Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Physik Master Information
Wahlfächer
Physikalische und mathematische Wahlfächer
Auswahl: Theoretische Physik
NummerTitelTypECTSUmfangDozierende
402-0883-63LSymmetries in PhysicsW6 KP2V + 1UM. Gaberdiel
KurzbeschreibungThe course gives an introduction to symmetry groups in physics. It explains the relevant mathematical background (finite groups, Lie groups and algebras as well as their representations), and illustrates their important role in modern physics.
LernzielThe aim of the course is to give a self-contained introduction into finite group theory as well as Lie theory from a physicists point of view. Abstract mathematical constructions will be illustrated with examples from physics.
InhaltFinite group theory, including representation theory and character methods; application to crystal field splitting. The symmetric group and the structure of its representations; application to identical particles and parastatistics. Simple Lie algebras and their finite-dimensional representations. Description of representations of SU(N) in terms of Young diagrams; applications in particle physics.
402-0895-00LThe Standard Model of Electroweak Interactions Information
Fachstudierende UZH müssen das Modul PHY563 direkt an der UZH buchen.
W6 KP2V + 1UG. Isidori
KurzbeschreibungTopics to be covered:
A) Electroweak Theory
- Spontaneous symmetry breaking and the Higgs mechanism
- The electroweak Standard Model Lagrangian
- The role of the Higgs and the Goldstone bosons
B) Flavour Physics
-The flavour sector of the Standard Model
-The neutral kaon system and CP violation
C) Neutrino oscillations
D) Precision tests of the electroweak Standard Model
LernzielAn introduction to modern theoretical particle physics
LiteraturAs described in the entity: Lernmaterialien
Voraussetzungen / BesonderesKnowledge of Quantum Field Theory I is required.
Parallel following of Quantum Field Theory II is recommended.
402-0886-00LIntroduction to Quantum Chromodynamics
Findet dieses Semester nicht statt.
Fachstudierende UZH müssen das Modul PHY564 direkt an der UZH buchen.
W6 KP2V + 1U
KurzbeschreibungIntroduction to the theoretical aspects of Quantum Chromodynamics, the theory of strong interactions.
LernzielStudents that complete the course will be able to understand the fundamentals of QCD, to quantitatively discuss the ultraviolet and infrared behaviour of the theory, to perform simple calculations and to understand modern publications on this research field.
InhaltThe following topics will be covered:
- QCD Lagrangian and gauge invariance
- Ultraviolet behaviour of QCD: renormalisation, the beta function, running coupling and asymptotic freedom
- Infrared behaviour of QCD: soft and collinear divergences, coherence, jets
- Parton Model, factorisation and Deeply Inelastic Scattering
- Parton evolution in QCD: the DGLAP equations
- QCD at hadron colliders
LiteraturWill be provided at the Moodle site for the course.
Voraussetzungen / BesonderesQFT I : A working knowledge of Quantum Field Theory I, at the level of easily performing tree-level computations with Feynman diagrams given the Feynman rules, is assumed.
402-0848-00LAdvanced Field Theory Information
Fachstudierende UZH müssen das Modul PHY572 direkt an der UZH buchen.
W6 KP2V + 1UA. Gehrmann-De Ridder
KurzbeschreibungThe course treats the following topics in quantum field theory:
-Chiral symmetries and chiral anomalies in QED and QCD
-Topological objects in field theory including:
*axions
*Magnetic monopoles
*instantons
-Cosmology related topics including:
*Baryogenesis and inflation
LernzielThe course aims to provide an introduction to selected advanced
topics in Quantum field Theory.
InhaltA sound understanding of it can be viewed as a necessary foundation for research in elementary particle, astro particle physics and cosmology.
LiteraturThe corresponding literature will be given in the entity
"Lernmaterialien"
Voraussetzungen / BesonderesPrerequisite: Quantum Field Theory I
Recommended: Quantum Field Theory II (to be attended in parallel)
402-0888-00LField Theory in Condensed Matter Physics
Findet dieses Semester nicht statt.
W6 KP2V + 1U
KurzbeschreibungThis class is dedicated to non-perturbative many-body effects in condensed matter physics.
LernzielTo learn modern concepts in many-body condensed matter physics.
InhaltIn this class I will show, by examples, how field theory can describe some important non-perturbative phenomena in condensed matter physics.
SkriptA pdf script in English will be distributed by email to those attending the class.
LiteraturLecture Notes on Field Theory in Condensed Matter Physics,
Christopher Mudry,
World Scientific Publishing Company,
ISBN 978-981-4449-09-0 (Hardcover),
978-981-4449-10-6 (paperback)]
402-0810-00LComputational Quantum Physics
Fachstudierende UZH müssen das Modul PHY522 direkt an der UZH buchen.
W8 KP2V + 2UM. H. Fischer
KurzbeschreibungThis course provides an introduction to simulation methods for quantum systems. Starting from the one-body problem, a special emphasis is on quantum many-body problems, where we cover both approximate methods (Hartree-Fock, density functional theory) and exact methods (exact diagonalization, matrix product states, and quantum Monte Carlo methods).
LernzielThrough lectures and practical programming exercises, after this course:
Students are able to describe the difficulties of quantum mechanical simulations.
Students are able to explain the strengths and weaknesses of the methods covered.
Students are able to select an appropriate method for a given problem.
Students are able to implement basic versions of all algorithms discussed.
SkriptA script for this lecture will be provided.
LiteraturA list of additional references will be provided in the script.
Voraussetzungen / BesonderesA basic knowledge of quantum mechanics, numerical tools (numerical differentiation and integration, linear solvers, eigensolvers, root solvers, optimization), and a programming language (for the teaching assignments, you are free to choose your preferred one).
402-0812-00LComputational Statistical Physics Information W8 KP2V + 2UM. Krstic Marinkovic
KurzbeschreibungSimulationsmethoden in der statistischen Physik. Klassische Monte-Carlo-Simulationen: finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Anwendung auf Boltzmann-Maschinen. Simulation von Nichtgleichgewichtssystemen.

