Search result: Catalogue data in Spring Semester 2021
Mechanical Engineering Bachelor | ||||||
6. Semester | ||||||
Focus Project | ||||||
Focus Projects in Mechatronics | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|---|
151-0073-11L | Flying Manipulator Prerequisite: Enrollment for 151-0073-10L Flying Manipulator in HS20. | W | 14 credits | 15A | R. Siegwart | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
151-0073-21L | IGNIS - Fire Fighting Drone Prerequisite: Enrollment for 151-0073-20L IGNIS - Fire Fighting Drone in HS20. | W | 14 credits | 15A | R. Siegwart | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
151-0073-31L | ARIS - Rocket Development Prerequisite: Enrollment for 151-0073-30L ARIS - Rocket Development in HS20. | W | 14 credits | 15A | L. Guzzella, M. Zeilinger | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
151-0073-41L | Dynamic Quadrupedal Animatronic Prerequisite: Enrollment for 151-0073-40L Dynamic Quadrupedal Animatronic in HS20. | W | 14 credits | 15A | M. Hutter | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
Content | Several teams of 4-8 students of the ETH as well as students from other universities realize a product during two semesters. On the basis of a vision and provocative problem definition, all processes of product development are beat down close-to-reality: conception, design, engineering, simulation, draft and production. The teams are coached by experienced staff who gives them the possibility of a unique learning experience. Innovative ideas of the research labs of the ETH, of industrial partners or students are selected and realized by the teams. | |||||
Focus Projects in Manufacturing | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0075-11L | Jethec Prerequisite: Enrollment for 151-0075-10L Jethec in HS20. | W | 14 credits | 15A | K. Wegener | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
151-0075-21L | Formula Student Electric Prerequisite: Enrollment for 151-0075-20L Formula Student Electric in HS20. | W | 14 credits | 15A | D. Mohr | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
151-0075-31L | Paris Hybrid Prerequisite: Enrollment for 151-0075-30L Paris Hybrid in HS20. | W | 14 credits | 15A | A. Kunz | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
Focus Projects in Design, Mechanics and Materials | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0079-11L | Bionic Flying Wing Prerequisite: Enrollment for 151-0079-10L Bionic Flying Wing in HS20. | W | 14 credits | 15A | P. Ermanni | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
151-0079-31L | Swissloop Prerequisite: Enrollment for 151-0079-30L Swissloop in HS20. | W | 14 credits | 15A | D. Kochmann | |
Abstract | Students develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc). | |||||
Learning objective | The various objectives of the Focus Project are: - Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester - Team organization, work in teams, increase of interpersonal skills - Independence, initiative, independent learning of new topic contents - Problem structuring, solution identification in indistinct problem definitions, searches of information - System description and simulation - Presentation methods, writing of a document - Ability to make decisions, implementation skills - Workshop and industrial contacts - Learning and recess of special knowledge - Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM) | |||||
Courses Eligible for Focus Projects | ||||||
Number | Title | Type | ECTS | Hours | Lecturers | |
151-0079-99L | Vacuum Transport Seminar: Insights into Hyperloop Research | E- | 0 credits | 1S | D. Kochmann | |
Abstract | The Vacuum Transport Seminar series enters its third round in the spring semester 2021, following the successful editions in spring and autumn semesters 2020. It is held online via Zoom and offered internationally across a number of European Universities.The seminar was founded and is held by Swissloop and the EuroTube Foundation, and partnered by other European institutes. | |||||
