Suchergebnis: Katalogdaten im Frühjahrssemester 2021
Mathematik Master | ||||||
Kernfächer Für das Master-Diplom in Angewandter Mathematik ist die folgende Zusatzbedingung (nicht in myStudies ersichtlich) zu beachten: Mindestens 15 KP der erforderlichen 28 KP aus Kern- und Wahlfächern müssen aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten stammen. | ||||||
Kernfächer aus Bereichen der angewandten Mathematik ... vollständiger Titel: Kernfächer aus Bereichen der angewandten Mathematik und weiteren anwendungsorientierten Gebieten | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
401-3052-10L | Graph Theory | W | 10 KP | 4V + 1U | B. Sudakov | |
Kurzbeschreibung | Basics, trees, Caley's formula, matrix tree theorem, connectivity, theorems of Mader and Menger, Eulerian graphs, Hamilton cycles, theorems of Dirac, Ore, Erdös-Chvatal, matchings, theorems of Hall, König, Tutte, planar graphs, Euler's formula, Kuratowski's theorem, graph colorings, Brooks' theorem, 5-colorings of planar graphs, list colorings, Vizing's theorem, Ramsey theory, Turán's theorem | |||||
Lernziel | The students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems. | |||||
Skript | Lecture will be only at the blackboard. | |||||
Literatur | West, D.: "Introduction to Graph Theory" Diestel, R.: "Graph Theory" Further literature links will be provided in the lecture. | |||||
Voraussetzungen / Besonderes | Students are expected to have a mathematical background and should be able to write rigorous proofs. | |||||
401-3642-00L | Brownian Motion and Stochastic Calculus | W | 10 KP | 4V + 1U | W. Werner | |
Kurzbeschreibung | This course covers some basic objects of stochastic analysis. In particular, the following topics are discussed: construction and properties of Brownian motion, stochastic integration, Ito's formula and applications, stochastic differential equations and connection with partial differential equations. | |||||
Lernziel | This course covers some basic objects of stochastic analysis. In particular, the following topics are discussed: construction and properties of Brownian motion, stochastic integration, Ito's formula and applications, stochastic differential equations and connection with partial differential equations. | |||||
Skript | Lecture notes will be distributed in class. | |||||
Literatur | - J.-F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus, Springer (2016). - I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Springer (1991). - D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer (2005). - L.C.G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales, vol. 1 and 2, Cambridge University Press (2000). - D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer (2006). | |||||
Voraussetzungen / Besonderes | Familiarity with measure-theoretic probability as in the standard D-MATH course "Probability Theory" will be assumed. Textbook accounts can be found for example in - J. Jacod, P. Protter, Probability Essentials, Springer (2004). - R. Durrett, Probability: Theory and Examples, Cambridge University Press (2010). | |||||
401-3632-00L | Computational Statistics | W | 8 KP | 3V + 1U | M. Mächler | |
Kurzbeschreibung | We discuss modern statistical methods for data analysis, including methods for data exploration, prediction and inference. We pay attention to algorithmic aspects, theoretical properties and practical considerations. The class is hands-on and methods are applied using the statistical programming language R. | |||||
Lernziel | The student obtains an overview of modern statistical methods for data analysis, including their algorithmic aspects and theoretical properties. The methods are applied using the statistical programming language R. | |||||
Inhalt | See the class website | |||||
Voraussetzungen / Besonderes | At least one semester of (basic) probability and statistics. Programming experience is helpful but not required. | |||||
401-3602-00L | Applied Stochastic Processes | W | 8 KP | 3V + 1U | V. Tassion | |
Kurzbeschreibung | Poisson-Prozesse; Erneuerungsprozesse; Markovketten in diskreter und in stetiger Zeit; einige Beispiele und Anwendungen. | |||||
Lernziel | Stochastische Prozesse dienen zur Beschreibung der Entwicklung von Systemen, die sich in einer zufälligen Weise entwickeln. In dieser Vorlesung bezieht sich die Entwicklung auf einen skalaren Parameter, der als Zeit interpretiert wird, so dass wir die zeitliche Entwicklung des Systems studieren. Die Vorlesung präsentiert mehrere Klassen von stochastischen Prozessen, untersucht ihre Eigenschaften und ihr Verhalten und zeigt anhand von einigen Beispielen, wie diese Prozesse eingesetzt werden können. Die Hauptbetonung liegt auf der Theorie; "applied" ist also im Sinne von "applicable" zu verstehen. | |||||
Literatur | R. N. Bhattacharya and E. C. Waymire, "Stochastic Processes with Applications", SIAM (2009), available online: http://epubs.siam.org/doi/book/10.1137/1.9780898718997 R. Durrett, "Essentials of Stochastic Processes", Springer (2012), available online: http://link.springer.com/book/10.1007/978-1-4614-3615-7/page/1 M. Lefebvre, "Applied Stochastic Processes", Springer (2007), available online: http://link.springer.com/book/10.1007/978-0-387-48976-6/page/1 S. I. Resnick, "Adventures in Stochastic Processes", Birkhäuser (2005) | |||||
Voraussetzungen / Besonderes | Prerequisites are familiarity with (measure-theoretic) probability theory as it is treated in the course "Probability Theory" (401-3601-00L). | |||||
401-3652-00L | Numerical Methods for Hyperbolic Partial Differential Equations | W | 10 KP | 4V + 1U | A. Ruf | |
Kurzbeschreibung | This course treats numerical methods for hyperbolic initial-boundary value problems, ranging from wave equations to the equations of gas dynamics. The principal methods discussed in the course are finite volume methods, including TVD, ENO and WENO schemes. Exercises involve implementation of numerical methods in MATLAB. | |||||
Lernziel | The goal of this course is familiarity with the fundamental ideas and mathematical consideration underlying modern numerical methods for conservation laws and wave equations. | |||||
Inhalt | * Introduction to hyperbolic problems: Conservation, flux modeling, examples and significance in physics and engineering. * Linear Advection equations in one dimension: Characteristics, energy estimates, upwind schemes. * Scalar conservation laws: shocks, rarefactions, solutions of the Riemann problem, weak and entropy solutions, some existence and uniqueness results, finite volume schemes of the Godunov, Engquist-Osher and Lax-Friedrichs type. Convergence for monotone methods and E-schemes. * Second-order schemes: Lax-Wendroff, TVD schemes, limiters, strong stability preserving Runge-Kutta methods. * Linear systems: explicit solutions, energy estimates, first- and high-order finite volume schemes. * Non-linear Systems: Hugoniot Locus and integral curves, explicit Riemann solutions of shallow-water and Euler equations. Review of available theory. | |||||
Skript | Lecture slides will be made available to participants. However, additional material might be covered in the course. | |||||
Literatur | H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer 2011. Available online. R. J. LeVeque, Finite Volume methods for hyperbolic problems, Cambridge university Press, 2002. Available online. E. Godlewski and P. A. Raviart, Hyperbolic systems of conservation laws, Ellipses, Paris, 1991. | |||||
Voraussetzungen / Besonderes | Having attended the course on the numerical treatment of elliptic and parabolic problems is no prerequisite. Programming exercises in MATLAB Former course title: "Numerical Solution of Hyperbolic Partial Differential Equations" |
- Seite 1 von 1