Molekulardynamik-Simulationen: langreichweitige Wechselwirkungen, Ewald-Summation, diskrete Elemente, Parallelisierung.
LernzielDie Vorlesung ist eine Vertiefung von Simulationsmethoden in der statistischen Physik, und daher ideal als Fortführung der Veranstaltung "Introduction to Computational Physics" des Herbstsemesters. Im ersten Teil lernen Studenten die folgenden Methoden anzuwenden: Klassische Monte-Carlo-Simulationen, finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Ausserdem lernen Studenten die Anwendung der Methoden aus der Statistischen Physik auf Boltzmann-Maschinen kennen und lernen wie Nichtgleichgewichtssysteme simuliert werden.

Im zweiten Teil wenden die Studenten Methoden zur Simulation von Molekulardynamiken an. Das beinhaltet unter anderem auch langreichweitige Wechselwirkungen, Ewald-Summation und diskrete Elemente.
InhaltSimulationsmethoden in der statistischen Physik. Klassische Monte-Carlo-Simulationen: finite-size scaling, Clusteralgorithmen, Histogramm-Methoden, Renormierungsgruppe. Anwendung auf Boltzmann-Maschinen. Simulation von Nichtgleichgewichtssystemen. Molekulardynamik-Simulationen: langreichweitige Wechselwirkungen, Ewald-Summation, diskrete Elemente, Parallelisierung.
SkriptSkript und Folien sind online verfügbar und werden bei Bedarf verteilt.
LiteraturLiteraturempfehlungen und Referenzen sind im Skript enthalten.
Voraussetzungen / BesonderesGrundlagenwissen in der Statistischen Physik, Klassischen Mechanik und im Bereich der Rechnergestützten Methoden ist empfohlen.
402-0462-00LAdvanced Topics in Quantum Information TheoryW6 KP2V + 1UL. Pacheco Cañamero B. del Rio, R. Silva
Kurzbeschreibung
Lernziel1. Quantum thermodynamics

a) Resource theory approach

b) Landauer's principle

c) Heat engines

d) Thermalization


2. Clocks and control

a) Controlled operations

b) Perfect clock

c) Finite-size effects (eg Gaussian clock)

d) Information-theoretical approaches (eg alternate ticks game)


3. Puzzles and no-go theorems

a) Logical pre- and post-selection paradoxes (eg pigeons, Hardy)

b) Quantum contextuality and non-locality

c) Multi-agent logical puzzles (eg Wigner's friend, Frauchiger-Renner)


4. Axiomatic derivations of quantum theory

a) Generalized probability theories (and PR boxes)

b) Axiomatizations within GPTs

c) Generalizations of the Born rule
402-0455-00LQuantum Sensing and Metrology TheoryW6 KP2V + 1UM. P. Woods
KurzbeschreibungQuantum Sensing is the process in which we acquire information about a physical quantity via measurements using quantum systems. It is a vital process in all quantum technologies. The course will focus on theoretical concepts that impact future implementations of quantum technologies.
LernzielThe course provides an insight into various techniques and limitations in quantum sensing and metrology.
InhaltThe course covers a selection of quantum sensing techniques and precision limitations. Particular focus will be put on theoretical concepts that impact future implementations of quantum technologies. Topics include: historical overview and examples, quantum sensing protocols and their sensitivity, local optimal estimation (Cramér–Rao bound and quantum Fisher information), global optimal estimation, standard quantum limit, Heisenberg limit, teleportation-invariant channels, examples such as Quantum Reading, Quantum Illumination, Quantum super-resolution.
Voraussetzungen / BesonderesQuantum Mechanics I is a prerequisite. The course is complementary to the courses Quantum Information Theory and Quantum Information Processing.
402-0889-00LTopological Condensed Matter Physics
Fachstudierende UZH müssen das Modul PHY576 direkt an der UZH buchen.
W6 KP2V + 2US. Huber, T. Neupert
KurzbeschreibungThis course provides the student with a solid understanding of quantum phases with non-trivial topological properties. At the end of the course the student will be acquainted with the theoretical description of the integer and fractional quantum Hall phases, symmetry protected topological states like the topological insulators and quantum spin systems.
LernzielThe goal of this course is to provide the student with a solid understanding of quantum phases with non-trivial topological properties. The course is aimed at the graduate level and requires basic knowledge of quantum mechanics and solid state physics. The necessary tools and concepts are introduced on the example of the integer quantum Hall effect. At the end of the course the student will be acquainted with the theoretical description of the integer and fractional quantum Hall phases, symmetry protected topological states like the topological insulators and quantum spin systems.
  •  Seite  1  von  1