Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Rechnergestützte Wissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2018)
Grundlagenfächer
Block G1
Die Lehrveranstaltungen von Block G1 finden im Herbstsemester statt.
Block G2
Die Lehrveranstaltungen von Block G2 finden im Herbstsemester statt.
Block G3
NummerTitelTypECTSUmfangDozierende
401-0674-00LNumerical Methods for Partial Differential Equations
Nicht für Studierende BSc/MSc Mathematik
O10 KP2G + 2U + 2P + 4AR. Hiptmair
KurzbeschreibungDerivation, properties, and implementation of fundamental numerical methods for a few key partial differential equations: convection-diffusion, heat equation, wave equation, conservation laws. Implementation in C++ based on a finite element library.
LernzielMain skills to be acquired in this course:
* Ability to implement fundamental numerical methods for the solution of partial differential equations efficiently.
* Ability to modify and adapt numerical algorithms guided by awareness of their mathematical foundations.
* Ability to select and assess numerical methods in light of the predictions of theory
* Ability to identify features of a PDE (= partial differential equation) based model that are relevant for the selection and performance of a numerical algorithm.
* Ability to understand research publications on theoretical and practical aspects of numerical methods for partial differential equations.
* Skills in the efficient implementation of finite element methods on unstructured meshes.

This course is neither a course on the mathematical foundations and numerical analysis of methods nor an course that merely teaches recipes and how to apply software packages.
Inhalt1 Second-Order Scalar Elliptic Boundary Value Problems
1.2 Equilibrium Models: Examples
1.3 Sobolev spaces
1.4 Linear Variational Problems
1.5 Equilibrium Models: Boundary Value Problems
1.6 Diffusion Models (Stationary Heat Conduction)
1.7 Boundary Conditions
1.8 Second-Order Elliptic Variational Problems
1.9 Essential and Natural Boundary Conditions
2 Finite Element Methods (FEM)
2.2 Principles of Galerkin Discretization
2.3 Case Study: Linear FEM for Two-Point Boundary Value Problems
2.4 Case Study: Triangular Linear FEM in Two Dimensions
2.5 Building Blocks of General Finite Element Methods
2.6 Lagrangian Finite Element Methods
2.7 Implementation of Finite Element Methods
2.7.1 Mesh Generation and Mesh File Format
2.7.2 Mesh Information and Mesh Data Structures
2.7.2.1 L EHR FEM++ Mesh: Container Layer
2.7.2.2 L EHR FEM++ Mesh: Topology Layer
2.7.2.3 L EHR FEM++ Mesh: Geometry Layer
2.7.3 Vectors and Matrices
2.7.4 Assembly Algorithms
2.7.4.1 Assembly: Localization
2.7.4.2 Assembly: Index Mappings
2.7.4.3 Distribute Assembly Schemes
2.7.4.4 Assembly: Linear Algebra Perspective
2.7.5 Local Computations
2.7.5.1 Analytic Formulas for Entries of Element Matrices
2.7.5.2 Local Quadrature
2.7.6 Treatment of Essential Boundary Conditions
2.8 Parametric Finite Element Methods
3 FEM: Convergence and Accuracy
3.1 Abstract Galerkin Error Estimates
3.2 Empirical (Asymptotic) Convergence of Lagrangian FEM
3.3 A Priori (Asymptotic) Finite Element Error Estimates
3.4 Elliptic Regularity Theory
3.5 Variational Crimes
3.6 FEM: Duality Techniques for Error Estimation
3.7 Discrete Maximum Principle
3.8 Validation and Debugging of Finite Element Codes
4 Beyond FEM: Alternative Discretizations [dropped]
5 Non-Linear Elliptic Boundary Value Problems [dropped]
6 Second-Order Linear Evolution Problems
6.1 Time-Dependent Boundary Value Problems
6.2 Parabolic Initial-Boundary Value Problems
6.3 Linear Wave Equations
7 Convection-Diffusion Problems [dropped]
8 Numerical Methods for Conservation Laws
8.1 Conservation Laws: Examples
8.2 Scalar Conservation Laws in 1D
8.3 Conservative Finite Volume (FV) Discretization
8.4 Timestepping for Finite-Volume Methods
8.5 Higher-Order Conservative Finite-Volume Schemes
SkriptThe lecture will be taught in flipped classroom format:
- Video tutorials for all thematic units will be published online.
- Tablet notes accompanying the videos will be made available to the audience as PDF.
- A comprehensive lecture document will cover all aspects of the course.
LiteraturChapters of the following books provide supplementary reading
(detailed references in course material):

