Suchergebnis: Katalogdaten im Frühjahrssemester 2022
Energy Science and Technology Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kernfächer Mindestens je 2 Kernfächer pro Fachrichtung müssen erfolgreich abgelegt werden. Die Teilnahme am Kurs des "Fächerübergreifenden Energiewesens" ist für alle Studierenden obligatorisch. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical Power Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-0530-00L | Optimization in Energy Systems | W | 6 KP | 4G | G. Hug | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this class, the students should have a good handle on how to approach a research question which involves optimization and implement and solve the resulting optimization problem by choosing appropriate tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In our everyday’s life, we always try to take the decision which results in the best outcome. But how do we know what the best outcome will be? What are the actions leading to this optimal outcome? What are the constraints? These questions also have to be answered when controlling a system such as energy systems. Optimization theory provides the opportunity to find the answers by using mathematical formulation and solution of an optimization problem. The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. The applications are focused on the Optimal Power Flow problem which is formulated and solved to find optimal device settings in the electric power grid and other relevant energy scheduling problems. On the theoretical side, the formulation and solving of unconstrained and constrained optimization problems, multi-time step optimization, stochastic optimization including probabilistic constraints and decomposed optimization (Lagrangian and Benders decomposition) are discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy Flows and Processes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0928-00L | CO2 Capture and Storage and the Industry of Carbon-Based Resources | W | 4 KP | 3G | M. Mazzotti, A. Bardow, V. Becattini, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces the fundamentals of carbon capture, utilization, and storage and related interdependencies between technosphere, ecosphere, and sociosphere. Topics covered: origin, production, processing, and resource economics of carbon-based resources; climate change in science & policies; CC(U)S systems in power & industrial plants; CO2 transport & storage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The lecture aims to introduce carbon dioxide capture, utilization, and storage (CCUS) systems, the technical solutions developed so far, and current research questions. This is done in the context of the origin, production, processing, and economics of carbon-based resources and of climate change issues. After this course, students are familiar with relevant technical and non-technical issues related to the use of carbon resources, climate change, and CCUS as a mitigation measure. The class will be structured in 2 hours of lecture and one hour of exercises/discussion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The transition to a net-zero society is associated with major challenges in all sectors, including energy, transportation, and industry. In the IPCC Special Report on Global Warming of 1.5 °C, rapid emission reduction and negative emission technologies are crucial to limiting global warming to below 1.5 °C. Therefore, this course illuminates carbon capture, utilization, and storage as a potential set of technologies for emission mitigation and for generating negative emissions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides and supplementary documents will be available online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | IPCC Special Report on Global Warming of 1.5°C, 2018. http://www.ipcc.ch/report/sr15/ IPCC AR5 Climate Change 2014: Synthesis Report, 2014. www.ipcc.ch/report/ar5/syr/ IPCC Special Report on Carbon dioxide Capture and Storage, 2005. www.ipcc.ch/activity/srccs/index.htm The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014. http://www.globalccsinstitute.com/publications/global-status-ccs-2014 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | External lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0191-01L | Electrochemical Energy Conversion and Storage Technologies | W | 4 KP | 3G | L. Gubler, E. Fabbri, J. Herranz Salañer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Overview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | all lecture materials will be available for download on the course website. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Textbook recommendations for advanced studies on the topics of the course: - M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019). - C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007). - T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic physical chemistry background required, prior knowledge of electrochemistry basics desired. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy Economics and Policy | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0514-00L | Energy Economics and Policy It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example,"Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | W | 3 KP | 2G | M. Filippini, S. Srinivasan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An introduction to energy economics and policy that covers the following topics: energy demand, investment in energy efficiency, investment in renewables, energy markets, market failures and behavioral anomalies, market-based and non-market based energy and climate policy instruments in industrialized and developing countries. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will develop an understanding of economic principles and tools necessary to analyze energy issues and to understand energy and climate policy instruments. Emphasis will be put on empirical analysis of energy demand and supply, market failures, behavioral anomalies, energy and climate policy instruments in industrialized and developing countries, and investments in renewables and in energy-efficient technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course provides an introduction to energy economics principles and policy applications. The first part of the course will introduce the microeconomic foundation of energy demand and supply as well as market failures and behavioral anomalies. In a second part, we introduce the concept of investment analysis (such as the NPV) in the context of renewable and energy-efficient technologies. In the last part, we use the previously introduced concepts to analyze energy policies: from a government perspective, we discuss the mechanisms and implications of market oriented and non-market oriented policy instruments as well as applications in developing countries. Throughout the entire course, we combine the material with insights from current research in energy economics. This combination will enable students to understand standard scientific literature in the field of energy economics and policy. Moreover, the class aims to show students how to relate current issues in the energy and climate spheres that influence industrialized and developing countries to insights from energy economics and policy. Course evaluation: at the end of the course, there will be a written exam covering the topics of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example, "Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-1115-00L | Energy Innovation and Management | W | 3 KP | 2V | G. Mavromatidis, B. Probst, A. Stephan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Fundamental changes in the energy sector, such as more decentralized energy production, challenge the existing business models of organizations such as utilities or technology providers. This course adopts quantitative and qualitative approaches to explore innovation and managerial, organizational and decision-making aspects in the energy sector for the transition to a low-carbon energy system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After completing the course, students will be able to: • Understand the challenges occurring in the energy sector and that companies (in or relying on the energy sector) are facing • Understand the basics of managerial/organizational aspects in the energy sector with a particular focus on energy innovations • Identify and use the appropriate quantitative energy tools for strategic decision-making in the energy sector | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course explores innovation and managerial, organizational and decision-making aspects in the energy sector for the transition towards a low-carbon energy system. The course is split in two parts with a quantitative and a qualitative focus, respectively. In the first part, students will learn about aspects such as the financial valuation of energy investment decisions and the ways that quantitative energy models of different types can be used to assist with strategic decision-making in the energy sector. Students will be introduced to two types of models: (1) techno-economic analyses of renewable energy generation and storage technologies, and (2) an energy market game, which simulates the behavior of utilities in an electricity market. This part of the course will include individual and group assignments. In the second part, guided by questions like “how does the energy industry change and why” or “how would you make the decision if you were the head of a utility”, the students will understand how firms manage innovations and why they can be difficult to manage even for established firms in the energy sector. This part of the course will be guided as an interactive case study. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Interdisciplinary Energy Management | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-1631-20L | Case Studies: Energy Systems and Technology: Part 2 Only for Energy Science and Technology MSc. | O | 2 KP | 4G | C. Franck, C. Schaffner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will allow the students to get an interdisciplinary overview of the “Energy” topic. It will explore the challenges to build a sustainable energy system for the future. This will be done through the means of case studies that the students have to work on. These case studies will be provided by industry partners. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will understand the different aspects involved in designing solutions for a sustainable future energy system. They will have experience in collaborating in interdisciplinary teams. They will have an understanding on how industry is approaching new solutions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Descriptions of case studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|
- Seite 1 von 1