Suchergebnis: Katalogdaten im Frühjahrssemester 2021

Rechnergestützte Wissenschaften Bachelor Information
Bachelor-Studium (Studienreglement 2018)
Obligatorische Fächer des Basisjahres
Basisprüfungsblock 1
Wird im Herbstsemester angeboten.
Basisprüfungsblock 2
NummerTitelTypECTSUmfangDozierende
401-0232-10LAnalysis 2 Information Belegung eingeschränkt - Details anzeigen O8 KP4V + 2UT. Rivière
KurzbeschreibungEinführung in die mehrdimensionale Differential- und Integralrechung.
LernzielEinführung in die Grundlagen der Analysis
InhaltDifferenzierbare Abbildungen, Maxima und Minima,
der Satz ueber implizite Funktionen, mehrfache Integrale,
Integration ueber Untermannigfaltigkeiten, die Saetze von Gauss und Stokes.
SkriptChristian Blatter: Ingenieur-Analysis (Kapitel 4-6).
Konrad Koenigsberger, Analysis II.
401-0302-10LKomplexe Analysis Belegung eingeschränkt - Details anzeigen O4 KP3V + 1UA. Iozzi
KurzbeschreibungGrundlagen der Komplexen Analysis in Theorie und Anwendung, insbesondere globale Eigenschaften analytischer Funktionen. Einführung in die Integraltransformationen und Beschreibung einiger Anwendungen
LernzielErwerb von einigen grundlegenden Werkzeuge der komplexen Analysis.
InhaltBeispiele analytischer Funktionen, Cauchyscher Integralsatz, Taylor- und Laurententwicklungen, Singularitäten analytischer Funktionen, Residuenkalkül. Fourierreihen und Fourier-Transformation, Laplace-Transformation.
LiteraturJ. Brown, R. Churchill: "Complex Analysis and Applications", McGraw-Hill 1995

T. Needham. Visual complex analysis. Clarendon Press, Oxford. 2004.

M. Ablowitz, A. Fokas: "Complex variables: introduction and applications", Cambridge Text in Applied Mathematics, Cambridge University Press 1997

