# Suchergebnis: Katalogdaten im Frühjahrssemester 2022

Physik Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kernfächer Ein experimentelles oder theoretisches Bachelorkernfach kann als Masterkernfach angerechnet werden, allerdings kann dieses nicht benutzt werden, um das obligatorische experimentelle oder theoretische Kernfach im Master zu kompensieren. Für die Kategoriezuordnung lassen Sie bei der Prüfungsanmeldung "keine Kategorie" ausgewählt und wenden Sie sich nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.phys.ethz.ch/de/studium/studiensekretariat.html). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Theoretische Kernfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

402-0871-00L | Solid State TheoryStudierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das Modul PHY411 direkt an der UZH buchen. | W | 10 KP | 4V + 1U | E. Demler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | Diese Vorlesung richtet sich an Studierende der Experimentalphysik und der theoretischen Physik. Sie bietet eine Einführung in wichtige theoretische Konzepte der Festkörperphysik. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Ziel der Vorlesung ist die Entwicklung eines theoretischen Rahmens zum Verständnis grundlegender Phänomene der Festkörperphysik. Dazu gehören Symmetrien, Bandstrukturen, Teilchen-Teilchen Wechselwirkung, Landau Fermi-Flüssigkeiten, sowie spezifische Themen wie Transport, Quanten-Hall-Effekt und Magnetismus. Die Übungen unterstützen und illustrieren die Vorlesung durch handwerkliches Lösen spezifischer Probleme. Der Student versteht grundlegende theoretische Konzepte der Festkörperphysik und kann Probleme selbständig lösen. Es werden keine diagrammatischen Techniken verwendet. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | Diese Vorlesung richtet sich an Studierende der Experimentalphysik und der theoretischen Physik. Sie bietet eine Einführung in wichtige theoretische Konzepte der Festkörperphysik. Es werden folgende Themen abgedeckt: Symmetrien und Gruppentheorie, Elektronenstruktur in Kristallen, Isolatoren-Halbleiter-Metalle, Phononen, Wechselwirkungseffekte, (un-)geladene Fermi-Flüssigkeiten, lineare Antworttheorie, kollektive Moden, Abschirmung, Transport in Halbleitern und Metallen, Magnetismus, Mott-Isolatoren, Quanten-Hall-Effekt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | in Englisch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0844-00L | Quantum Field Theory IIStudierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das entsprechende Modul direkt an der UZH buchen. | W | 10 KP | 3V + 2U | A. Lazopoulos | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | The subject of the course is modern applications of quantum field theory with emphasis on the quantization of non-abelian gauge theories. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The goal of this course is to lay down the path integral formulation of quantum field theories and in particular to provide a solid basis for the study of non-abelian gauge theories and of the Standard Model | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | The following topics will be covered: - path integral quantization - non-abelian gauge theories and their quantization - systematics of renormalization, including BRST symmetries, Slavnov-Taylor Identities and the Callan-Symanzik equation - the Goldstone theorem and the Higgs mechanism - gauge theories with spontaneous symmetry breaking and their quantization - renormalization of spontaneously broken gauge theories and quantum effective actions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | M.E. Peskin and D.V. Schroeder, "An introduction to Quantum Field Theory", Perseus (1995). S. Pokorski, "Gauge Field Theories" (2nd Edition), Cambridge Univ. Press (2000) P. Ramond, "Field Theory: A Modern Primer" (2nd Edition), Westview Press (1990) S. Weinberg, "The Quantum Theory of Fields" (Volume 2), CUP (1996). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0394-00L | Theoretical CosmologyIn 2022 the lectures will be held separately from UZH. A different class under the same name will be taught by a different lecturer at UZH. | W | 10 KP | 4V + 2U | L. Senatore | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | This is the second of a two course series which starts with "General Relativity" and continues in the spring with "Theoretical Astrophysics and Cosmology", where the focus will be on applying general relativity to cosmology as well as developing the modern theory of structure formation in a cold dark matter Universe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Learning the fundamentals of modern physical cosmology. This entails understanding the physical principles behind the description of the homogeneous Universe on large scales in the first part of the course, and moving on to the inhomogeneous Universe model where perturbation theory is used to study the development of structure through gravitational instability in the second part of the course. Modern notions of dark matter and dark energy will also be introduced and discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | The course will cover the following topics: - Homogeneous cosmology - Thermal history of the universe, recombination, baryogenesis and nucleosynthesis - Dark matter and Dark Energy - Inflation - Perturbation theory: Relativistic and Newtonian - Model of structure formation and initial conditions from Inflation - Cosmic microwave background anisotropies - Spherical collapse and galaxy formation - Large scale structure and cosmological probes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | In 2021, the lectures will be live-streamed online at ETH from the Room HPV G5 at the lecture hours. The recordings will be available at the ETH website. The detailed information will be provided by the course website and the SLACK channel. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | Suggested textbooks: H.Mo, F. Van den Bosch, S. White: Galaxy Formation and Evolution S. Carroll: Space-Time and Geometry: An Introduction to General Relativity S. Dodelson: Modern Cosmology Secondary textbooks: S. Weinberg: Gravitation and Cosmology V. Mukhanov: Physical Foundations of Cosmology E. W. Kolb and M. S. Turner: The Early Universe N. Straumann: General relativity with applications to astrophysics A. Liddle and D. Lyth: Cosmological Inflation and Large Scale Structure | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Knowledge of General Relativity is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Experimentelle Kernfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0448-01L | Quantum Information Processing I: ConceptsDieser theoretisch ausgerichtete Teil QIP I bildet zusammen mit dem experimentell ausgerichteten Teil 402-0448-02L QIP II, die beide im Frühjahrssemester angeboten werden, im Master-Studiengang Physik das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten. | W | 5 KP | 2V + 1U | P. Kammerlander | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | The course covers the key concepts of quantum information processing, including quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer. Key concepts such as quantum error correction are discussed in detail. They provide fundamental insights into the nature of quantum states and measurements. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | By the end of the course students are able to explain the basic mathematical formalism of quantum mechanics and apply them to quantum information processing problems. They are able to adapt and apply these concepts and methods to analyse and discuss quantum algorithms and other quantum information-processing protocols. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | The topics covered in the course will include quantum circuits, gate decomposition and universal sets of gates, efficiency of quantum circuits, quantum algorithms (Shor, Grover, Deutsch-Josza,..), quantum error correction, fault-tolerant designs, and quantum simulation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | Will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | A good understanding of finite dimensional linear algebra is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0448-02L | Quantum Information Processing II: ImplementationsDieser experimentell ausgerichtete Teil QIP II bildet zusammen mit dem theoretisch ausgerichteten Teil 402-0448-01L QIP I, die beide im Frühjahrssemester angeboten werden, im Master-Studiengang Physik das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten. | W | 5 KP | 2V + 1U | C. Eichler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | Introduction to experimental systems for quantum information processing (QIP). Quantum bits. Coherent Control. Measurement. Decoherence. Microscopic and macroscopic quantum systems. Nuclear magnetic resonance (NMR). Photons. Ions and neutral atoms in electromagnetic traps. Charges and spins in quantum dots and NV centers. Charges and flux quanta in superconducting circuits. Novel hybrid systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Throughout the past 20 years the realm of quantum physics has entered the domain of information technology in more and more prominent ways. Enormous progress in the physical sciences and in engineering and technology has allowed us to build novel types of information processors based on the concepts of quantum physics. In these processors information is stored in the quantum state of physical systems forming quantum bits (qubits). The interaction between qubits is controlled and the resulting states are read out on the level of single quanta in order to process information. Realizing such challenging tasks is believed to allow constructing an information processor much more powerful than a classical computer. This task is taken on by academic labs, startups and major industry. The aim of this class is to give a thorough introduction to physical implementations pursued in current research for realizing quantum information processors. The field of quantum information science is one of the fastest growing and most active domains of research in modern physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | Introduction to experimental systems for quantum information processing (QIP). - Quantum bits - Coherent Control - Measurement - Decoherence QIP with - Ions - Superconducting Circuits - Photons - NMR - Rydberg atoms - NV-centers - Quantum dots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | Course material be made available at www.qudev.ethz.ch and on the Moodle platform for the course. More details to follow. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | The class will be taught in English language. Basic knowledge of concepts of quantum physics and quantum systems, e.g from courses such as Phyiscs III, Quantum Mechanics I and II or courses on topics such as atomic physics, solid state physics, quantum electronics are considered helpful. More information on this class can be found on the web site www.qudev.