* D. Braess: Finite Elemente,
Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer 2007 (available online).
* S. Brenner and R. Scott. Mathematical theory of finite element methods, Springer 2008 (available online).
* A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer, New York, 2004.
* Ch. Großmann and H.-G. Roos: Numerical Treatment of Partial Differential Equations, Springer 2007.
* W. Hackbusch. Elliptic Differential Equations. Theory and Numerical Treatment, volume 18 of Springer Series in Computational Mathematics. Springer, Berlin, 1992.
* P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations, volume 44 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* S. Larsson and V. Thomée. Partial Differential Equations with Numerical Methods, volume 45 of Texts in Applied Mathematics. Springer, Heidelberg, 2003.
* R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK, 2002.

However, study of supplementary literature is not important for for following the course.
Voraussetzungen / BesonderesMastery of basic calculus and linear algebra is taken for granted.
Familiarity with fundamental numerical methods (solution methods for linear systems of equations, interpolation, approximation, numerical quadrature, numerical integration of ODEs) is essential.

Important: Coding skills and experience in C++ are essential.

Homework assignments involve substantial coding, partly based on a C++ finite element library. The written examination will be computer based and will comprise coding tasks.
401-0614-00LWahrscheinlichkeit und Statistik Information Belegung eingeschränkt - Details anzeigen O5 KP2V + 2UM. Schweizer
KurzbeschreibungEinführung in die Wahrscheinlichkeitstheorie und Statistik
Lernziela) Fähigkeit, die behandelten wahrscheinlichkeitstheoretischen Methoden zu verstehen und anzuwenden

