Suchergebnis: Katalogdaten im Frühjahrssemester 2022
Energy Science and Technology Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kernfächer Mindestens je 2 Kernfächer pro Fachrichtung müssen erfolgreich abgelegt werden. Die Teilnahme am Kurs des "Fächerübergreifenden Energiewesens" ist für alle Studierenden obligatorisch. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical Power Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-0530-00L | Optimization in Energy Systems | W | 6 KP | 4G | G. Hug | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this class, the students should have a good handle on how to approach a research question which involves optimization and implement and solve the resulting optimization problem by choosing appropriate tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In our everyday’s life, we always try to take the decision which results in the best outcome. But how do we know what the best outcome will be? What are the actions leading to this optimal outcome? What are the constraints? These questions also have to be answered when controlling a system such as energy systems. Optimization theory provides the opportunity to find the answers by using mathematical formulation and solution of an optimization problem. The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. The applications are focused on the Optimal Power Flow problem which is formulated and solved to find optimal device settings in the electric power grid and other relevant energy scheduling problems. On the theoretical side, the formulation and solving of unconstrained and constrained optimization problems, multi-time step optimization, stochastic optimization including probabilistic constraints and decomposed optimization (Lagrangian and Benders decomposition) are discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy Flows and Processes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0928-00L | CO2 Capture and Storage and the Industry of Carbon-Based Resources | W | 4 KP | 3G | M. Mazzotti, A. Bardow, V. Becattini, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces the fundamentals of carbon capture, utilization, and storage and related interdependencies between technosphere, ecosphere, and sociosphere. Topics covered: origin, production, processing, and resource economics of carbon-based resources; climate change in science & policies; CC(U)S systems in power & industrial plants; CO2 transport & storage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The lecture aims to introduce carbon dioxide capture, utilization, and storage (CCUS) systems, the technical solutions developed so far, and current research questions. This is done in the context of the origin, production, processing, and economics of carbon-based resources and of climate change issues. After this course, students are familiar with relevant technical and non-technical issues related to the use of carbon resources, climate change, and CCUS as a mitigation measure. The class will be structured in 2 hours of lecture and one hour of exercises/discussion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The transition to a net-zero society is associated with major challenges in all sectors, including energy, transportation, and industry. In the IPCC Special Report on Global Warming of 1.5 °C, rapid emission reduction and negative emission technologies are crucial to limiting global warming to below 1.5 °C. Therefore, this course illuminates carbon capture, utilization, and storage as a potential set of technologies for emission mitigation and for generating negative emissions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides and supplementary documents will be available online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | IPCC Special Report on Global Warming of 1.5°C, 2018. http://www.ipcc.ch/report/sr15/ IPCC AR5 Climate Change 2014: Synthesis Report, 2014. www.ipcc.ch/report/ar5/syr/ IPCC Special Report on Carbon dioxide Capture and Storage, 2005. www.ipcc.ch/activity/srccs/index.htm The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014. http://www.globalccsinstitute.com/publications/global-status-ccs-2014 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | External lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0191-01L | Electrochemical Energy Conversion and Storage Technologies | W | 4 KP | 3G | L. Gubler, E. Fabbri, J. Herranz Salañer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides an introduction to the principles and applications of electrochemical energy conversion (e.g. fuel cells) and storage (e.g. batteries) technologies in the broader context of a renewable energy system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will discover the importance of electrochemical energy conversion and storage in energy systems of today and the future, specifically in the framework of renewable energy scenarios. Basics and key features of electrochemical devices will be discussed, and applications in the context of the overall energy system will be highlighted with focus on future mobility technologies and grid-scale energy storage. Finally, the role of (electro)chemical processes in power-to-X and deep decarbonization concepts will be elaborated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Overview of energy utilization: past, present and future, globally and locally; today’s and future challenges for the energy system; climate changes; renewable energy scenarios; introduction to electrochemistry; electrochemical devices, basics and their applications: batteries, fuel cells, electrolyzers, flow batteries, supercapacitors, chemical energy carriers: hydrogen & synthetic natural gas; electromobility; grid-scale energy storage, power-to-gas, power-to-X and deep decarbonization, techno-economics and life cycle analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | all lecture materials will be available for download on the course website. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Textbook recommendations for advanced studies on the topics of the course: - M. Sterner, I. Stadler (Eds.): Handbook of Energy Storage (Springer, 2019). - C.H. Hamann, A. Hamnett, W. Vielstich; Electrochemistry, Wiley-VCH (2007). - T.F. Fuller, J.N. Harb: Electrochemical Engineering, Wiley (2018) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic physical chemistry background required, prior knowledge of electrochemistry basics desired. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy Economics and Policy | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0514-00L | Energy Economics and Policy It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example,"Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | W | 3 KP | 2G | M. Filippini, S. Srinivasan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An introduction to energy economics and policy that covers the following topics: energy demand, investment in energy efficiency, investment in renewables, energy markets, market failures and behavioral anomalies, market-based and non-market based energy and climate policy instruments in industrialized and developing countries. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will develop an understanding of economic principles and tools necessary to analyze energy issues and to understand energy and climate policy instruments. Emphasis will be put on empirical analysis of energy demand and supply, market failures, behavioral anomalies, energy and climate policy instruments in industrialized and developing countries, and investments in renewables and in energy-efficient technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course provides an introduction to energy economics principles and policy applications. The first part of the course will introduce the microeconomic foundation of energy demand and supply as well as market failures and behavioral anomalies. In a second part, we introduce the concept of investment analysis (such as the NPV) in the context of renewable and energy-efficient technologies. In the last part, we use the previously introduced concepts to analyze energy policies: from a government perspective, we discuss the mechanisms and implications of market oriented and non-market oriented policy instruments as well as applications in developing countries. Throughout the entire course, we combine the material with insights from current research in energy economics. This combination will enable students to understand standard scientific literature in the field of energy economics and policy. Moreover, the class aims to show students how to relate current issues in the energy and climate spheres that influence industrialized and developing countries to insights from energy economics and policy. Course evaluation: at the end of the course, there will be a written exam covering the topics of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example, "Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-1115-00L | Energy Innovation and Management | W | 3 KP | 2V | G. Mavromatidis, B. Probst, A. Stephan | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Fundamental changes in the energy sector, such as more decentralized energy production, challenge the existing business models of organizations such as utilities or technology providers. This course adopts quantitative and qualitative approaches to explore innovation and managerial, organizational and decision-making aspects in the energy sector for the transition to a low-carbon energy system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After completing the course, students will be able to: • Understand the challenges occurring in the energy sector and that companies (in or relying on the energy sector) are facing • Understand the basics of managerial/organizational aspects in the energy sector with a particular focus on energy innovations • Identify and use the appropriate quantitative energy tools for strategic decision-making in the energy sector | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course explores innovation and managerial, organizational and decision-making aspects in the energy sector for the transition towards a low-carbon energy system. The course is split in two parts with a quantitative and a qualitative focus, respectively. In the first part, students will learn about aspects such as the financial valuation of energy investment decisions and the ways that quantitative energy models of different types can be used to assist with strategic decision-making in the energy sector. Students will be introduced to two types of models: (1) techno-economic analyses of renewable energy generation and storage technologies, and (2) an energy market game, which simulates the behavior of utilities in an electricity market. This part of the course will include individual and group assignments. In the second part, guided by questions like “how does the energy industry change and why” or “how would you make the decision if you were the head of a utility”, the students will understand how firms manage innovations and why they can be difficult to manage even for established firms in the energy sector. This part of the course will be guided as an interactive case study. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Interdisciplinary Energy Management | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-1631-20L | Case Studies: Energy Systems and Technology: Part 2 Only for Energy Science and Technology MSc. | O | 2 KP | 4G | C. Franck, C. Schaffner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will allow the students to get an interdisciplinary overview of the “Energy” topic. It will explore the challenges to build a sustainable energy system for the future. This will be done through the means of case studies that the students have to work on. These case studies will be provided by industry partners. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will understand the different aspects involved in designing solutions for a sustainable future energy system. They will have experience in collaborating in interdisciplinary teams. They will have an understanding on how industry is approaching new solutions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Descriptions of case studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Industriepraktikum | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-1650-10L | Internship in Industry Only for Energy Science and Technology MSc. | O | 12 KP | externe Veranstalter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Es ist das Ziel der 12-wöchigen Praxis, Master-Studierenden die industriellen Arbeitsumgebungen näher zu bringen. Während dieser Zeit bietet sich ihnen die Gelegenheit, in aktuelle Projekte der Gastinstitution involviert zu werden. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | siehe oben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Studienarbeit | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-1101-00L | How to Write Scientific Texts Strongly recommended prerequisite for Semester Projects, Bachelor's, and Master Theses at D-ITET (MSc BME, BSc/MSc EEIT, MSc EST and MSc QE). | E- | 0 KP | U. Koch | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The four hour lecture covers the basics of writing and presenting of scientific work. The focus is on the structure and the main elements of a scientific text rather than the language. Citation rules, good practice of scientific writing and an overview on software tools are part of the training. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | - Knowledge on structure and content of scientific texts and presentations - Stimulation of a discussion on how to write a scientific text versus an interesting novel - Discussion of the practice of proper citing and critical reflection on plagiarism | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | * Topic 1: Structure of Scientific Texts (title, author list, abstract, state-of-the-art, "in this paper" paragraph, scientific part, summary, equations, figures) * Topic 2: Structure of Scientific Presentations * Topic 3: Citation Rules and Citation Software * Topic 4: Guidelines for Research Integrity The lecture will be given in two parts on two afternoons. Some exercises will be built into the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | ETH "Citation Etiquette", see https://ethz.ch/students/en/studies/performance-assessments/plagiarism.html ETH "Guidelines for Research Integrity", see Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students should be writing either a bachelor/semester/master thesis or a scientific publication in the immediate future. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-1671-10L | Semester Project | O | 12 KP | 20A | Betreuer/innen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The semester project is designed to train the students in solving specific problems from the field of Energy Science & Technology. This project uses the technical and social skills acquired during the master's program. The semester project ist advised by a professor and must be approved in advance by the tutor. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | see above | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlfächer Diese Kurse sind besonders empfohlen, andere ETH-Kurse aus dem Feld Energy Science and Technology im weiteren Sinne können in Absprache mit dem Tutor gewählt werden. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical Power Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0117-10L | Mess- und Versuchstechnik Die Teilnehmendenzahl ist auf 60 beschränkt. | W | 6 KP | 4G | C. Franck, P. Simka | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in die Versuchs- und Messtechnik, wie sie Grundlage in allen Bereichen der Ingenieurswissenschaften ist. Die Vorlesung ist stark praxis- und anwendungsorientiert, und beinhaltet mehrere praktische Versuche. Die Inhalte «Mess- und Versuchstechnik» sind für alle Fachgebiete relevant, in dieser Vorlesung werden sie auch mit Beispielen aus der Hochspannungstechnik behandelt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Am Ende der Vorlesung können die Studierenden: • grundlegende elektrische Versuche durchführen und Messdaten, insbesondere mit dem Oszilloskop, erheben. • ein sinnvolles Messprotokoll führen, ein klares Versuchsprotokoll erstellen und die Messgenauigkeit des Versuchs abschätzen. • grundlegende Ursachen elektromagnetischer Störungen sowie Methoden zur Vermeidung, Reduktion oder Abschirmung beschreiben und anwenden. • verschiedene Methoden zur Erzeugung und Messung von hohen Spannungen erklären und anwenden, sowie dazugehörende Grössen berechnen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Messtechnik, Messunsicherheit, Messprotokolle - Erzeugung und Messung hoher Spannungen - Elektromagnetische Verträglichkeit - Laborpraktika | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Vorlesungsunterlagen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | J. Hoffmann, Taschenbuch der Messtechnik, Carl Hanser Verlag, 7. Auflage, 2015 (ISBN: 978-3446442719) A. Küchler, Hochspannungstechnik, Springer Berlin, 4. Auflage, 2017 (ISBN: 978-3662546994) A. Schwab, Elektromagnetische Verträglichkeit, Springer Verlag, 6. Auflage, 2010 (ISBN: 978-3642166099) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0248-00L | Power Electronic Systems II | W | 6 KP | 4G | J. Biela, F. Krismer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course details structures, operating ranges, and control concepts of modern power electronic systems to provide a deeper understanding of power electronic circuits and power components. Most recent concepts of for example high switching frequency AC/DC converters are presented. Simulation exercises, implemented in the simulation programme PLECS, are used to consolidate the concepts discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to convey knowledge of structures, operating ranges, and control concepts of modern power electronic systems. Further objectives are: to know most recent concepts and operation modes of for example high switching frequency AC/DC converters or AC/AC matrix inverters; to develop a deeper understanding of multi-pulse power converter circuits, transformers, and electromechanical energy converters; and to understand in-depth details of power electronic systems. Simulation exercises, implemented in the electric circuit simulator PLECS, are used to consolidate the presented theoretical concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Converter dynamics and control: State Space Averaging, transfer functions, controller design, impact of the input filter on the converter transfer functions. Performance data of single-phase and three-phase systems: effect of different loss components on the efficiency characteristics, linear and non-linear single phase loads, power flow of general three-phase systems, space vector calculus. Modeling and control of three-phase PWM rectifiers: system characterization using rotating coordinates, control structure, transfer functions, operation with symmetrical and unsymmetrical mains voltages. Scaling laws of transformers and electromechanical actuators. Drives with permanent magnet synchronous machines: basic function, modeling, field-oriented control. Unidirectional AC/DC converters and AC/AC converters: voltage and current DC link converters, indirect and direct matrix converters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes and associated exercises including correct answers, simulation program for interactive self-learning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Introductory course on power electronics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0528-00L | Power System Dynamics, Control and Operation | W | 6 KP | 4G | G. Hug | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The electric power system is a system that is never in steady state due to constant changes in load and generation inputs. This course is dedicated to the dynamical properties of the electric power grid including how the system state is estimated, generation/load balance is ensured by frequency control and how the system reacts in case of faults in the system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The learning objectives of the course are to understand and be able to apply the dynamic modeling of power systems, to compute and discuss the actions of generators based on frequency control, to describe the workings of a synchronous machine and the implications on the grid, to describe and apply state estimation procedures, to discuss the IT infrastructure and protection algorithms in power systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The electric power system is a system that is never in steady state due to constant changes in load and generation inputs. Consequently, the monitoring and operation of the electric power grid is a challenging task. The course starts with the introduction of general operational procedures and the discussion of state estimation which is an important tool to observe the state of the grid. The course is then dedicated to the modeling and studying of the dynamical properties of the electric power grid. Frequency control which ensures the generation/load balance in real time is the basis for real-time control and is presented in depth. For the analysis of how the system detects and reacts dynamically in fault situations, protection and dynamic models for synchronous machines are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0530-00L | Optimization