E. Kreyszig: "Advanced Engineering Analysis", Wiley 1999

J. Marsden, M. Hoffman: "Basic complex analysis", W. H. Freeman 1999

P. P. G. Dyke: "An Introduction to Laplace Transforms and Fourier Series", Springer 2004

A. Oppenheim, A. Willsky: "Signals & Systems", Prentice Hall 1997

M. Spiegel: "Laplace Transforms", Schaum's Outlines, Mc Graw Hill
Voraussetzungen / BesonderesVoraussetzungen: Analysis I und II
402-0044-00LPhysik IIO4 KP3V + 1UT. Esslinger
KurzbeschreibungEinführung in die Denk- und Arbeitsweise in der Physik unter Zuhilfenahme von Demonstrationsexperimenten: Elektrizität und Magnetismus, Licht, Einführung in die Moderne Physik.
LernzielVermittlung der physikalischen Denk- und Arbeitsweise und Einführung in die Methoden in einer experimentellen Wissenschaft. Der Studenten/in soll lernen physikalische Fragestellungen im eigenen Wissenschaftsbereich zu identifizieren, zu kommunizieren und zu lösen.
InhaltElektrizität und Magnetismus (elektrischer Strom, Magnetfelder, magnetische Induktion, Magnetismus der Materie, Maxwellsche Gleichungen)
Optik (Licht, geometrische Optik, Interferenz und Beugung)
Kurze Einführung in die Quantenphysik
SkriptDie Vorlesung richtet sich nach dem Lehrbuch "Physik" von Paul A. Tipler
LiteraturPaul A. Tipler and Gene Mosca
Physik
Springer Spektrum Verlag
529-4000-00LChemieO4 KP3GE. C. Meister
KurzbeschreibungEinführung in die Chemie mit Aspekten aus der anorganischen, organischen und physikalischen Chemie.
Lernziel- Einfache Modelle der chemischen Bindung und der dreidimensionalen Struktur von Molekülen verstehen
- Ausgewählte chemische Systeme anhand von Reaktionsgleichungen und Gleichgewichtsrechnungen beschreiben und quantitativ erfassen
- Grundlegende Begriffe der chemischen Kinetik (z. B. Reaktionsordnung, Geschwindigkeitsgesetz und -konstante) verstehen und anwenden.
InhaltPeriodensystem der Elemente, chemische Bindung (LCAO-MO), molekulare Struktur (VSEPR), Reaktionen, Gleichgewicht, chemische Kinetik.
SkriptKopien der Vorlesungs-Präsentationen und weitere Unterlagen werden abgegeben.
LiteraturC.E. Housecroft, E.C. Constable, Chemistry. An Introduction to Organic, Inorganic and Physical Chemistry, 4th ed., Pearson: Harlow 2010.
C.E. Mortimer, U. Müller, Chemie, 11. Auflage, Thieme: Stuttgart 2014.
252-0002-00LDatenstrukturen & Algorithmen Information O8 KP4V + 2UF. Friedrich Wicker
KurzbeschreibungEs werden grundlegende Entwurfsmuster für Algorithmen (z.B. Induktion, divide-and-conquer, backtracking, dynamische Programmierung), klassische algorithmische Probleme (Suchen, Sortieren) und Datenstrukturen (Listen, Hashverfahren, Suchbäume) behandelt. Ausserdem enthält der Kurs eine Einführung in das parallele Programmieren. Das Programmiermodell von C++ wird vertieft behandelt.
LernzielVerständnis des Entwurfs und der Analyse grundlegender Algorithmen und Datenstrukturen. Wissen um die Chancen, Probleme und Grenzen der parallelen und nebenläufigen Programmierung. Vertiefter Einblick in ein modernes Programmiermodell anhand der Prorgammiersprache C++.
InhaltEs werden grundlegende Algorithmen und Datenstrukturen vorgestellt und analysiert. Dazu gehören auf der einen Seite Entwurfsmuster für Algorithmen, wie Induktion, divide-and-conquer, backtracking und dynamische Optimierung, ebenso wie klassische algorithmische Probleme, wie Suchen und Sortieren. Auf der anderen Seite werden Datenstrukturen für verschiedene Zwecke behandelt, darunter verkettete Listen, Hashtabellen, balancierte Suchbäume, verschiedene heaps und union-find-Strukturen. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert.

Im Teil über parallele Programmierung werden Konzepte der parallelen Architekturen besprochen (Multicore, Vektorisierung, Pipelining). Konzepte und Grundlagen der Parallelisierung werden behandelt (Gesetze von Amdahl und Gustavson, Task- und Datenparallelität, Scheduling). Probleme der Nebenläufigkeit werden diskutiert (Wettlaufsituationen, Speicherordnung). Prozesssynchronisation und -kommunikation in einem System mit geteiltem Speicher werden erklärt (Gegenseitiger Ausschluss, Semaphoren, Mutexe, Monitore). Fortschrittseigenschaften werden analysiert (Deadlock-Freiheit, Starvation-Freiheit, Lock-/Wait-Freiheit). Die erlernten Konzepte werden mit Beispielen zur nebenläufigen und parallelen Programmierung und mit Parallelen Algorithmen untermauert.

Das Programmiermodell von C++ wird vertieft behandelt. Das RAII Prinzip (Resource Allocation is Initialization) wird erklärt, Exception Handling, Funktoren und Lambda Ausdrücke und die generische Programmierung mit Templates sind weitere Beispiele dieses Kapitels. Die Implementation von parallelen und nebenläufigen Algorithmen mit C++ ist auch Teil der Übungen (Threads, Tasks, Mutexes, Condition Variables, Promises und Futures).

Übungen werden in der Online-IDE und Übungsmanagementsystem Code-Expert durchgeführt

Alle benötigten mathematischen Tools ausserhalb des Schulwissens werden im Kurs behandelt, einschliesslich einer grundlegenden Einführung zur Graphentheorie.
LiteraturTh. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen, Spektrum-Verlag, 5. Auflage, Heidelberg, Berlin, Oxford, 2011

Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein: Algorithmen - Eine Einführung, Oldenbourg, 2010

Maurice Herlihy, Nir Shavit, The Art of Multiprocessor Programming, Elsevier, 2012.

B. Stroustrup, The C++ Programming Language (4th Edition) Addison-Wesley, 2013.
Voraussetzungen / BesonderesVoraussetzung:
Vorlesung 252-0835-00L Informatik I 252-0835-00L oder äquivalente Kenntnisse in der Programmierung mit C++.
  •  Seite  1  von  1