Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Rechnergestützte Wissenschaften Bachelor Information
Für alle Studienreglemente
Vertiefungsgebiete
Robotik
NummerTitelTypECTSUmfangDozierende
151-0854-00LAutonomous Mobile Robots Information W5 KP4GR. Siegwart, M. Chli, N. Lawrance
KurzbeschreibungThe objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, environment perception, and probabilistic environment modeling, localizatoin, mapping and navigation. Theory will be deepened by exercises with small mobile robots and discussed accross application examples.
LernzielThe objective of this course is to provide the basics required to develop autonomous mobile robots and systems. Main emphasis is put on mobile robot locomotion and kinematics, environment perception, and probabilistic environment modeling, localizatoin, mapping and navigation.
SkriptThis lecture is enhanced by around 30 small videos introducing the core topics, and multiple-choice questions for continuous self-evaluation. It is developed along the TORQUE (Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness) concept, which is ETH's response to the popular MOOC (Massive Open Online Course) concept.
LiteraturThis lecture is based on the Textbook:
Introduction to Autonomous Mobile Robots
Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza, The MIT Press, Second Edition 2011, ISBN: 978-0262015356
151-0566-00LRecursive Estimation Information W4 KP2V + 1UR. D'Andrea
KurzbeschreibungEstimation of the state of a dynamic system based on a model and observations in a computationally efficient way.
LernzielLearn the basic recursive estimation methods and their underlying principles.
InhaltIntroduction to state estimation; probability review; Bayes' theorem; Bayesian tracking; extracting estimates from probability distributions; Kalman filter; extended Kalman filter; particle filter; observer-based control and the separation principle.
SkriptLecture notes available on course website: http://www.idsc.ethz.ch/education/lectures/recursive-estimation.html
Voraussetzungen / BesonderesRequirements: Introductory probability theory and matrix-vector algebra.
252-0579-00L3D Vision Information W5 KP3G + 1AM. Pollefeys, V. Larsson
KurzbeschreibungThe course covers camera models and calibration, feature tracking and matching, camera motion estimation via simultaneous localization and mapping (SLAM) and visual odometry (VO), epipolar and mult-view geometry, structure-from-motion, (multi-view) stereo, augmented reality, and image-based (re-)localization.
LernzielAfter attending this course, students will:
1. understand the core concepts for recovering 3D shape of objects and scenes from images and video.
2. be able to implement basic systems for vision-based robotics and simple virtual/augmented reality applications.
3. have a good overview over the current state-of-the art in 3D vision.
4. be able to critically analyze and asses current research in this area.
InhaltThe goal of this course is to teach the core techniques required for robotic and augmented reality applications: How to determine the motion of a camera and how to estimate the absolute position and orientation of a camera in the real world. This course will introduce the basic concepts of 3D Vision in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course are student projects on 3D Vision topics, with an emphasis on robotic vision and virtual and augmented reality applications.
252-0220-00LIntroduction to Machine Learning Information Belegung eingeschränkt - Details anzeigen
Limited number of participants. Preference is given to students in programmes in which the course is being offered. All other students will be waitlisted. Please do not contact Prof. Krause for any questions in this regard. If necessary, please contact studiensekretariat@inf.ethz.ch
W8 KP4V + 2U + 1AA. Krause, F. Yang
KurzbeschreibungThe course introduces the foundations of learning and making predictions based on data.
LernzielThe course will introduce the foundations of learning and making predictions from data. We will study basic concepts such as trading goodness of fit and model complexitiy. We will discuss important machine learning algorithms used in practice, and provide hands-on experience in a course project.
Inhalt- Linear regression (overfitting, cross-validation/bootstrap, model selection, regularization, [stochastic] gradient descent)
- Linear classification: Logistic regression (feature selection, sparsity, multi-class)
- Kernels and the kernel trick (Properties of kernels; applications to linear and logistic regression); k-nearest neighbor
- Neural networks (backpropagation, regularization, convolutional neural networks)
- Unsupervised learning (k-means, PCA, neural network autoencoders)
- The statistical perspective (regularization as prior; loss as likelihood; learning as MAP inference)
- Statistical decision theory (decision making based on statistical models and utility functions)
- Discriminative vs. generative modeling (benefits and challenges in modeling joint vy. conditional distributions)
- Bayes' classifiers (Naive Bayes, Gaussian Bayes; MLE)
- Bayesian approaches to unsupervised learning (Gaussian mixtures, EM)
LiteraturTextbook: Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press
Voraussetzungen / BesonderesDesigned to provide a basis for following courses:
- Advanced Machine Learning
- Deep Learning
- Probabilistic Artificial Intelligence
- Seminar "Advanced Topics in Machine Learning"
  •  Seite  1  von  1