Suchergebnis: Katalogdaten im Herbstsemester 2021
Bauingenieurwissenschaften Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Master-Studium (Studienreglement 2020) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. Semester | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefungsfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Bau- und Erhaltungsmanagement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0549-00L | AK Baurecht | W+ | 3 KP | 2G | H. Briner, D. Trümpy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Grundkenntnisse im öffentlichen und privaten Baurecht; eingegangen wird u.a. auf Raumplanungsrecht, Umweltrecht, Bauverfahrensrecht, Bauvorschriften. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Teil 1: Erwerb von Grundkenntnissen des öffentlichen Rechts, das das Bauen betrifft: Raumplanungsrecht, Bauvorschriften, Umweltrecht und Bauverfahrensrecht Teil 2: Erwerb von Grundkenntnissen des privaten Baurechts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Teil 1: Jede Lektion behandelt für ein bestimmtes Stadium des Projekts ein Thema des öffentlichen Baurechts wie Bau- und Zonenordnungen, Quartierpläne, Umweltverträglichkeitsprüfungen, Baubewilligungsverfahren etc.. Teil 2: Grundzüge des privaten Baurechts wie Abnahme und Genehmigung von Bauwerken, Vollmacht des Architekten / Ingenieurs zu Rechtshandlungen namens des Bauherrn, Mängelrüge im Bauwesen, Mehrheit ersatzpflichtiger Baubeteiligter, Generalunternehmervertrag, Haftung des Baumaterialverkäufers, Bauhandwerkerpfandrecht, Grundzüge der SIA-Norm 118, Baukonsortium, technische Normen, internationale Bauverträge, Architekten / Ingenieure als Gerichtsexperten, Aspekte des Bauzivilprozesses | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | D. Trümpy: Tafeln zu den Grundzügen des schweizerischen Bauvertragsrechts (Vorlesungsunterlage) H. Briner: Tafeln zu den Grundzügen des öffentlichen Raumplanungs-, Bau- und Umweltrechts (Vorlesungsunterlage) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Stöckli P./Siegenthaler Th. (Hrsg.) Die Planerverträge, Schulthess 2013 - Gauch Peter, Werkvertrag, 5. Auflage, Schulthess 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Die Teilnehmer sollen stets ein Exemplar der SIA-Norm 118, der SIA-LHO 103 sowie die Gesetzesausgaben von OR und ZGB bei sich haben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0587-00L | Workshop on Sustainable Building Certification Maximale Teilnehmerzahl: 25 | W+ | 3 KP | 2G | D. Kellenberger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Building labels are used to certify buildings and neighbourhoods in term of sustainability. Many different labels have been developed and can be used in Switzerland (LEED, DGNB, SNBS, Minergie, 2000-Watt-Sites). In this course the differences between the certification labels and its application on 3 emblematic case study buildings will be discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After this course, the students are able to understand and use the different certification labels. They have a clear view of what the labels take into consideration and what they don't. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Three buildings case study will be presented. Different certification schemes, including LEED (American standard), DGNB (German Standard with Swiss adaptation), Label SNBS, MINERGIE-ECO and 2000-Watt-Site (Swiss standards) will be presented and explained by experts. After this overall general presentation and in order to have a closer look to specific aspects of sustainability, students will work in groups and assess during one or two weeks this specific criteria on one of the case studies presented before. This practical hands on the label will end with a presentation and a discussion where we will highlight differences between the labels. This alternance of working session on one specific criteria for one specific building followed by a group presentation and discussion to compare labels is repeated for the different focus point (operation energy, mobility, daylight, indoor air quality). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The slides from the presentations will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | All documents for certification labels as well as detail plans of the buildings will be available for the students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0507-00L | Infrastructure Management 3: Optimisation Tools Findet dieses Semester nicht statt. | W+ | 6 KP | 2G | B. T. Adey | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will provide an introduction to the methods and tools that can be used to determine optimal inspection and intervention strategies and work programs for infrastructure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Upon successful completion of this course students will be able: - to use preventive maintenance models, such as block replacement, periodic preventive maintenance with minimal repair, and preventive maintenance based on parameter control, to determine when, where and what should be done to maintain infrastructure - to take into consideration future uncertainties in appropriate ways when devising and evaluating monitoring and management strategies for physical infrastructure - to use operation research methods to find optimal solutions to infastructure management problems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Part 1: Explanation of the principal models of preventative maintenance, including block replacement, periodic group repair, periodic maintenance with minimal repair and age replacement, and when they can be used to determine optimal intervention strategies Part 2: Explanation of preventive maintenance models that are based on parameter control, including Markovian models and opportunistic replacement models Part 3: Explanation of the methods that can be used to take into consideration the future uncertainties in the evaluation of monitoring strategies Part 4: Explanation of how operations research methods can be used to solve typical infrastructure management problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A script will be given out at the beginning of the course. Class relevant materials will be distributed electronically before the start of class. A copy of the slides will be handed out at the beginning of each class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Successful completion of IM1: 101-0579-00 Evaluation tools is a prerequisite for this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0520-00L | Project Management: Project Execution to Closeout | W+ | 4 KP | 2G | J. J. Hoffman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course will give Engineering students a comprehensive overview and enduring understanding of the techniques, processes, tool and terminology to manage the Project Triangle (time, cost Quality) and to organize,analyze,control and report a complex project from start of Project Execution to Project Completion. Responsibilities will be detailed in each phase of the execution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | A student after completing the course will have the understanding of the Project Management duties, responsibilities, actions and decisions to be done during the Execution phase of a complex project. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Execution Phase of the Project Engineering Management - Scope, EV Measurement, Reporting and Organization Procurement and Transportation - Scope, EV Measurement, Reporting and Organization Civil Construction and Erection - Scope, EV Measurement, Reporting and Organization Financial Reporting and forecasting Risk & Opportunity Identification Assessment and Quantification during Execution Team Organization and Leadership Risk and opportunity identification and quantification Contract Claims and Delays Execution Quality Environmental Health and safety during execution | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Required and suggested reading will be uploaded on weakly basis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite for this course is course Project Management: Pre-Tender to Contract Execution number 101-0517-01 G, unless otherwise approved by the lecturer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0608-00L | Design-Integrated Life Cycle Assessment | W | 3 KP | 2G | G. Habert | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Currently, Life Cycle Assessment (LCA) is applied as an ex-post design evaluation of buildings, but rarely used to improve the building during the design process. The aim of this course is to apply LCA during the design of buildings by means of a digital, parametric tool. The necessary fundamentals of the LCA method will be taught following a lecture on demands approach. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course will follow two main objectives and a third optional objective, depending on the design projects the students’ choose. At the end of the course, the students will: 1. Know the methodology of LCA 2. Be able to apply LCA in the design process to assess and improve the environmental performance of their projects 3. Be able to use the parametric LCA tool and link it to additional performance assessment tools for a holistic optimisation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course will be structured into two parts, each making up about half of the semester. Part I: Exercises with lectures on demand The first six individual courses will follow the “lectures on demand” approach. Small “hands-on” exercises focusing on one specific aspect will be given out and the necessary background knowledge will be provided in the form of short input lectures when questions arise. The following topics will be discussed during the first part: 1) LCA basic introduction 2) System boundaries, functional unit, end of life 3) Carbon budget and LCA benchmarks 4) BIM-LCA, available calculation tools and databases 5) Integrated analysis of environmental and cost assessment 6) Bio-based carbon storage Part II: Project-based learning In the second part, the students will work on their individual project in groups of three. For the design task, the students will bring their own project and work on improving it. The projects can be chosen depending on the students background and range from buildings to infrastructure projects. Intermediate presentations will ensure the continuous work and make sure all groups are on the same level and learn from each other. During this part, the following hands-on tutorials will be given: 1) Introduction to Rhinoceros 6 and 7 2) Introduction to grasshopper 3) Integrated assessment tools (ladybug tools) 4) Introduction to in-house grasshopper plugin for LCA analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | As the course follows a lecture on demand approach, the lecture slides will be provided after each course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite: Sustainable construction (101-0577-00L). Otherwise a special permisson by the lecturer is required. The students are expected to work out of class as well. The course time will be used by the teachers to answer project-specific questions. The lecture series will be conducted in English and is aimed at students of master's programs, particularly the departments ARCH, BAUG, ITET, MAVT, MTEC and UWIS. No lecture will be given during Seminar week. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0577-00L | An Introduction to Sustainable Development in the Built Environment | O | 3 KP | 2G | G. Habert, D. Kaushal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change. in 2016, other political bodies made these changes more difficult to predict. What does it mean for the built environment? This course provides an introduction to the notion of sustainable development when applied to our built environment | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment. In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment). For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects. The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment. Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction. After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development. The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The following topics give an overview of the themes that are to be worked on during the lecture. - Overview on the history and emergence of sustainable development - Overview on the current understanding and definition of sustainable development Methods - Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction) - Method 2: Life Cycle Costing - Method 3: Labels and certification Main issues: - Operation energy at building, urban and national scale - Mobility and density questions - Embodied energy for developing and developed world - Synthesis: Transition to sustainable development | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0527-10L | Materials and Constructions | W | 3 KP | 2G | G. Habert, D. Sanz Pont | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Building materials with a special focus on regenerative materials: earth, bio-based and reuse. Sourcing, properties and performance, building envelope integration and detailing, sustainable building construction | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Special focus on regenerative materials: earth, bio-based and reuse The students will acquire knowledge in the following fields: Fundamentals of material performance Introduction to durability problems of building facades Materials for the building envelope: - Overview of structural materials and systems: concrete, steel, wood and bamboo, earth - Insulating materials (bio-based vs conventional) - Air barrier, vapour barrier and sealants - Interior finishing Assessment of materials and components behaviour and performance Solutions for energy retrofitting of (historical) buildings Aspects of sustainability and durability | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction Sustainable cement and concrete Earth construction Visit Steel and bamboo Timber construction Building physic and conventional insulation Bio-based insulation Finishing Reuse | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Geotechnik | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0329-00L | Untertagbau III | W | 4 KP | 2G | G. Anagnostou, E. Pimentel, M. Ramoni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vertiefung von ausgewählten Themen des Untertagbaus sowie Üben des konzeptionellen Vorgehens bei komplexen Problemen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vertiefung der Kenntnisse in ausgewählten Themen des Untertagbaus. Erlernen des konzeptionellen Vorgehens bei komplexen Problemen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Kavernenbau: Anordnung, Bauweisen, Sicherung. Schachtbau im Fels: Bauweisen, Sicherung. Städtischer Tunnelbau: Randbedingungen, Systemwahl, Linienführung, Entwurf und Konstruktion. Feldmessungen im Fels- und Untertagbau: Messprinzipien, Planung, Anwendungen, Interpretation. Tagbautunnel: Statische Modellbildung, Dimensionierung. Anhand von ausgewählten, aktuellen Fallbeispielen wird in kleinen Gruppen das Vorgehen bei der konzeptuellen Bearbeitung komplexer, aussergewöhnlicher Probleme geübt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Autographieblätter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Empfehlungen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzung: Besuch der Vorlesungen "Untertagbau" aus dem ETH-Bachelor-Studiengang und "Untertagbau I", "Untertagbau II" aus dem ETH-Master-Studiengang. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0339-00L | Umweltgeotechnik | W | 3 KP | 2G | M. Plötze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vermittlung der Kenntnisse über die Problematik von Altlasten, deren Erkundung, Risikobeurteilung, Sanierungs- und Sicherungsmethoden sowie Monitoringsysteme. Vermittlung von Planung und Bau von Deponien, Schwerpunkt Barrieresysteme und -materialien sowie die Beurteilung von Standsicherheits- und Stabilitätsproblemen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vermittlung der Kenntnisse über die Problematik von Altlasten, deren Erkundung, Risikobeurteilung, Sanierungs- und Sicherungsmethoden sowie Monitoringsysteme. Vermittlung von Planung und Bau von Deponien, Schwerpunkt Barrieresysteme und -materialien sowie die Beurteilung von Standsicherheits- und Stabilitätsproblemen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Definition Altlasten, Erkundungsmethoden, historische und technische Untersuchungsmethoden, Risikobeurteilung, Schadstofftransport, Sanierungs- und Sicherungsmethoden (z.B. Biologische Reinigung, Verbrennung, Dichtwände, Pump-and-Treat, Reaktive Wände), Entsorgungswege belasteter Abfälle, Monitoring, Forschungsprojekte und -ergebnisse Abfälle und deren Behandlung, Abfallbehandlungs- und ablagerungskonzepte, Multibarrierensysteme, Standorterkundung, Deponiebasis- und Oberflächenabdichtungssysteme (Materialien, Drainagen, Geokunststoffe etc.), Stabilitätsbetrachtungen, Forschungsprojekte und -ergebnisse | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Exkursion | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0367-00L | Geotechnik der Verkehrswege | W | 3 KP | 2G | D. Hauswirth | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Grundlagen der Bemessung von Strassenbauten, Materialtechnologie der Strassenbaumaterialien. Geotechnische Untersuchungsmethoden im Labor und im Feld. Planung, Überwachung und Auswertung von Bodenuntersuchungen im Feld. Klassifikation von Böden für die Verwendung als Baumaterial. Verdichtung von Strassen und Dämmen. Frosteigenschaften von Bodenmaterialien, Stabilisierung mit Bindemitteln. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studierenden sollen in der Lage sein, das Bauwerk Strasse in seinem gesamten bautechnischen Zusammenhang zu kennen und zu dimensionieren. Dazu gehören die Kenntnisse der Zusammenhänge der örtlichen Bedingungen - Boden, Untergrundverhältnisse, Klima, Wasser, sowie auch die Einflüsse der gewählten Baumaterialien und der Oberflächeneigenschaften auf die Nachhaltigkeit des Bauwerkes Strasse. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Grundlagen der Bemessung von Strassenbauten, Materialtechnologie der Strassenbaumaterialien. Geotechnische und strassenbauliche Versuchstechnik und Untersuchungsmethoden im Labor und im Feld. Planung, Überwachung und Auswertung von Bodenuntersuchungen im Felde. Probleme des Umweltschutzes. Klassifikation von Böden für die Verwendung als Baumaterial. Verdichtung von Strassen und Dämmen. Frosteigenschaften von Bodenmaterialien, Stabilisierung mit Bindemitteln. Dimensionierung Strassenoberbau (Recycling-Baustoffe). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Autographie, Uebungsblätter, Handouts, Folien | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Gemäss Literaturverzeichnis in den abgegebenen Unterlagen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | In den Vorlesungen und Übungen werden verschiedene Demonstrationsmaterialien verwendet. Voraussetzungen: Grundlagenkenntnisse in "Bodenmechanik/Grundbau" sowie in "Projektierung von Verkehrsanlagen" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertiefung in Konstruktion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0119-00L | Mauerwerk | W | 3 KP | 2G | N. Mojsilovic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Kenntnisse des Tragverhaltens von Mauerwerk und seiner Komponenten. Zweckmässige Anwendung von theoretischen Ansätzen bei der Bemessung und konstruktiven Durchbildung von Mauerwerkstragwerken. Praktischer Umgang mit Mauerwerk anhand von Übungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Erwerbung der Kenntnisse des Tragverhaltens von Mauerwerk und seiner Komponenten. Befähigung zur zweckmässigen Anwendung von theoretischen Ansätzen bei der Bemessung und konstruktiven Durchbildung von Mauerwerkstragwerken. Befähigung zum praktischen Umgang mit Mauerwerk anhand von Übungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Entwicklung des Mauerwerkbaus Konstruktion und Ausführung Baustoffe Tragverhalten und Modellbildung Tragwerksanalyse und Bemessung Bewehrtes Mauerwerk Seismisches Verhalten | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Vorlesungsnotizen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | "Mauerwerk, Bemessungsbeispiele zur Norm SIA 266", SIA Dokumentation D0257, 2015 "Mauerwerk", Norm SIA 266, 2015 "Mauerwerk - Ergänzende Festlegungen", Norm SIA 266/1, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Advanced Structural Concrete | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0129-00L | Non Destructive Evaluation & Rehabilitation of Existing Structures | W | 3 KP | 2G | E. Chatzi, B. Herraiz Gómez, G. Kocur | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to non destructive evaluation tools and quantitative structural analyses and verifications for condition assessment of existing structures and subsequent decisions on their rehabilitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal is for students to familiarize themselves with the handling of assessment and rehabilitation of existing structures from the perspective of a consulting engineer, following a systematic approach as described in current codes and to further learn how to use new non destructive evaluation technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is organized in two main pillars. The first pillar describes the technologies that are available for non destructive evaluation of structures and delves into description of the principle of operation of such methods (e.g. wave propagation, acoustic emission analysis, tomography). The second pillar, overviews the current implementation of condition assessment processes in codes and standards. Complementary to the topic of structural evaluation, the topic of interventions, rehabilitation and retrofitting of existing structures for different construction materials is next addressed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | J. D. Achenbach, Wave propagation in elastic solids, North-Holland Publishing Company, 425p, 1973 J. L. Rose, Ultrasonic Guided Waves in Solid Media, Cambridge University Press, 506p, 2014 N. Ida and N. Meyendorf, Handbook of Advanced Nondestructive Evaluation, Springer, 1617p, 2019 Swiss Standards SIA 269, 269/1 to 269/7 SIA-Document D 0239 « Existing Structures – Introduction » (in German/French) SIA-Document D 0239 « Existing Structures – Consolidation and Practice » (in German/French) A. Costa, A. Arêde, H. Varum, Strengthening and Retrofitting of Existing Structures, Springer, 339p, 2018 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0159-00L | Method of Finite Elements II | W | 3 KP | 2G | E. Chatzi, K. Tatsis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The Method of Finite Elements II is a continuation of Method of Finite Elements I. Here, we explore the theoretical and numerical implementation concepts for the finite element analysis beyond the linear elastic behavior. This course aims to offer students with the skills to perform nonlinear FEM simulations using coding in Python. *This course offers no introduction to commercial software. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This class overviews advanced topics of the Method of Finite Elements, beyond linear elasticity. Such phenomena are particularly linked to excessive loading effects and energy dissipation mechanisms. Their understanding is necessary for reliably computing structural capacity. In this course, instead of blindly using generic structural analysis software, we offer an explicit understanding of what goes on behind the curtains, by explaining the algorithms that are used in such software. The course specifically covers the treatment of the following phenomena: - Material Nonlinearity (Plasticity) - Geometric Nonlinearity (Large Displacement Problems) - Nonlinear Dynamics - Fracture Mechanics The concepts are introduced via theory, numerical examples, demonstrators and computer labs in Python (starting Fall 2021). Upon completion of the course, the participants will be able to: - Recognize when linear elastic analysis is insufficient - Solve nonlinear