Learning objective | Students present their work in Hyperloop research. Additionally, industry experts contribute insight talks. The seminar is open to all students, everyone is welcome to join join at any of the dates. About the seminar’s background: Swissloop, the Hyperloop Team based at ETH Zürich, is pursuing long-term support for research and education in vacuum transport. In addition to the active team constructing and building a Hyperloop pod every year, various research projects at ETH are pursued in cooperation with EuroTube. The EuroTube Foundation accelerates the development of sustainable vacuum transportation technologies to provide publicly accessible research and testing infrastructures for universities and industry. About Vacuum Transportation: The demand for air transport has more than doubled in the last 20 years and is growing yearly by about 6.5%. Global demand for cargo and passenger transportation can barely be met today – let alone in a sustainable manner. Vacuum transport can replace short to medium distance flights and can significantly reduce CO2 emissions. The market of high-speed transportation is a global megatrend set to affect our lives in years to come. | |||||
151-0662-00L | Programming for Robotics - Introduction to ROS Number of participants limited to 70. This course targets senior Bachelor students as well as Master students focusing on Robotics, Systems, and Control. Priority is given to people conducting a project work in the field. | W | 1 credit | 2G | M. Hutter | |
Abstract | This course gives an introduction to the Robot Operating System (ROS) including many of the available tools that are commonly used in robotics. With the help of different examples, the course should provide a good starting point for students to work with robots. They learn how to create software including simulation, to interface sensors and actuators, and to integrate control algorithms. | |||||
Learning objective | - ROS Basics: Navigating in Linux and ROS, package creation and compilation - ROS Basics: Publisher and subscriber, services, actions - Hardware interfaces, static and dynamic transforms - Introduction to GAZEBO simulator, AR tag recognition - (optional) Localization & mapping - (optional) Navigation, ROS control - Good practice in programming | |||||
Content | This course consists of a guided tutorial and independent exercises with different robots (i.e. mobile robot, industrial robot arm,...). You learn how to setup such a system from scratch using ROS, how to interface the individual sensors and actuators, and finally how to implement first closed loop control systems. | |||||
Lecture notes | slides, homepage (http://www.rsl.ethz.ch/education-students/lectures/ros.html) | |||||
Literature | slides, homepage (http://www.rsl.ethz.ch/education-students/lectures/ros.html) | |||||
Prerequisites / Notice | C++ programming basics, Linux Basics. Students need to bring their own laptop to the lecture. Instructions how to prepare the laptop are provided on the lecture homepage one week prior to the start of the course. | |||||
151-3204-00L | Coaching Innovation Projects | W | 2 credits | 2V | R. P. Haas | |
Abstract | The course is building up skills and experience in coaching engineering teams. To gain experience and to reflect real coaching situations, the participants of the course have the role of teaching assistance of the innovation project (151-0300-00L). In this framework the participants coach teams and professionalize the knowledge in the area product development methods. | |||||
Learning objective | - Critical thinking and reasoned judgements - Basic knowledge about role and mindset of a coach - Understanding the challenges of engineering projects and design teams - Development of personal skills to apply and train product development methods - Knowledge and know-how about applying methods - Reflection and exchange of experiences about personal coaching situations - Inspiration and learning from good cases regarding organizational and team management aspects - Decision-making under uncertainty | |||||
Content | Here is the schedule with dates and topics for Live Sessions on Mondays, 16:15-18:00 Link to Zoom-Meetings is published in the Moodle Course: https://moodle-app2.let.ethz.ch/course/view.php?id=14054 22.02.2021: Base Camp, Experience exchange 01.03.2021: Course intro, Coaching roles & Virtual coaching 08.03.2021: Active listening & Giving and receiving feedback 15.03.2021: Coaching model GROW & Asking questions 22.03.2021: Working with hypothesis & Motivation 29.03.2021: Reflection on individual coaching sessions 1 12.04.2021: 1:1 Coaching 26.04.2021: Team building & Psychological safety 03.05.2021: Facilitating conflicts 10.05.2021: Reflection on individual coaching sessions 2 17.05.2021: Reflexivity & Reviews of your interventions For each live session preparatory material is provided on Moodle, enabling participants to start these sessions well equipped. | |||||
Prerequisites / Notice | Only for participants (Bachelor Students, Master Students) who are teaching assistants in the innovation project). |
- Page 1 of 1