b) Probabilistisches Denken und stochastische Modellierung

c) Fähigkeit, einfache statistische Tests selbst durchzuführen und die Resultate zu interpretieren
InhaltWahrscheinlichkeitsraum, Wahrscheinlichkeitsmass, Zufallsvariablen, Verteilungen, Dichten, Unabhängigkeit, bedingte Wahrscheinlichkeiten, Erwartungswert, Varianz, Kovarianz, Gesetz der grossen Zahlen, Zentraler Grenzwertsatz, grosse Abweichungen, Chernoff-Schranken, Maximum-Likelihood-Schätzer, Momentenschätzer, Tests, Neyman-Pearson Lemma, Konfidenzintervalle
SkriptLernmaterialien sind erhältlich auf Link
Block G4
NummerTitelTypECTSUmfangDozierende
529-0431-00LPhysikalische Chemie III: Molekulare Quantenmechanik Information Belegung eingeschränkt - Details anzeigen O4 KP4GF. Merkt
KurzbeschreibungPostulate der Quantenmechanik, Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte, Matrixdarstellung von Operatoren, das Teilchen im Kasten, Tunnelprozess, harmonische Oszillator, molekulare Schwingungen, Drehimpuls und Spin, verallgemeinertes Pauli Prinzip, Störungstheorie, Variationsprinzip, elektronische Struktur von Atomen und Molekülen, Born-Oppenheimer Näherung.
LernzielEs handelt sich um eine erste Grundvorlesung in Quantenmechanik. Die Vorlesung beginnt mit einem Überblick über die grundlegenden Konzepte der Quantenmechanik und führt den mathematischen Formalismus ein. Im Folgenden werden die Postulate und Theoreme der Quantenmechanik im Kontext der experimentellen und rechnerischen Ermittlung von physikalischen Grössen diskutiert. Die Vorlesung vermittelt die notwendigen Werkzeuge für das Verständnis der elementaren Quantenphänomene in Atomen und Molekülen.
InhaltPostulate und Theoreme der Quantenmechanik: Operatorenalgebra, Schrödingergleichung, Zustandsfunktionen und Erwartungswerte. Lineare Bewegungen: Das freie Teilchen, das Teilchen im Kasten, quantenmechanisches Tunneln, der harmonische Oszillator und molekulare Schwingungen. Drehimpulse: Spin- und Bahnbewegungen, molekulare Rotationen. Elektronische Struktur von Atomen und Molekülen: Pauli-Prinzip, Drehimpulskopplung, Born-Oppenheimer Näherung. Grundlagen der Variations- und Störungtheorie. Behandlung grösserer Systeme (Festkörper, Nanostrukturen).
SkriptEin Vorlesungsskript in Deutsch wird erhältlich sein. Das Skipt ersetzt allerdings NICHT persönliche Notizen und deckt nicht alle Aspekte der Vorlesung ab.
151-0102-00LFluiddynamik I Belegung eingeschränkt - Details anzeigen O6 KP4V + 2UT. Rösgen
KurzbeschreibungEs wird eine Einführung in die physikalischen und mathematischen Grundlagen der Fluiddynamik geboten. Themengebiete sind u.a. Dimensionsanalyse, integrale und differentielle Erhaltungsgleichungen, reibungsfreie und -behaftete Strömungen, Navier-Stokes Gleichungen, Grenzschichten, turbulente Rohrströmung. Elementare Lösungen und Beipiele werden päsentiert.
LernzielEinführung in die physikalischen und mathematischen Grundlagen der Fluiddynamik. Vertrautmachen mit den Grundbegriffen, Anwendungen auf einfache Probleme.
InhaltPhänomene, Anwendungen, Grundfragen
Dimensionsanalyse und Ähnlichkeit; Kinematische Beschreibung; Erhaltungssätze (Masse, Impuls, Energie), integrale und differentielle Formulierungen; Reibungsfreie Strömungen: Euler-Gleichungen, Stromfadentheorie, Satz von Bernoulli; Reibungsbehaftete Strömungen: Navier-Stokes-Gleichungen; Grenzschichten; Turbulenz
SkriptEin Skript (erweiterte Formelsammlung) zur Vorlesung wird elektronisch zur Verfügung gestellt.
LiteraturEmpfohlenes Buch: Fluid Mechanics, Kundu & Cohen & Dowling, 6th ed., Academic Press / Elsevier (2015).
Voraussetzungen / BesonderesVoraussetzungen: Physik, Analysis
529-0483-00LStatistische Physik und Computer Simulation Information O4 KP2V + 1US. Riniker, P. H. Hünenberger
KurzbeschreibungDie statistische Mechanik verbindet die detaillierte Beschreibung der mikroskopischen Viel-Teilchen-Dynamik mit der phänomenologischen, gemittelten Beschreibung des makroskopischen Benehmens eines Systems. Sie wird mittels Computersimulationen dargelegt. Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik; Monte-Carlo-Verfahren und stochastischen Dynamik.
LernzielEinführung in die statistische Mechanik mit Hilfe von Computersimulationen, erwerben der Fertigkeit Computersimulationen durchzuführen und die Resultate zu interpretieren.
InhaltDie statistische Mechanik verbindet die detaillierte Beschreibung der mikroskopischen Viel-Teilchen-Dynamik mit der phänomenologischen, gemittelten Beschreibung des makroskopischen Benehmens eines Systems. Die statistische Mechanik wird mit Hilfe von Computersimulationen dargelegt.
Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik; Monte-Carlo-Verfahren; Prinzipien und Anwendungen der stochastischen Dynamik; Einführung und Anwendungen der freien Energie-Rechnungen.
Literaturwird in der Vorlesung bekannt gegeben
Voraussetzungen / BesonderesDa die Übungen am Computer wesentlich andere Fähigkeiten vermitteln und prüfen als die Vorlesung und schriftliche Prüfung, werden am Ende der Veranstaltung Ergebnisse einer kleinen Programmierarbeit von je zwei TeilnehmerInnen in einer 10 minütigen Präsentation vorgestellt.

Zusätzliche Informationen werden bei Veranstaltungsbeginn bekannt gegeben.
  •  Seite  1  von  1