in Energy Systems | W | 6 KP | 4G | G. Hug | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this class, the students should have a good handle on how to approach a research question which involves optimization and implement and solve the resulting optimization problem by choosing appropriate tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In our everyday’s life, we always try to take the decision which results in the best outcome. But how do we know what the best outcome will be? What are the actions leading to this optimal outcome? What are the constraints? These questions also have to be answered when controlling a system such as energy systems. Optimization theory provides the opportunity to find the answers by using mathematical formulation and solution of an optimization problem. The course covers various aspects of optimization with a focus on applications to energy networks. Throughout the course, concepts from optimization theory are introduced followed by practical applications of the discussed approaches. The applications are focused on the Optimal Power Flow problem which is formulated and solved to find optimal device settings in the electric power grid and other relevant energy scheduling problems. On the theoretical side, the formulation and solving of unconstrained and constrained optimization problems, multi-time step optimization, stochastic optimization including probabilistic constraints and decomposed optimization (Lagrangian and Benders decomposition) are discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0537-00L | Technology of Electric Power System Components | W | 6 KP | 4G | C. Franck | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Basics of the technology of important components in electric power transmission and distribution systems (primary technology). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of this course, the students can name the primary components of electric power systems and explain where and why they are used. For the most important components, the students can explain the working principle in detail and calculate and derive key parameters. In addition, students know how to read scientific papers and are able to extract its content efficiently. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Basic physical and engineering aspects for transmission and distribution of electric power. Limiting boundary conditions are not only electrical parameters, but also mechanical, thermal, chemical, environmental and economical aspects. Focus is on components for power system protection (switchgear, fuses and surge arresters) and underground cables. There will be excursions to industrial companies. Part of the course is devoted to recent developments and students will learn how to read scientific papers. The course "Multiphysics Simulations for Power Systems 227-0536-00L" is aligned with the present course and considered complementary. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | additional literature will be available online via the teaching document repository. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The lecture "Introduction to Electric Power Transmission: System & Technology" is a strongly recommended prerequisite. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0669-00L | Chemistry of Devices and Technologies Limited to 30 participants. | W | 4 KP | 1V + 2U | M. Yarema | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course covers basics of chemistry and material science, relevant for modern devices and technologies. The course consists of interactive classroom activities (lectures, workshops, laboratory sessions) and individual component. For the latter, students accomplish individual projects to study, evaluate, and present a chosen technology from a viewpoint of chemistry and materials science. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course brings relevant chemistry knowledge, tailored to the needs of electrical engineering students. Students will gain understanding of the basic concepts of chemistry and materials science, acquire technology-related practical and analytic skills through the small group activities, laboratory experiments, workshops, and conference sessions as well as guidance through individual projects that require interdisciplinary and critical thinking. Students will learn which materials, reactions, and device fabrication processes are important for nowadays technologies and products. They will gain important knowledge of state-of-the-art technologies from materials and fabrication viewpoints. Finally, students will choose selected technologies or devices and study them in details in order to establish and understand the link between the structure, properties, and performance of functional materials. By doing this, students will also improve important soft skills, such as academic text writing, presenting, and active learning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Students will spend 3h per week in the interactive classroom activities (lectures, workshops, laboratory and conference sessions) and additional 4-6h per week working on individual projects. The goal of the individual student's project is to understand the chemistry related to the manufacture and operation of a specific device or technology and how the structure and properties of materials relate to the performance of devices/technologies (students will be able to choose which technology they want to study). To ensure project-based continued learning throughout the semester, students will receive a matching information during the classroom activities. Individual projects will be evaluated by three interim project reports and by a final presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Lecture notes will be made available on the website. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0730-00L | Power Market II - Modeling and Strategic Positioning | W | 6 KP | 4G | D. Reichelt, G. A. Koeppel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Optionen in der Energiewirtschaft Portfolio und Risiko Management: Hedging-Strategien und Risiko Bewertung Optimierung und Hedging von Hydrokraftwerken Bewertung von Kraftwerken mit Realoptionen Kapazitätsmärkte und Quotensysteme Komplexe Energielieferverträge mit Optionalitäten Strategische Positionierung von Energieversorgungsunternehmen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studenten kennen die wesentlichen Derivate, die in der Elektrizitätswirtschaft zur Anwendung gelangen. Sie können Strategien zur Preisabsicherung erarbeiten bzw. bewerten. Sie verstehen die Optimierung von komplexen Wasserkraftwerksanlagen, kennen die Thematik der Kapazitätsmärkte und der Quotensysteme. Sie kennen die Grundlagen der Discounted Cash-flow (DCF) Methode sowie der Realoptionen und können sie für die Bewertung von Kraftwerken anwenden. Die Studenten können komplexe Energielieferverträge in die einzelnen Komponenten zerlegen und die Risiken identifizieren. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Optionen in der Energiewirtschaft: Optionsbewertung mit Binominalen Bäumen und der Black-Scholes Formel, Sensitivitäten, implizite Volatilität Portfolio und Risiko Management: Delta- und Gamma-neutrale Preisabsicherung, Vergleich und Bewertung von Hedging-Strategien, Risiko Identifikation und -bewertung (Fallbeispiel) Optimierung und Hedging von Hydrokraftwerken Bewertung von Kraftwerken, Projekten und el. Netzen mit der discounted cash-flow Methode und Anwendung von Realoptionen Strategische Positionierung: Erarbeiten von verschiedenen Fällen (mini cases) Kapazitätsmärkte und Quotensysteme Anwendungen von Derivaten: komplexe Energielieferverträge mit Optionalitäten, flexible Produkte für Stromkunden Quantifizieren des Gegenparteirisikos Marketing des Produktes "Elektrizität" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts - all material in English | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | 2-tägige Exkursion, Referate von Vertretern aus der Wirtschaft Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=12225 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy Flows and Processes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0206-00L | Wasserbau | W | 5 KP | 4G | R. Boes, K. Sperger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Wasserbauliche Systeme, Anlagen und Bauwerke (z.B. Talsperren, Fassungen, Stollen, Leitungen, Kanäle, Wehre, Krafthäuser, Schleusen), Grundlagen des Flussbaus und der Naturgefahren | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | In dem Fach "Wasserbau" werden die Kompetenzen Prozessverständnis und Systemverständnis gelehrt, angewandt und geprüft. Konzeptentwicklung wird gelehrt und angewandt. Es werden Kenntnisse wasserbaulicher Anlageteile und ihrer Funktion innerhalb wasserbaulicher Systeme vermittelt; die Lernenden werden zu Entwurf und Dimensionierung hinsichtlich Gebrauchstauglichkeit und Sicherheit befähigt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Wasserbauliche Systeme: Speicher, Nieder- und Hochdruckanlagen. Wehre: Wehrarten, Verschlüsse, Hydraulische Bemessung. Fassungen: Fassungstypen, Entsandungsanlagen. Kanäle: konstruktive Gestaltung, offene und geschlossene Kanäle. Leitungen: Auskleidungstypen, hydraulische Bemessung von Druckstollen und Druckschächten. Talsperren: Talsperrentypen, Nebenanlagen. Flussbau: Abflussberechnung, Sedimenttransport, flussbauliche Massnahmen. Naturgefahren: Überblick und Grundlagen zu Art und Schutzmassnahmentypen. Verkehrswasserbau: Schifffahrtskanäle und Schleusen. Schriftliche Übungen, Übung im hydraulischen Labor und am Computer. Exkursion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Umfassendes Wasserbau-Skript. Ergänzende Vorlesungsunterlagen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Weiterführende Literatur ist am Ende des jeweiligen Skript-Kapitels angegeben. Empfehlenswerte Fachbücher: - Giesecke, J., Heimerl, S. & Mosonyi, E. (2014): Wasserkraftanlagen (6. Auflage), Springer-Verlag, Berlin - Patt, H. & Gonsowsky, P. (2011): Wasserbau (7. Auflage), Springer-Verlag, Berlin - Bollrich, G. (2000): Technische Hydromechanik, Verlag für Bauwesen, Berlin - Strobl, T., Zunic, F. (2006): Wasserbau, Springer-Verlag, Berlin, Heidelberg. - Hager, W.H., Schleiss, A.J. (2009): Constructions Hydrauliques; Traité de Génie Civil, Vol. 15, Presses Polytechniques et Universitaires Romandes, Lausanne. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | als Grundlage dringend empfohlen: Hydraulik I (Vorlesung 101-0203) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0588-01L | Re-/Source the Built Environment | W | 3 KP | 2S | G. Habert | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course focuses on material choice and energy strategies to limit the environmental impact of construction sector. During the course, specific topics will be presented (construction technologies, environmental policies, social consequences of material use, etc.). The course aims to present sustainable options to tackle the global challenge we are facing and show that "it is not too late". | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After the lecture series, the students are aware of the main challenges for the production and use of building materials. They know the different technologies/propositions available, and environmental consequence of a choice. They understand in which conditions/context one resource/technology will be more appropriate than another | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | A general presentation of the global context allows to identify the objectives that as engineer, material scientist or architect needs to achieve to create a sustainable built environment. The course is then conducted as a serie of guest lectures focusing on one specific aspect to tackle this global challenge and show that "it is not too late". The lecture series is divided as follows: - General presentation - Notion of resource depletion, resilience, criticality, decoupling, etc. - Guest lectures covering different resources and proposing different option to build or maintain a sustainable built environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | For each lecture slides will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The lecture series will be conducted in English and is aimed at students of master's programs, particularly the departments ARCH, BAUG, ITET, MAVT, MTEC and USYS. No lecture will be given during Seminar week. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0060-00L | Thermodynamics and Transport Phenomena in Nanotechnology | W | 4 KP | 2V + 2U | T. M. Schutzius, D. Taylor | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The lecture deals with thermodynamics and transport phenomena in nano- and microscale systems. Typical areas of applications are microelectronics manufacturing and cooling, manufacturing of novel materials and coatings, surface technologies, wetting phenomena and related technologies, and micro- and nanosystems and devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The student will acquire fundamental knowledge of interfacial and micro-nanoscale thermofluidics including electric field and light interaction with surfaces. Furthermore, the student will be exposed to a host of applications ranging from superhydrophobic surfaces and microelectronics cooling to solar energy, all of which will be discussed in the context of the course. The student will also judge state-of-the-art scientific research in these areas. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Thermodynamic aspects of intermolecular forces; Interfacial phenomena; Surface tension; Wettability and contact angle; Wettability of Micro/Nanoscale textured surfaces: superhydrophobicity and superhydrophilicity. Physics of micro- and nanofluidics as well as heat and mass transport phenomena at the nanoscale. Scientific communication and exposure to state-of-the-art scientific research in the areas of Nanotechnology and the Water-Energy Nexus. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0160-00L | Nuclear Energy Systems | W | 4 KP | 2V + 1U | R. Eichler, P. Burgherr, W. Hummel, T. Kämpfer, T. Kober, M. Streit, X. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Kernenergie und Nachhaltigkeit, Urangewinnung, Urananreicherung, Kernbrennstoffherstellung, Wiederaufarbeitung ausgedienter Brennelemente, Entsorgung von radioaktivem Abfall, Lebenszyklusanalyse, Energie- und Stoffbilanzen von Kernkraftwerken. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studenten erhalten einen Überblick über die physikalisch-chemischen Grundlagen, die technologischen Prozesse und die Entwicklungstrends in Bereich der gesamten nuklearen Energieumwandlungskette. Sie werden in die Lage versetzt, die Potentiale und Risiken der Einbettung der Kernenergie in ein komplexes Energiesystem einzuschätzen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | (1) Überblick über den kosmischen und geologischen Ursprung von Uranvorkommen, Methoden des Uranbergbaus, der Urangewinnung aus dem Erz, (2) Urananreicherung (Diffusionszellen, Ultrazentrifugen, alternative Methoden), chemische Konvertierung Uranoxid - Fluorid - Oxid, Brennelementfertigung, Abbrand im Reaktor. (3) Wiederaufarbeitung abgebrannter Brennelemente (hydro- und pyrochemisch) einschliesslich der modernen Verfahren der Tiefentrennung hochaktiver Abfälle, Methoden der Minimierung von Menge und Radiotoxizität des nuklearen Abfalls, (4) Entsorgung von Nuklearabfall, Abfallkategorien und -herkunft, geologische und künstliche Barrieren in Tiefenlagern und deren Eigenschaften, Projekt für ein geologisches Tiefenlager für radioaktive Abfälle in der Schweiz, (5) Methoden zur Ermittlung der Nachhaltigkeit von Energiesystemen, Masse der Nachhaltigkeit, Vergleich der Kernenergie mit anderen Energieumwandlungstechnologien, Umwelteinfluss des Kernenergiesystems als Ganzes, spezieller Aspekt CO2-Emissionen, CO2-Reduktionskosten. Die Materialbilanzen unterschiedlicher Varianten des Brennstoffzyklus werden betrachtet. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Vorlesungsfolien werden verteilt und in digitaler Form bereit gestellt. |
- Seite 1 von 2 Alle