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0702-00L | Phenomenology of Particle Physics II | W | 10 KP | 3V + 2U | P. Crivelli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | In PPP II the standard model of particle physics will be developed from the point of view of gauge invariance. The concepts and computational techniques learned during the PPP I course in the context of QED will applied and expanded to the strong and electroweak interactions. The spontaneous symmetry breaking and the Higgs mechanism will also be introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The objective of the course is to deepen the knowledge on particle physics the students acquired during their bachelor studies. A clear connection between the theory and the experiments will be given in order to provide a comprehensive modern view of the standard model. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | Hadrons (the strong force, discovery), e-p scattering (elastic and deep inelastic), the parton model (the eighfoldway, the quark model, the evidence of color), Quantum Chromodynamics (QCD), Running of alpha strong, asymptotic freedom, hadronization, experimental tests of QCD, heavy quarks, hadron spectroscopy, neutrinos and the three lepton families, weak interaction and parity violation, weak and neutral charge currents, GIM mechanism, lepton universality, gauge field theories and spontaneous symmetry breaking, the electroweak theory, the Brout-Englert-Higgs mechanism, computations and experimental tests of the electroweak theory, neutrino-nucleon interactions, the Standard Model, flavor oscillations and CP violation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0264-00L | Astrophysics II | W | 10 KP | 3V + 2U | A. Refregier | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | The course examines various topics in astrophysics with an emphasis on physical processes occurring in an expanding Universe, from a time about 1 microsecond after the Big Bang, to the formation of galaxies and supermassive black holes within the next billion years. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The course examines various topics in astrophysics with an emphasis on physical processes occurring in an expanding Universe. These include the Robertson-Walker metric, the Friedmann models, the thermal history of the Universe including Big Bang Nucleosynthesis, and introduction to Inflation, and the growth of structure through gravitational instability. Finally, the physics of the formation of cosmic structures, dark matter halos and galaxies is reviewed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Prior completion of Astrophysics I is recommended but not required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0265-00L | Astrophysics III | W | 10 KP | 3V + 2U | H. M. Schmid | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | Astrophysics III is a course in Galactic Astrophysics. It introduces the concepts of stellar populations, stellar dynamics, interstellar medium (ISM), and star formation for understanding the physics and phenomenology of the different components of the Milky Way galaxy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The course should provide basic knowledge for research projects in the field of star formation and interstellar matter. A strong emphasis is put on radiation processes and the determination of physical parameters from observations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | Astrophysics III: Galactic Astrophysics - components of the Milky Way: stars, ISM, dark matter, - dynamics of the Milky Way and of different subcomponents, - the physics of the interstellar medium, - star formation and feedback, and - the Milky Way origin and evolution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | A lecture script will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Astrophysics I is recommended but not required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Wahlfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Physikalische und mathematische Wahlfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Auswahl: Festkörperphysik | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0516-10L | Group Theory and its ApplicationsFindet dieses Semester nicht statt. | W | 12 KP | 3V + 3U | Noch nicht bekannt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | This lecture introduces the use of group theory to solve problems of quantum mechanics, condensed matter physics and particle physics. Symmetry is at the roots of quantum mechanics: this lecture is also a tutorial for students that would like to understand the practical side of the (often difficult) mathematical exposition of regular courses on quantum mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The aim of this lecture is to give a practical knowledge on the application of symmetry in atomic-, molecular-, condensed matter- and particle physics. The lecture is intended for students at the master and Phd. level in Physics that would like to have a practical and comprehensive view of the role of symmetry in physics. Students in their third year of Bachelor will be perfectly able to follow the lecture and can use it for their future master curriculuum. Students from other Departements are welcome, as the lecture is designed to be (almost) self-contained. As symmetry is omnipresent in science and in particular quantum mechanics, this lecture is also a tutorial on quantum mechanics for students that would like to understand what is behind the often difficult mathematical exposition of regular courses on quantum mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | 1. Abstract Group Theory and representation theory of groups (Fundamentals of groups, Groups and geometry, Point and space groups, Representation theory of groups (H. Weyl, 1885-1955), Reducible and irreducible representations , Properties of irreducible representations, Characters of a representation and theorems involving them, Symmetry adapted