Interferometer, Spektrometer.

Quantenmechanik: Dualismus Teilchen-Welle, Wellenfunktionen, Operatoren, Schrödinger-Gleichung, Potentialstufe und Potentialkasten, harmonischer Oszillator

Quantenmechanische Atomphysik: Coulombpotential in der Schrödinger-Gleichung, Wasserstoffatom, Atomorbitale, Spin, Zeeman-Effekt, Spin-Bahn Kopplung, Mehrelektronenatome, Röntgenspektren, Auswahlregeln, Absorption und Emission von Strahlung, Molekülorbitale und Kovalente Bindung

Statistische Physik: Wahrscheinlichkeitsverteilungen, Ideales Gas, Äquipartitionsgesetz, Zustandsdichte, Maxwell-Boltzmann-Verteilung, Fermi-Dirac-Statistik für Fermionen, Bose-Einstein-Statistik für Bosonen, Elektronengas, Herleitung Planck’sche Strahlungsgesetz (Photonengas)
SkriptIm Rahmen der Veranstaltung werden die Folien in elektronischer Form zur Verfügung gestellt. Ergänzendes Buch wird als Pflichtlektüre empfohlen. Es wird kein Skript in der Vorlesung verteilt.
Wir werden die Quantenmechanik anhand der Schrödinger-Gleichung mit den klassischen elektro-magnetischen Wellen vergleichen. Zu den klassischen Wellen werden Ergänzungsunterlagen verteilt.
LiteraturM. Alonso, E. J. Finn
Quantenphysik und Statistische Physik
R. Oldenbourg Verlag, München
5. Auflage
ISBN 978-3-486-71340-4
402-2203-01LAllgemeine Mechanik Information W7 KP4V + 2UM. Gaberdiel
KurzbeschreibungBegriffliche und methodische Einführung in die theoretische Physik: Newtonsche Mechanik, Zentralkraftproblem, Schwingungen, Lagrangesche Mechanik, Symmetrien und Erhaltungssätze, Hamiltonsche Mechanik, kanonische Transformationen, Hamilton-Jacobi-Gleichung, Kreisel, relativistische Raum-Zeit-Struktur,.
LernzielGrundlegendes Verständnis der Mechanik im Rahmen der Langrange'schen und Hamilton'schen Formulierung. Detailliertes Verständnis wichtiger Anwendungen, insbesondere des Keplerproblems, der Physik von starren Körpern (Kreisel), sowie von Schwingungsphänomenen.
Prüfungsblock II
Studierende, die den Prüfungsblock 2 (Reglement 2016) noch nicht abgelegt haben, können die bisherige Vorlesung 401-2284-00L Mass & Integral durch die neue Vorlesung 401-2283-00L Analysis III (Masstheorie) ersetzen. Die Prüfungsanmeldung zu 401-2283-00L Analysis III (Masstheorie) erfolgt über die Prüfungsplanstelle: exams@ethz.ch. Bei Wiederholung des Prüfungsblocks 2 muss die gleiche Vorlesung wie im ersten Versuch geprüft werden.
NummerTitelTypECTSUmfangDozierende
401-2003-00LAlgebra I Information O7 KP3V + 2UR. Pink
KurzbeschreibungEinführung in die grundlegenden Begriffe und Resultate der Gruppentheorie, der Ringtheorie und der Körpertheorie.
LernzielEinführung in grundlegende Begriffe und Resultate aus der Theorie der Gruppen, der Ringe und der Körper.
InhaltGruppentheorie: Grundbegriffe und Beispiele von Gruppen, Untergruppen, Quotientengruppen, Homomorphismen, Gruppenoperationen, Sylowsätze, Anwendungen

Ringtheorie: Grundbegriffe und Beispiele von Ringen,
Ringhomomorphismen, Ideale, Faktorringe, euklidische Ringe, Hauptidealringe, faktorielle Ringe, Anwendungen

