Suchergebnis: Katalogdaten im Frühjahrssemester 2021
Mathematik Master | ||||||
Wahlfächer Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen. | ||||||
Wahlfächer aus Bereichen der reinen Mathematik | ||||||
Auswahl: Geometrie | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
401-4118-21L | Spectral Theory of Hyperbolic Surfaces | W | 4 KP | 2V | C. Burrin | |
Kurzbeschreibung | The Laplacian plays a prominent role in many parts of mathematics. On a flat surface like the torus, understanding its spectrum is the topic of Fourier analysis, whose 19th century development allowed to solve the heat and wave equations. On the sphere, one studies spherical harmonics. In this course, we will study the spectrum of hyperbolic surfaces and its Maass forms (eigenfunctions). | |||||
Lernziel | We will start from scratch, with an overview of hyperbolic geometry and harmonic analysis on the hyperbolic plane. The objectives are to prove the spectral theorem and Selberg's trace formula, and explore applications in geometry and number theory. | |||||
Inhalt | Tentative syllabus: Hyperbolic geometry (the hyperbolic plane and Fuchsian groups) Construction of arithmetic hyperbolic surfaces Harmonic analysis on the hyperbolic plane The spectral theorem Selberg's trace formula Applications in geometry (isoperimetric inequalities, geodesic length spectrum) and number theory (links to the Riemann zeta function and Riemann hypothesis) Possible further topics (if time permits): Eisenstein series Explicit constructions of Maass forms (after Maass) A special case of the Jacquet-Langlands correspondence (after the exposition of Bergeron, see references) | |||||
Literatur | Nicolas Bergeron, The Spectrum of Hyperbolic Surfaces, Springer Universitext 2011. Armand Borel, Automorphic forms on SL(2,R), Cambridge University Press 1997. Peter Buser, Geometry and spectra of compact Riemann surfaces, Birkhäuser 1992. Henryk Iwaniec, Spectral methods of automorphic forms. Graduate studies in mathematics, AMS 2002. | |||||
Voraussetzungen / Besonderes | Knowledge of the material covered in the first two years of bachelor studies is assumed. Prior knowledge of differential geometry, functional analysis, or Riemann surfaces is not required. | |||||
401-4206-17L | Groups Acting on Trees | W | 6 KP | 3G | B. Brück | |
Kurzbeschreibung | As a main theme, we will see how an action of a group on a tree enables us to break the group into smaller pieces, and thus gain better understanding of its structure. | |||||
Lernziel | Learn basics of Bass-Serre theory; get to know concepts from geometric group theory. | |||||
Inhalt | As a mathematical object, a tree is a graph without any loops. It turns out that if a group acts on such an object, the algebraic structure of the group has a nice description in terms of the combinatorics of the graph. In particular, groups acting on trees can be decomposed in a certain way into simpler pieces.These decompositions can be described combinatorially, but are closely related to concepts from topology such as fundamental groups and covering spaces. This interplay between (elementary) concepts of algebra, combinatorics and geometry/topology is typical for geometric group theory. The course can also serve as an introduction to basic concepts of this field. Topics that will be covered in the lecture include: - Trees and their automorphisms - Different characterisations of free groups - Amalgamated products and HNN extensions - Graphs of groups - Kurosh's theorem on subgroups of free (amalgamated) products | |||||
Literatur | J.-P. Serre, Trees. (Translated from the French by John Stillwell). Springer-Verlag, 1980. ISBN 3-540-10103-9 O. Bogopolski. Introduction to group theory. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008. x+177 pp. ISBN: 978-3-03719-041-8 C. T. C. Wall. The geometry of abstract groups and their splittings. Revista Matemática Complutense vol. 16(2003), no. 1, pp. 5-101 | |||||
Voraussetzungen / Besonderes | Basic knowledge of group theory; being familiar with fundamental groups (e.g. the Seifert-van-Kampen Theorem) and covering theory is definitely helpful, although not strictly necessary. In particular, the standard material of the first two years of the Mathematics Bachelor is sufficient. | |||||
401-3056-00L | Endliche Geometrien I Findet dieses Semester nicht statt. | W | 4 KP | 2G | N. Hungerbühler | |
Kurzbeschreibung | Endliche Geometrien I, II: Endliche Geometrien verbinden Aspekte der Geometrie mit solchen der diskreten Mathematik und der Algebra endlicher Körper. Inbesondere werden Modelle der Inzidenzaxiome konstruiert und Schliessungssätze der Geometrie untersucht. Anwendungen liegen im Bereich der Statistik, der Theorie der Blockpläne und der Konstruktion orthogonaler lateinischer Quadrate. | |||||
Lernziel | Endliche Geometrien I, II: Die Studierenden sind in der Lage, Modelle endlicher Geometrien zu konstruieren und zu analysieren. Sie kennen die Schliessungssätze der Inzidenzgeometrie und können mit Hilfe der Theorie statistische Tests entwerfen sowie orthogonale lateinische Quadrate konstruieren. Sie sind vertraut mit Elementen der Theorie der Blockpläne. | |||||
Inhalt | Endliche Geometrien I, II: Endliche Körper, Polynomringe, endliche affine Ebenen, Axiome der Inzidenzgeometrie, Eulersches Offiziersproblem, statistische Versuchsplanung, orthogonale lateinische Quadrate, Transformationen endlicher Ebenen, Schliessungsfiguren von Desargues und Pappus-Pascal, Hierarchie der Schliessungsfiguren, endliche Koordinatenebenen, Schiefkörper, endliche projektive Ebenen, Dualitätsprinzip, endliche Möbiusebenen, selbstkorrigierende Codes, Blockpläne | |||||
Literatur | - Max Jeger, Endliche Geometrien, ETH Skript 1988 - Albrecht Beutelspacher: Einführung in die endliche Geometrie I,II. Bibliographisches Institut 1983 - Margaret Lynn Batten: Combinatorics of Finite Geometries. Cambridge University Press - Dembowski: Finite Geometries. | |||||
401-3574-61L | Introduction to Knot Theory Findet dieses Semester nicht statt. | W | 6 KP | 3G | ||
Kurzbeschreibung | Introduction to the mathematical theory of knots. We will discuss some elementary topics in knot theory and we will repeatedly centre on how this knowledge can be used in secondary school. | |||||
Lernziel | The aim of this lecture course is to give an introduction to knot theory. In the course we will discuss the definition of a knot and what is meant by equivalence. The focus of the course will be on knot invariants. We will consider various knot invariants amongst which we will also find the so called knot polynomials. In doing so we will again and again show how this knowledge can be transferred down to secondary school. | |||||
Inhalt | Definition of a knot and of equivalent knots. Definition of a knot invariant and some elementary examples. Various operations on knots. Knot polynomials (Jones, ev. Alexander.....) | |||||
Literatur | An extensive bibliography will be handed out in the course. | |||||
Voraussetzungen / Besonderes | Prerequisites are some elementary knowledge of algebra and topology. |
- Seite 1 von 1