dynamics problems, which form the core for limit state calculations (e.g. ultimate capacity, failure) of structures - Numerically simulate fracture; a dominant failure phenomenon for structural systems. See the class webpage for more information: http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course slides serve as Script. These are openly available on: http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Course Slides (Script): http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html Useful (optional) Reading: - Nonlinear Finite Elements of Continua and Structures, T. Belytschko, W.K. Liu, and B. Moran. - Bathe, K.J., Finite Element Procedures, Prentice Hall, 1996. - Crisfield, M.A., Remmers, J.J. and Verhoosel, C.V., 2012. Nonlinear finite element analysis of solids and structures. John Wiley & Sons. - De Souza Neto, E.A., Peric, D. and Owen, D.R., 2011. Computational methods for plasticity: theory and applications. John Wiley & Sons. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: -101-0158-01 Method of Finite Elements I (FS) - A good knowledge of Python is necessary for attending this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0189-00L | Seismic Design of Structures II | W | 3 KP | 2G | B. Stojadinovic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The following topics are covered: behavior and non-linear response of structural systems under earthquake excitation; seismic behavior and design of moment frame, braced frame, shear wall and masonry structures; fundamentals of seismic response modification; and assessment and retrofit of existing buildings. They are discussed in the framework of risk-informed performance-based seismic design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successfully completing this course the students will be able to: 1. Use the knowledge of nonlinear dynamic response of structures to interpret the design code provisions and apply them in seismic design of structural systems. 2. Explain the seismic behavior of moment frame, braced frame and shear wall structural systems and successfully design such systems to achieve the performance objectives stipulated by the design codes. 3. Determine the performance of structures under earthquake loading using modern risk-informed performance assessment methods and analysis tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course completes the series of two courses on seismic design of structures at ETHZ. Building on the material covered in Seismic Design of Structures I, the following advanced topics will be covered in this course: 1) behavior and non-linear response of structural systems under earthquake excitation; 2) seismic behavior and design of moment frame, braced frame and shear wall structures; 3) fundamentals of seismic response modification; and 4) assessment and retrofit of existing buildings. These topics will be discussed from the standpoint of risk-informed performance-based design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes the lecture presentations, additional reading, and exercise problems and solutions. Lectures are streamed and recorded on the ETH Video Portal. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, Yousef Borzorgnia and Vitelmo Bertero, Eds., CRC Press, 2004 Dynamics of Structures: Theory and Applications to Earthquake Engineering, 5th edition, Anil Chopra, Prentice Hall, 2017/2020 Erdbebensicherung von Bauwerken, 2nd edition, Hugo Bachmann, Birkhäuser, Basel, 2002 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | ETH Seismic Design of Structures I course, or equivalent. Students are expected to understand the seismological nature of earthquakes, to characterize the ground motion excitation, to analyze the response of elastic single- and multiple-degree-of-freedom systems to earthquake excitation, to use the concept of response and design spectrum, to compute the equivalent seismic loads on simple structures, and to perform code-based seismic design of simple structures. Familiarity with structural analysis software, such as SAP2000, and general-purpose numerical analysis software, such as Matlab, is expected. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0191-00L | Seismic and Vibration Isolation | W | 2 KP | 1G | M. Vassiliou | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will cover the analysis and design of isolation systems to mitigate earthquakes and other forms of vibrations. The course will cover: 1. Conceptual basis of seismic isolation, seismic isolation types, mechanical characteristics of isolators. 2. Behavior and modeling of isolation devices, response of structures with isolation devices. 3. Design approaches and code requirements | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successfully completing this course the students will be able to: 1. Understand the mechanics of and design isolator bearings. 2. Understand the dynamics of and design an isolated structure. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Introduction: Overview of seismic isolation; review of structural dynamics and earthquake engineering principles. Viscoelastic behavior. 2. Linear theory of seismic isolation 3. Types of seismic isolation devices - Modelling of seismic isolation devices – Nonlinear response analysis of seismically isolated structures in Matlab 4. Behavior of rubber isolators under shear and compression 5. Behavior of rubber isolators under bending 6. Buckling and stability of rubber isolators 7. Code provisions for seismically isolated buildings | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The electronic copies of the learning material will be uploaded to ILIAS and available through myStudies. The learning material includes: reading material, and (optional) exercise problems and solutions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | There is no single textbook for this course. However, most of the lectures are based on parts of the following books: • Dynamics of Structures, Theory and Applications to Earthquake Engineering, 4th edition, Anil Chopra, Prentice Hall, 2017 • Earthquake Resistant Design with Rubber, 2nd Edition, James M. Kelly, Springer, 1997 • Design of seismic isolated structures: from theory to practice, Farzad Naeim and James M. Kelly, John Wiley & Sons, 1999 • Mechanics of rubber bearings for seismic and vibration isolation, James M. Kelly and Dimitrios Konstantinidis, John Wiley & Sons, 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | 101-0157-01 Structural Dynamics and Vibration Problems course, or equivalent, or consent of the instructor. Students are expected to know basic modal analysis, elastic spectrum analysis and basic structural mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0123-00L | Structural Design | W | 3 KP | 2G | P. Ohlbrock, P. Block, J. Schwartz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The goal of the course is to introduce the civil engineering students to Structural Design, which is regarded as a discipline that relates structural behavior, construction technologies and architectural concepts. The course encourages the students to understand the relationship between the form of a structure and the forces within it by promoting the development of designed projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successfully completing this course the students will able to: 1. Critically question structural design concepts of historical and contemporary references 2. Use graphic statics and strut-and-tie models based on the Theory of Plasticity to describe the load bearing behavior of structures 3. Understand different construction technologies and have an awareness of their potential for structural design 4. Use contemporary digital tools for the design of structures in equilibrium 5. Design an appropriate structural system for a given design task taking into account architectural considerations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The goal of the course is to introduce the civil engineering students to Structural Design, which is understood as a discipline that relates structural behavior, construction technologies and architectural concepts. Hence, the course encourages the students to develop an intuitive understanding of the relationship between the form of a structure and the forces within it by promoting the development of designed projects, in which the static and architectural aspects come together. The course is structured in two main parts, each developed in half of a semester: a mainly theoretical one (including the teaching of graphic statics) and a mainly applied one (focused on the development of a design project by the students using digital form-finding tools). Theory: Graphic statics is a graphical method developed by Prof. Karl Culmann and firstly published in 1864 at ETH Zurich. In this approach to structural analysis and design, geometric construction techniques are used to visualize the relation between the geometry of a structure and the forces acting in and on it, represented by geometrically dependent form and force diagrams. The course will firstly review the main principles of graphic statics through a series of frontal lectures and discuss the relationship to analytical statics. Graphic statics is then used as an operative tool to design structures in equilibrium based on the lower bound theorem of the Theory of Plasticity. Additionally, the course will introduce contemporary methodologies and tools (parametric CAD software) for the interactive application of equilibrium modelling in the form of short workshops. The students will familiarize with the topic by solving exercises and confronting themselves with simple design tasks. Design Project: Specific structural design approaches and design methodologies based on graphic statics and references from construction history will be introduced to the students by means of seminars and workshops. By developing a design project, the students will apply these concepts and techniques in order to become proficient with open design tasks (such as the design of a bridge, a large span hall or a tower). At the end of the semester, the students present their projects to a jury of internal and external critics in a final review. The main criterion of evaluation is the students' ability to integrate architectural considerations into their structural design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | "Faustformel Tragwerksentwurf" (Philippe Block, Christoph Gengangel, Stefan Peters, DVA Deutsche Verlags-Anstalt 2015, ISBN 978-3-421-04012-1) "Form and Forces: Designing Efficient, Expressive Structures" (Edward Allen, Waclaw Zalewski, October 2009, ISBN: 978-0-470-17465-4) "The art of structures, Introduction to the functioning of structures in architecture" (Aurelio Muttoni, EPFL Press, 2011, ISBN-13: 978-0415610292, ISBN-10: 041561029X) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0121-00L | Fatigue and Fracture in Materials and Structures | W | 4 KP | 3G | E. Ghafoori, A. Taras | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The fundamentals in fatigue and fracture mechanics, which are used in different engineering disciplines (e.g., for mechanical, aerospace, civil and material engineers) will be discussed. The focus will be on fundamental theories (based on fracture mechanics) that model fatigue damage and crack propagation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | In this course, the students will learn: • Mechanisms of fatigue crack initiations in materials. • Linear elastic and elastic-plastic fracture mechanics. • Modern computer-based techniques (using ABAQUS Finite Element Package) to simulate cracks in both bulk materials and bonded joints/interfaces. • Laboratory fatigue and fracture tests on details with cracks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course starts with a discussion on the importance of fatigue and fracture in different engineering disciplines such as mechanical, aerospace, civil and material engineering domains. The preliminary topics that are covered in this course are: I) Fatigue of materials: • Mechanisms of fatigue crack initiation in (ductile