vectors) 2. Group theory and eigenvalue problems (General introduction and practical examples) 3. Representations of continuous groups (the circle group, The full rotation group, atomic physics, the translation group and the Schrödinger representation of quantum mechanics, Cristal field splitting, The Peter-Weyl theorem, The Stone-von Neumann theorem, The Harisch-Chandra character) 4. Space groups and their representations (Elements of crystallography, irreducible representations of the space groups, non-symmorphic space groups) 5. Topological properties of groups and half integer spins: tensor products, applications of tensor products, an introduction to the universal covering group, the universal covering group of SO3, SU(2), how to deal with the spin of the electron, Clebsch-Gordan coefficients, double point groups, the Clebsch-Gordan coefficients for point groups, the Wigner-Eckart-Koster theorem and its applications 6 The application of symmetry to phase transitions (Landau). 7. Young tableaus: many electron and particle physics (SU_3). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | A manuscript is made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | -B.L. van der Waerden, Group Theory and Quantum Mechanics, Springer Verlag. ("Old" but still modern). - L.D. Landau, E.M. Lifshitz, Lehrbuch der Theor. Pyhsik, Band III, "Quantenmechanik", Akademie-Verlag Berlin, 1979, Kap. XII and Ibidem, Band V, "Statistische Physik", Teil 1, Akademie-Verlag 1987, Kap. XIII and XIV. (Very concise and practical) -A. Fässler, E. Stiefel, Group Theoretical Methods and Their applications, Birkhäuser. (A classical book on practical group theory, from a strong ETHZ school). - C. Isham, Lectures on group and vector spaces for physicists, World Scientific. (More mathematical but very didactical) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0536-00L | Ferromagnetism: From Thin Films to SpintronicsFachstudierende UZH müssen das Modul PHY434 direkt an der UZH buchen. | W | 6 KP | 3G | R. Allenspach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | This course extends the introductory course "Introduction to Magnetism" to the latest, modern topics in research in magnetism and spintronics. After a short revisit of the basic magnetism concepts, emphasis is put on novel phenomena in (ultra)thin films and small magnetic structures, displaying effects not encountered in bulk magnetism. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Knowing the most important concepts and applications of ferromagnetism, in particular on the nanoscale (thin films, small structures). Being able to read and understand scientific articles at the front of research in this area. Learn to know how and why magnetic storage, sensors, memories and logic concepts function. Learn to condense and present the results of a research articles so that colleagues understand. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | Magnetization curves, magnetic domains, magnetic anisotropy; novel effects in ultrathin magnetic films and multilayers: interlayer exchange, spin transport; magnetization dynamics, spin precession. Applications: Magnetic data storage, magnetic memories, spin-based electronics, also called spintronics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | Lecture notes will be handed out (in English). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | This course can be easily followed also without having attended the "Introduction to Magnetism" course. Language: English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0318-00L | Semiconductor Materials: Characterization, Processing and Devices | W | 6 KP | 2V + 1U | S. Schön, M. Shayegan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | This course gives an introduction into the fundamentals of semiconductor materials. The main focus in this semester is on state-of-the-art characterization, semiconductor processing and devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Basic knowledge of semiconductor physics and technology. Application of this knowledge for state-of-the-art semiconductor device processing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | 1. Material characterization: structural and chemical methods 1.1 X-ray diffraction methods (Powder diffraction, HRXRD, XRR, RSM) 1.2 Electron microscopy Methods (SEM, EDX, TEM, STEM, EELS) 1.3 SIMS, RBS 2. Material characterization: electronic methods 2.1 van der Pauw techniquel2.2 Floating zone method 2.2 Hall effect 2.3 Cyclotron resonance spectroscopy 2.4. Quantum Hall effect 3. Material characterization: Optical methods 3.1 Absorption methods 3.2 Photoluminescence methods 3.3 FTIR, Raman spectroscopy 4. Semiconductor processing: lithography 4.1 Optical lithography methods 4.2 Electron beam lithography 4.3 FIB lithography 4.4 Scanning probe lithography 4.5 Direct growth methods (CEO, Nanowires) 5. Semiconductor processing: structuring of layers and devices 5.1 Wet etching methods 5.2 Dry etching methods (RIE, ICP, ion milling) 5.3 Physical vapor depositon methods (thermal, e-beam, sputtering) 5.4 Chemical vapor Deposition methods (PECVD, LPCVD, ALD) 5.5 Cleanroom basics & tour 6. Semiconductor devices 6.1 Semiconductor lasers 6.2 LED & detectors 6.3 Solar cells 6.4 Transistors (FET, HBT, HEMT) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | https://moodle-app2.let.ethz.ch/course/view.php?id=16802 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | The "compulsory performance element" of this lecture is a short presentation of a research paper complementing the lecture topics. Several topics and corresponding papers will be offered on the moodle page of this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0596-00L | Electronic Transport in Nanostructures | W | 6 KP | 2V + 1U | T. M. Ihn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | The lecture discusses modern topics in quantum transport through nanostructures including the underlying materials. Topics are: quantum transport effects, transport in graphene and other 2D layered materials, quantum dot qubits for quantum information processing, decoherence of quantum states | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Students are able to understand modern experiments in the field of electronic transport in nanostructures. They can critically reflect published research in this field and explain it to an audience of physicists. Students know and understand the fundamental phenomena of electron transport in the quantum regime and their significance. They are able to apply their knowledge to practical experiments in a modern research lab. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | The lecture is based on the book: T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport, ISBN 978-0-19-953442-5, Oxford University Press, 2010. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | A solid basis in quantum mechanics, electrostatics, quantum statistics and in solid state physics is required. Having passed the lecture Semiconductor Nanostructures (fall semester) may be advantageous, but is not required. Students of the Master in Micro- and Nanosystems should at least have attended the lecture by David Norris, Introduction to quantum mechanics for engineers. They should also have passed the exam of the lecture Semiconductor Nanostructures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0564-00L | FestkörperoptikFindet dieses Semester nicht statt. | W | 6 KP | 2V + 1U | L. Degiorgi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | The interaction of light with the condensed matter is the basic idea and principal foundation of several experimental spectroscopic methods. This lecture is devoted to the presentation of those experimental methods and techniques, which allow the study of the electrodynamic response of solids. I will also discuss recent experimental results on materials of high interest in the on-going solid-stat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The lecture will give a basic introduction to optical spectroscopic methods in solid state physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | Chapter 1 Maxwell equations and interaction of light with the medium Chapter 2 Experimental methods: a survey Chapter 3 Kramers-Kronig relations; optical functions Chapter 4 Drude-Lorentz phenomenological method Chapter 5 Electronic interband transitions and band structure effects Chapter 6 Selected examples: strongly correlated systems and superconductors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | manuscript (in english) is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | F. Wooten, in Optical Properties of Solids, (Academic Press, New York, 1972) and M. Dressel and G. Gruener, in Electrodynamics of Solids, (Cambridge University Press, 2002). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Exercises will be proposed every week for one hour. There will be also the possibility to prepare a short presentations based on recent scientific literature (more at the beginning of the lecture). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0528-12L | Ultrafast Methods in Solid State Physics | W | 6 KP | 2V + 1U | S. Johnson, M. Savoini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | In condensed matter physics, “ultrafast” refers to dynamics on the picosecond and femtosecond time scales, the time scales where atoms vibrate and electronic spins flip. Measuring real-time dynamics on these time scales is key to understanding materials in nonequilibrium states. This course offers an overview and understanding of the methods used to accomplish this in modern research laboratories. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The goal of the course is to enable students to identify and evaluate experimental methods to manipulate and measure the electronic, magnetic and structural properties of solids on the fastest possible time scales. This offers new fundamental insights on the couplings that bind solid-state systems together. It also opens the door to new technological applications in data storage and processing involving metastable states that can be reached only by driving systems far from equilibrium. This course offers an overview of ultrafast methods as applied to condensed matter physics. Students will learn which methods are appropriate for studying relevant scientific questions, and will be able to describe their relative advantages and limitations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | The topical course outline is as follows: Chapter 1: Introduction - Important time scales for dynamics in solids and their applications - Time-domain versus frequency-domain experiments - The pump-probe technique: general advantages and limits Chapter 2: Overview of ultrafast processes in solids - Carrier dynamics in response to ultrafast laser interactions - Dynamics of the lattice: coherent vs. incoherent phonons - Ultrafast magnetic phenomena Chapter 3: Ultrafast optical-frequency methods - Ultrafast laser sources (oscillators and amplifiers) - Generating broadband pulses - Second and third order harmonic generation - Optical parametric amplification - Fluorescence spectroscopy - Advanced optical pump-probe techniques Chapter 4: THz- and mid-infrared frequency methods - Low frequency interactions with solids - Difference frequency mixing - Optical rectification - Time-domain spectroscopy Chapter 5: VUV and x-ray frequency methods - Synchrotron based sources - Free electron lasers - High-harmonic generation - X-ray diffraction - Time-resolved X-ray microscopy & coherent imaging - Time-resolved core-level spectroscopies Chapter 6: Time-resolved electron methods - Ultrafast electron diffraction - Time-resolved electron microscopy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | Will be distributed via moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | Will be distributed via moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Although the course "Ultrafast Processes in Solids" (402-0526-00L) is useful as a companion to this course, it is not a prerequisite. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0532-00L | Quantum Solid State Magnetism | W | 6 KP | 2V + 1U | K. Povarov | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | This course is based on the principal modern tools used to study collective magnetic phenomena in the Solid State, namely correlation and response functions. It is quite quantitative, but doesn't contain any "fancy" mathematics. Instead, the theoretical aspects are balanced by numerous experimental examples and case studies. It is aimed at theorists and experimentalists alike. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Learn the modern theoretical foundations and "language", as well as principles and capabilities of the latest experimental techniques, used to describe and study collective magnetic phenomena in the Solid State. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | - Magnetic response and correlation functions. Analytic properties. Fluctuation-dissipation theorem. Experimental methods to measure static and dynamic correlations. - Magnetic response and correlations in metals. Diamagnetism and paramagnetism. Magnetic ground states: ferromagnetism, spin density waves. Excitations in metals, spin waves. Experimental examples. - Magnetic response and correlations of magnetic ions in crystals: quantum numbers and effective Hamiltonians. Application of group theory to classifying ionic states. Experimental case studies. - Magnetic response and correlations in magnetic insulators. Effective Hamiltonians. Magnetic order and propagation vector formalism. The use of group theory to classify magnetic structures. Determination of magnetic structures from diffraction data. Excitations: spin wave theory and beyond. "Triplons". Measuring spin wave spectra. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | A comprehensive textbook-like script is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | In principle, the script is suffient as study material. Additional reading: -"Magnetism in Condensed Matter" by S. Blundell -"Quantum Theory of Magnetism: Magnetic properties of Materials" by R. M. White -"Lecture notes on Electron Correlations and Magnetism" by P. Fazekas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Prerequisite: 402-0861-00L Statistical Physics 402-0501-00L Solid State Physics Not prerequisite, but a good companion course: 402-0871-00L Solid State Theory 402-0257-00L Advanced Solid State Physics 402-0535-00L Introduction to Magnetism | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

327-2130-00L | Introducing Photons, Neutrons and Muons for Materials Characterisation Only for MSc Materials Science and MSc Physics. | W | 2 KP | 3G | A. Hrabec | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | The course takes place at the campus of the Paul Scherrer Institute. The program consists of introductory lectures on the use of photons, neutrons and muons for materials characterization, as well as tours of the large scale facilities of PSI. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The aim of the course is that the students acquire a basic understanding on the interaction of photons, neutrons and muons with matter and how one can use these as tools to solve specific problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | The course runs for one week in June (20st to 24th), 2022. It takes place at the campus of the Paul Scherrer Institute. The morning consists of introductory lectures on the use of photons, neutrons and muons for materials characterization. In the afternoon tours of the large scale facilities of PSI (Swiss Light Source, Swiss Spallation Neutron Source, Swiss Muon Source, Swiss Free Electron Laser), are foreseen, as well as in depth visits to some of the instruments. At the end of the week, the students are required to give an oral presentation about a scientific topic involving the techniques discussed. Time for the presentation preparations will be allocated in the afternoon. • Interaction of photons, neutrons and muons with matter • Production of photons, neutrons and muons • Experimental setups: optics and detectors • Crystal symmetry, Bragg’s law, reciprocal lattice, structure factors • Elastic and inelastic scattering with neutrons and photons • X-ray absorption spectroscopy, x-ray magnetic circular dichroism • Polarized neutron scattering for the study of magnetic materials • Imaging techniques using x-rays and neutrons • Introduction to muon spin rotation • Applications of muon spin rotation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | Slides from the lectures will be available on the internet prior to the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | • Philip Willmott: An Introduction to Synchrotron Radiation: Techniques and Applications, Wiley, 2011 • J. Als-Nielsen and D. McMorrow: Elements of Modern X-Ray Physics, Wiley, 2011. • G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications (1997). • Muon Spin Rotation, Relaxation, and Resonance, Applications to Condensed Matter" Alain Yaouanc and Pierre Dalmas de Réotier, Oxford University Press, ISBN: 9780199596478 • “Physics with Muons: from Atomic Physics to Condensed Matter Physics”, A. Amato https://www.psi.ch/lmu/EducationLecturesEN/A_Amato_05_06_2018.pdf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | This is a block course for students who have attended courses on condensed matter or materials physics. Registration at PSI website (http://indico.psi.ch/event/PSImasterschool) required by March 20th, 2022. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0533-00L | Quantum Acoustics and Optomechanics | W | 6 KP | 2V + 1U | Y. Chu | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | This course gives an introduction to the interaction of mechanical motion with electromagnetic fields in the quantum regime. There are parallels between the quantum descriptions of mechanical resonators, electrical circuits, and light, but each system also has its own unique properties. We will explore how interfacing them can be useful for technological applications and fundamental science. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The course aims to prepare students for performing theoretical and/or experimental research in the fields of quantum acoustics and optomechanics. For example, after this course, students should be able to: - understand and explain current research literature in quantum acoustics and optomechanics - predict and simulate the behavior of mechanical quantum systems using tools such as the QuTiP package in Python - apply concepts discussed in the class toward designing devices and experiments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | The focus of this course will be on the properties of and interactions between mechanical and electromagnetic systems in the context of quantum information and technologies. We will only briefly touch upon precision measurement and sensing with optomechanics since it is the topic of another course (227-0653-00L). Some topics that will be covered are: - Mechanical motion and acoustics in solid state materials - Quantum description of motion, electrical circuits, and light. - Different models for quantum interactions: optomechanical, Jaynes-Cummings, etc. - Mechanisms for mechanical coupling to electromagnetic fields: piezoelectricity, electrostriction, radiation pressure, etc. - Coherent interactions vs. dissipative processes: phenomenon and applications in different regimes. - State-of the art electromechanical and optomechanical systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | Notes will be provided for each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | Parts of books and research papers will be used. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Basic knowledge of quantum mechanics is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0532-50L | Quantum Solid State Magnetism IIFindet dieses Semester nicht statt. | W | 6 KP | 2V + 1U | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | This course covers the modern developments and problems in the field of solid state magnetism. It has the special emphasis on the phenomena that go beyond semiclassical approximation, such as quantum paramagnets, spin liquids and magnetic frustration. The course is aimed at both the experimentalists and theorists, and the theoretical concepts are balanced by the experimental data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | Learn the modern approach to the complex magnetic phases of matter and the transitions between them. A number of theoretical approaches that go beyond the linear spin wave theory will be discussed during the course, and an overview of the experimental status quo will be given. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | - Phase transitions in the magnetic matter. Classical and quantum criticality. Consequences of broken symmetries for the spectral properties. Absence of order in the low-dimensional systems. Berezinskii-Kosterlitz-Thouless transition and its relevance to “layered” magnets. - Failures of linear spin wave theory. Spin wave decays. Antiferromagnets as bosonic systems. Gapped “quantum paramagnets” and their phase diagrams. Extended spin wave theory. Magnetic “Bose-Einstein condensation”. - Spin systems in one dimension: XY, Ising and Heisenberg model. Lieb-Schultz-Mattis theorem. Tomonaga-Luttinger liquid description of the XXZ spin chains. Spin ladders and Haldane chains. Critical points in one dimension and generalized phase diagram. - Effects of disorder in magnets. Harris criterion. “Spin islands” in depleted gapped magnets. - Introduction into magnetic frustration. Order-from-disorder phenomena and triangular lattice in the magnetic field. Frustrated chain and frustrated square lattice models. Exotic magnetic states in two dimensions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | A comprehensive textbook-like script is provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | In principle, the script is sufficient as study material. Additional reading: -"Interacting Electrons and Quantum Magnetism" by A. Auerbach -"Basic Aspects of The Quantum Theory of Solids " by D. Khomskii -"Quantum Physics in One Dimension" by T. Giamarchi -"Quantum Theory of Magnetism: Magnetic properties of Materials" by R. M. White -"Frustrated Spin Systems" ed. H. T. Diep | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Prerequisite: 402-0861-00L Statistical Physics 402-0501-00L Solid State Physics Not prerequisite, but a good companion course: 402-0871-00L Solid State Theory 402-0257-00L Advanced Solid State Physics 402-0535-00L Introduction to Magnetism 402-0532-00L Quantum