Körpertheorie: Grundbegriffe und Beispiele von Körpern, Körpererweiterungen, algebraische Erweiterungen, Anwendungen
LiteraturG. Fischer: Lehrbuch der Algebra, Vieweg Verlag
Karpfinger-Meyberg: Algebra, Spektrum Verlag
S. Bosch: Algebra, Springer Verlag
B.L. van der Waerden: Algebra I und II, Springer Verlag
S. Lang, Algebra, Springer Verlag
A. Knapp: Basic Algebra, Springer Verlag
J. Rotman, "Advanced modern algebra, 3rd edition, part 1"
http://bookstore.ams.org/gsm-165/
J.F. Humphreys: A Course in Group Theory (Oxford University Press)
G. Smith and O. Tabachnikova: Topics in Group Theory (Springer-Verlag)
M. Artin: Algebra (Birkhaeuser Verlag)
R. Lidl and H. Niederreiter: Introduction to Finite Fields and their Applications (Cambridge University Press)
401-2283-00LAnalysis III (Masstheorie) Information W6 KP3V + 2UF. Da Lio
KurzbeschreibungAbstrakte Mass- und Integrationstheorie, inklusive: Satz von Caratheodory, Lebesgue-Mass, Radon-Mass, Hausdorff-Mass, Konvergenzsätze, L^p-Räume, Satz von Radon-Nikodym, Produktmasse und Satz von Fubini
LernzielGrundlagen der abstrakten Mass- und Integrationstheorie
InhaltMaßräume (Lebesgue-Maß, Hausdorff-Maß,
Radonmessung)
• Messbare Funktionen: Definition und Eigenschaften
• Integration: Definition, Eigenschaften, Konvergenzsätze, L^p-Räume, Lebesgue-L^p-Räume
• Produktmaße und multiple Integrale. Fubini und
Tonelli-Theoreme, Faltungen
• Differenzierung der Maßnahmen (falls zeitlich möglich)
SkriptDie Vorlesung folgt dem Skript von der Dozentin
(https://people.math.ethz.ch/~fdalio/Measuremainfile.pdf)
Literatur1. Lecture notes by Professor Michael Struwe (http://www.math.ethz.ch/~struwe/Skripten/AnalysisIII-SS2007-18-4-08.pdf)
2. L. Evans and R.F. Gariepy "Measure theory and fine properties of functions"
3. Walter Rudin "Real and complex analysis"
4. R. Bartle The elements of Integration and Lebesgue Measure
5. P. Cannarsa & T. D'Aprile: Lecture notes on Measure Theory and Functional Analysis. http://www.mat.uniroma2.it/~cannarsa/cam_0607.pdf
Voraussetzungen / BesonderesAnalyse 1 & 2 und Grundbegriffe der Topologie
Ergänzende Fächer
NummerTitelTypECTSUmfangDozierende
402-0351-00LAstronomieW2 KP2VH. M. Schmid, A. M. Glauser
KurzbeschreibungEin Überblick über die wichtigsten Gebiete der heutigen Astronomie: Planeten, Sonne, Sterne, Milchstrasse, Galaxien und Kosmologie.
LernzielEinführung in die Astronomie mit einem Überblick über die wichtigsten Gebiete der heutigen Astronomie. Diese Vorlesung dient auch als Grundlage für die Astrophysikvorlesungen der höheren Semester.
InhaltPlaneten, Sonne, Sterne, Milchstrasse, Galaxien und Kosmologie.
SkriptKopien der Präsentationen werden zur Verfügung gestellt.
LiteraturDer Neue Kosmos. A. Unsöld, B. Baschek, Springer

Oder sonstige Grundlehrbücher zur Astronomie.
Kernfächer (Studienreglement 2016)
NummerTitelTypECTSUmfangDozierende
252-0057-00LTheoretische Informatik Information W7 KP4V + 2UJ. Hromkovic, H.‑J. Böckenhauer, D. Komm
KurzbeschreibungKonzepte zur Beantwortung grundlegender Fragen wie: a) Was ist völlig automatisiert machbar (algorithmisch lösbar) b) Wie kann man die Schwierigkeit von Aufgaben (Problemen) messen? c) Was ist Zufall und wie kann er nützlich sein? d) Was ist Nichtdeterminisus und welche Rolle spielt er in der Informatik? e) Wie kann man unendliche Objekte durch Automaten und Grammatiken endlich darstellen?
LernzielVermittlung der grundlegenden Konzepte der Informatik in ihrer geschichtlichen Entwicklung
InhaltDie Veranstaltung ist eine Einführung in die Theoretische Informatik, die die grundlegenden Konzepte und Methoden der Informatik in ihrem geschichtlichen Zusammenhang vorstellt. Wir präsentieren Informatik als eine interdisziplinäre Wissenschaft, die auf einer Seite die Grenzen zwischen Möglichem und Unmöglichem und die quantitativen Gesetze der Informationsverarbeitung erforscht und auf der anderen Seite Systeme entwirft, analysiert, verifiziert und implementiert.

Die Hauptthemen der Vorlesung sind:

- Alphabete, Wörter, Sprachen, Messung der Informationsgehalte von Wörtern, Darstellung von algorithmischen Aufgaben
- endliche Automaten, reguläre und kontextfreie Grammatiken
- Turingmaschinen und Berechenbarkeit
- Komplexitätstheorie und NP-Vollständigkeit
- Algorithmenentwurf für schwere Probleme
SkriptDie Vorlesung ist detailliert durch das Lehrbuch "Theoretische Informatik" bedeckt.
LiteraturBasisliteratur:
1. J. Hromkovic: Theoretische Informatik. 5. Auflage, Springer Vieweg 2014.

2. J. Hromkovic: Theoretical Computer Science. Springer 2004.

Weiterführende Literatur:
3. M. Sipser: Introduction to the Theory of Computation, PWS Publ. Comp.1997
4. J.E. Hopcroft, R. Motwani, J.D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie.
Pearson 2002.
5. I. Wegener: Theoretische Informatik. Teubner
Weitere Übungen und Beispiele:
6. A. Asteroth, Ch. Baier: Theoretische Informatik
Voraussetzungen / BesonderesWährend des Semesters werden zwei freiwillige Probeklausuren gestellt.
  •  Seite  1  von  5 Nächste Seite Letzte Seite     Alle