and brittle) metals. • Crack initiation under uni-axial high-cycle fatigue (HCF) loadings: Wöhler (S-N) curves, constant life diagram approach (mean-stress effects), rainflow analysis and Miner's damage rule. • Crack initiation under multi-axial HCF loadings: multi-axial fatigue mechanisms, critical plane approach (critical distance theory), equivalent stress approach, proportional and non-proportional loading. II) Fracture mechanics: • ELinear elastic fracture mechanics (LEFM): limits of LEFM, stress intensity factors, crack opening displacement, mixed-mode fracture, etc. • Elastic-plastic fracture mechanics: Irwin and Dugdale models, plastic zone shapes, crack-tip opening displacement and J-integral. • Fatigue crack growth (FCG): FCG models, Paris' law, cyclic plastic zones, crack closure effects. This also includes FE modeling of the FCG and laboratory tests (at Empa). III) Introduction to cohesive zone models (CZMs): • Advantages and disadvantages of CZMs compared to fracture mechanics. • Different bond-slip models for the bonded joints/interfaces. IV) Computer laboratory to simulate cracks and debonding problems: • Finite Element (FE) modeling of complex details with cracks. • FE simulations of debonding problems using CZMs. • Computer laboratory: FE training and exercises using (the student edition of) the ABAQUS FE Package. V) Introduction to fatigue and fracture design in civil structures. Different methods for fatigue strengthening will be disscussed. VI) Visits to the Empa (Swiss Federal Laboratories for Materials Science and Technology) in Dübendorf, and “Laboratory Competition”. The students will: • Visit different small-scale and large-scale fatigue testing equipment. • Get to know different ongoing fatigue- and fracture-related projects. • Witness and help to conduct a fatigue test on a steel plate with a pre-crack and a fracture test on an adhesively-bonded joint. • Compare the experimental results with their own calculations (from the fracture theories). • “Laboratory Competition” at Empa: the students with the closest predictions will win the “Empa Laboratory Competition” and will be awarded by a prize. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lectures are based on the lecture slides and the handouts, which will be given to the students during the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1. Schijve J. “Fatigue of Structures and Materials”, 2008: New York: Springer. 2. Anderson T.L. “Fracture Mechanics - Fundamentals and Applications”, 3rd Edition, Taylor & Francis Group, LLC. 2005. 3. Budynas R.G., Nisbett J.K. “Shigley's Mechanical Engineering Design”, 2008, New York: McGraw-Hill. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Note 1: A basic knowledge on mechanics of structures and structural analysis (i.e., stress-strain analysis and calculations of internal deformations, strains and stresses within structures) is recommended and will be helpful in the course. Note 2: Laboratory demonstrations and fatigue/fracture tests at the Structural Engineering Research Laboratory of Empa in Dübendorf. This includes laboratory tours and showcasing the Empa large-scale 7-MN fatigue testing machine for bridge cables, different fatigue and fracture testing equipment for structural components, etc. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0169-00L | Holzbau III Voraussetzung: Holzbau I (101-0168-00L). Eine Spezialbewilligung des Dozierenden benötigen Studierende, welche Holzbau I nicht absolviert haben. | W | 3 KP | 2G | A. Frangi, R. Jockwer, M. Klippel, S. M. Schoenwald, R. Steiger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vertiefung und Ergänzung der in Holzbau I + II erworbenen Grundkenntnisse. Behandlung von aktuellen Themen und Innovationen des Ingenieurholzbaus. Bemessung, konstruktive Durchbildung und Sanierung von komplexen Holzbauten mit hohen Anforderungen an Erdbebensicherheit, Schall- und Brandschutz. Beschrieb, Analyse und Diskussion einer existierenden Holzkonstruktion in Gruppen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vertieftes Verständnis der theoretischen und konstruktiven Belange des Ingenieurholzbaus. Selbständige Bemessung, konstruktive Durchbildung, Optimierung und Sanierung von komplexen Holzbauten mit hohen Anforderungen an Erdbebensicherheit, Schall- und Brandschutz. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Mehrgeschossiger Holzbau (Allgemein, Brettsperrholz, Hochhäuser, Brandschutz, Schallschutz), Vorgespannte Holzkonstruktionen, Bauen mit Laubholz, Robustheit von Holztragwerken, Erdbebengerechte Holztragwerke, Erhaltung und Sanierung von Tragwerken. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Autographie Holzbau Folienkopien | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Holzbautabellen HBT 1, Lignum Norm SIA 265 Norm SIA 265/1 Eurocode 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Holzbau I + II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0120-00L | Structural Glass Design and Facade Engineering | W | 3 KP | 3G | V.‑A. Silvestru | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course gives an introduction to structural glass design and related façade engineering aspects. It will focus on the properties of the material glass and glass products, as well as on the structural design of glass elements and their supporting systems and connections. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successful completion of the course, students will be able to: -Understand and apply the fundamentals of the material glass and glass products, the basic principles for using glass as a load-carrying building material for structural applications and the types of connections used for glass elements; -Recognize requirements for glass elements depending on their application area and chose the appropriate glass products and assemblies accordingly; -Structurally design out-of-plane loaded glass elements based on available standards, both by hand calculations and specific software applications; -Apply selected approaches for the structural design of in-plane loaded glass elements; -Select suitable supporting systems (post-and-beam façade, curtain wall, etc.) and connections (point fixings, brackets, etc.) for the glass elements and structurally design them. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course introduces civil engineering students to structural glass design and related façade engineering aspects. It aims to provide the students the knowledge required in engineering offices to design glass elements but at the same time, the necessary fundamentals for later performing research in this field. To achieve this, the course includes lectures, design exercises and a design project. Lectures: The lectures will cover the following contents: -Production methods and properties of the material glass and glass products and their structurally relevant properties (annealed glass, thermally tempered glass, chemically tempered glass, laminated glass, insulating glass, curved glass); -Connection principles and types for glass elements (mechanical fixing, adhesive bonding); -Requirements for glass elements depending on the application area (vertical glazing, overhead glazing, walk-on glazing, barrier glazing); -Structural design of glass elements based on standards and research results (out-of-plane loaded glass elements and in-plane loaded glass elements); -Typologies and design of structural systems for transparent façades; -Requirements and functions for transparent facades. Design exercises: The principles and methods presented in the lectures are practiced with the students in design exercises. Hand calculation methods and their limitations as well as the software for structural glass design SJ Mepla are used for out-of-plane loaded glass elements. For in-plane loaded glass elements, the specifics of numerical calculation procedures are exemplified with the software Abaqus. Design project: The students will consolidate the knowledge gained in the theory-lectures and in the design exercises by working on a small design task (e.g. a glass canopy, a glass façade, a glass pavilion) in the form of a group work (ideally groups of 2-3 students). Within this task, the students will: conceptually design the structure and selected connection details; identify requirements for the glass elements and define their assembly; structurally design selected glass components, their support systems and their connections. The students will work on the design task in the second half of the semester and will get feedback on their progress in weekly review sessions. At the end of the semester, the groups will submit a project report and give an oral presentation of their projects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The lectures are based on lecture slides and handouts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Recommended and supplementary literature: -Schneider J., Kuntsche J., Schula S., Schneider F., Wörner J.-D.: Glasbau – Grundlagen, Berechnung, Konstruktion; Springer Vieweg, Berlin Heidelberg, 2. Auflage, 2016. -Kasper R., Pieplow K., Feldmann M.: Beispiele zur Bemessung von Glasbauteilen nach DIN 18008; Ersnst & Sohn, Berlin, 2016. -Haldimann M., Luible A., Overend M.: Structural Use of Glass; IABSE, 2008. -Knaack U., Klein T., Bilow M., Auer T.: Facades – Principles of Construction; Birkhäuser, Basel, 2007. -Watts A.: Modern construction envelopes – Systems for architectural design and prototyping; Birkhäuser, Basel, 2019. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prior knowledge of structural analysis, especially steel structures is necessary. Prior basic knowledge on the method of finite elements is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0139-00L | Scientific Machine and Deep Learning for Design and Construction in Civil Engineering | W | 3 KP | 4G | M. A. Kraus, D. Griego | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will present methods of scientific machine and deep learning (ML / DL) for applications in design and construction in civil engineering. After providing proper background on ML and the scientific ML (SciML) track, several applications of SciML together with their computational implementation during the design and construction process of the built environment are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course aims to provide graduate level introduction into Machine and especially scientific Machine Learning for applications in the design and construction phases of projects from civil engineering. Upon completion of the course, the students will be able to: 1. understand main ML background theory and methods 2. assess a problem and apply ML and DL in a computational framework accordingly 3. Incorporating scientific domain knowledge in the SciML process 4. Define, Plan, Conduct and Present a SciML project | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course will include theory and algorithms for SciML, programming assignments, as well as a final project assessment. The topics to be covered are: 1. Fundamentals of Machine and Deep Learning (ML / DL) 2. Incorporation of Domain Knowledge into ML and DL 3. ML training, validation and testing pipelines for academic and research projects A comprehensive series of computer/lab exercises and in-class demonstrations will take place, providing a "hands-on" feel for the course topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course script is composed by lecture slides, which are available online and will be continuously updated throughout the duration of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Suggested Reading: Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong Mathematics for Machine Learning K. Murphy. Machine Learning: a Probabilistic Perspective. MIT Press 2012 C. Bishop. Pattern Recognition and Machine Learning. Springer, 2007 S. Guido, A. Müller: Introduction to machine learning with python. O'Reilly Media, 2016 O. Martin: Bayesian analysis with python. Packt Publishing Ltd, 2016 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Familiarity with MATLAB and / or Python is advised. |
- Seite 1 von 2 Alle