Solid State Magnetism I | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Auswahl: Quantenelektronik | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0468-15L | Nanomaterials for PhotonicsFindet dieses Semester nicht statt. | W | 6 KP | 2V + 1U | R. Grange | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | The lecture describes various nanomaterials (semiconductor, metal, dielectric, carbon-based...) for photonic applications (optoelectronics, plasmonics, ordered and disordered structures...). It starts with concepts of light-matter interactions, then the fabrication methods, the optical characterization techniques, the description of the properties and the state-of-the-art applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | The students will acquire theoretical and experimental knowledge about the different types of nanomaterials (semiconductors, metals, dielectric, carbon-based, ...) and their uses as building blocks for advanced applications in photonics (optoelectronics, plasmonics, photonic crystal, ...). Together with the exercises, the students will learn (1) to read, summarize and discuss scientific articles related to the lecture, (2) to estimate order of magnitudes with calculations using the theory seen during the lecture, (3) to prepare a short oral presentation and report about one topic related to the lecture, and (4) to imagine an original photonic device. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | 1. Introduction to nanomaterials for photonics a. Classification of nanomaterials b. Light-matter interaction at the nanoscale c. Examples of nanophotonic devices 2. Wave physics for nanophotonics a. Wavelength, wave equation, wave propagation b. Dispersion relation c. Interference d. Scattering and absorption e. Coherent and incoherent light 3. Analogies between photons and electrons a. Quantum wave description b. How to confine photons and electrons c. Tunneling effects 4. Characterization of Nanomaterials a. Optical microscopy: Bright and dark field, fluorescence, confocal, High resolution: PALM (STORM), STED b. Light scattering techniques: DLS c. Near field microscopy: SNOM d. Electron microscopy: SEM, TEM e. Scanning probe microscopy: STM, AFM f. X-ray diffraction: XRD, EDS 5. Fabrication of nanomaterials a. Top-down approach b. Bottom-up approach 6. Plasmonics a. What is a plasmon, Drude model b. Surface plasmon and localized surface plasmon (sphere, rod, shell) c. Theoretical models to calculate the radiated field: electrostatic approximation and Mie scattering d. Fabrication of plasmonic structures: Chemical synthesis, Nanofabrication e. Applications 7. Organic and inorganic nanomaterials a. Organic quantum-confined structure: nanomers and quantum dots. b. Carbon nanotubes: properties, bandgap description, fabrication c. Graphene: motivation, fabrication, devices d. Nanomarkers for biophotonics 8. Semiconductors a. Crystalline structure, wave function b. Quantum well: energy levels equation, confinement c. Quantum wires, quantum dots d. Optical properties related to quantum confinement e. Example of effects: absorption, photoluminescence f. Solid-state-lasers: edge emitting, surface emitting, quantum cascade 9. Photonic crystals a. Analogy photonic and electronic crystal, in nature b. 1D, 2D, 3D photonic crystal c. Theoretical modelling: frequency and time domain technique d. Features: band gap, local enhancement, superprism... 10. Nanocomposites a. Effective medium regime b. Metamaterials c. Multiple scattering regime d. Complex media: structural colour, random lasers, nonlinear disorder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Skript | Slides and book chapter will be available for downloading | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Literatur | References will be given during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Voraussetzungen / Besonderes | Basics of solid-state physics (i.e. energy bands) can help | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

402-0470-17L | Optical Frequency Combs: Physics and ApplicationsFindet dieses Semester nicht statt. | W | 6 KP | 2V + 1U | G. Scalari | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Kurzbeschreibung | In this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Lernziel | In this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Inhalt | Since their invention, the optical frequency combs have shown to be a key technological tool with applications in a variety of fields ranging from astronomy, metrology, spectroscopy and telecommunications. Concomitant with this expansion of the application domains, the range of technologies that have been used to generate optical frequency combs has recently widened to include, beyond the solid-state and fiber mode-locked lasers, optical parametric oscillators, microresonators and quantum cascade lasers. In this lecture, the goal is to review the physics behind mode-locking in these various devices, as well as discuss the most important novelties and applications of the newly developed sources. Chapt 1: Fundamentals of optical frequency comb generation - Physics of mode-locking: time domain picture Propagation and stability of a pulse, soliton formation - Dispersion compensation Solid-state and fiber mode-locked laser Chapt 2: Direct generation Microresonator combs: Lugiato-Lefever equation, solitons Quantum cascade laser: Frequency domain picture of the mode-locking Mid-infrared and terahertz QCL combs Chapt 3: Non-linear optics DFG, OPOs Chapt 4: Comb diagnostics and noise Jitter, linewidth Chapt 5: Self-referenced combs and their applications Chapt 6: Dual combs and their applications to spectroscopy |

- Seite 1 von 7 Alle