Search result: Catalogue data in Spring Semester 2021

Mechanical Engineering Bachelor Information
6. Semester
Focus Project
Focus Projects in Mechatronics
NumberTitleTypeECTSHoursLecturers
151-0073-11LFlying Manipulator Restricted registration - show details
Prerequisite: Enrollment for 151-0073-10L Flying Manipulator in HS20.
W14 credits15AR. Siegwart
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0073-21LIGNIS - Fire Fighting Drone Restricted registration - show details
Prerequisite: Enrollment for 151-0073-20L IGNIS - Fire Fighting Drone in HS20.
W14 credits15AR. Siegwart
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0073-31LARIS - Rocket Development Restricted registration - show details
Prerequisite: Enrollment for 151-0073-30L ARIS - Rocket Development in HS20.
W14 credits15AL. Guzzella, M. Zeilinger
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0073-41LDynamic Quadrupedal Animatronic Restricted registration - show details
Prerequisite: Enrollment for 151-0073-40L Dynamic Quadrupedal Animatronic in HS20.
W14 credits15AM. Hutter
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
ContentSeveral teams of 4-8 students of the ETH as well as students from other universities realize a product during two semesters. On the basis of a vision and provocative problem definition, all processes of product development are beat down close-to-reality: conception, design, engineering, simulation, draft and production. The teams are coached by experienced staff who gives them the possibility of a unique learning experience.
Innovative ideas of the research labs of the ETH, of industrial partners or students are selected and realized by the teams.
Focus Projects in Manufacturing
NumberTitleTypeECTSHoursLecturers
151-0075-11LJethec Restricted registration - show details
Prerequisite: Enrollment for 151-0075-10L Jethec in HS20.
W14 credits15AK. Wegener
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0075-21LFormula Student Electric Restricted registration - show details
Prerequisite: Enrollment for 151-0075-20L Formula Student Electric in HS20.
W14 credits15AD. Mohr
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0075-31LParis Hybrid
Prerequisite: Enrollment for 151-0075-30L Paris Hybrid in HS20.
W14 credits15AA. Kunz
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
Focus Projects in Design, Mechanics and Materials
NumberTitleTypeECTSHoursLecturers
151-0079-11LBionic Flying Wing Restricted registration - show details
Prerequisite: Enrollment for 151-0079-10L Bionic Flying Wing in HS20.
W14 credits15AP. Ermanni
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0079-31LSwissloop
Prerequisite: Enrollment for 151-0079-30L Swissloop in HS20.
W14 credits15AD. Kochmann
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
Courses Eligible for Focus Projects
NumberTitleTypeECTSHoursLecturers
151-0079-99LVacuum Transport Seminar: Insights into Hyperloop Research Information E-0 credits1SD. Kochmann
AbstractThe Vacuum Transport Seminar series enters its third round in the spring semester 2021, following the successful editions in spring and autumn semesters 2020. It is held online via Zoom and offered internationally across a number of European Universities.The seminar was founded and is held by Swissloop and the EuroTube Foundation, and partnered by other European institutes.
ObjectiveStudents present their work in Hyperloop research. Additionally, industry experts contribute insight talks. The seminar is open to all students, everyone is welcome to join join at any of the dates.

About the seminar’s background:
Swissloop, the Hyperloop Team based at ETH Zürich, is pursuing long-term support for research and education in vacuum transport. In addition to the active team constructing and building a Hyperloop pod every year, various research projects at ETH are pursued in cooperation with EuroTube. The EuroTube Foundation accelerates the development of sustainable vacuum transportation technologies to provide publicly accessible research and testing infrastructures for universities and industry.

About Vacuum Transportation:
The demand for air transport has more than doubled in the last 20 years and is growing yearly by about 6.5%. Global demand for cargo and passenger transportation can barely be met today – let alone in a sustainable manner. Vacuum transport can replace short to medium distance flights and can significantly reduce CO2 emissions. The market of high-speed transportation is a global megatrend set to affect our lives in years to come.
151-0662-00LProgramming for Robotics - Introduction to ROS Restricted registration - show details
Number of participants limited to 70.

This course targets senior Bachelor students as well as Master students focusing on Robotics, Systems, and Control. Priority is given to people conducting a project work in the field.
W1 credit2GM. Hutter
AbstractThis course gives an introduction to the Robot Operating System (ROS) including many of the available tools that are commonly used in robotics. With the help of different examples, the course should provide a good starting point for students to work with robots. They learn how to create software including simulation, to interface sensors and actuators, and to integrate control algorithms.
Objective- ROS Basics: Navigating in Linux and ROS, package creation and compilation
- ROS Basics: Publisher and subscriber, services, actions
- Hardware interfaces, static and dynamic transforms
- Introduction to GAZEBO simulator, AR tag recognition
- (optional) Localization & mapping
- (optional) Navigation, ROS control
- Good practice in programming
ContentThis course consists of a guided tutorial and independent exercises with different robots (i.e. mobile robot, industrial robot arm,...). You learn how to setup such a system from scratch using ROS, how to interface the individual sensors and actuators, and finally how to implement first closed loop control systems.
Lecture notesslides, homepage (Link)
Literatureslides, homepage (Link)
Prerequisites / NoticeC++ programming basics, Linux Basics. Students need to bring their own laptop to the lecture. Instructions how to prepare the laptop are provided on the lecture homepage one week prior to the start of the course.
151-3204-00LCoaching Innovation ProjectsW2 credits2VR. P. Haas
AbstractThe course is building up skills and experience in coaching engineering teams. To gain experience and to reflect real coaching situations, the participants of the course have the role of teaching assistance of the innovation project (151-0300-00L). In this framework the participants coach teams and professionalize the knowledge in the area product development methods.
Objective- Critical thinking and reasoned judgements
- Basic knowledge about role and mindset of a coach
- Understanding the challenges of engineering projects and design teams
- Development of personal skills to apply and train product development methods
- Knowledge and know-how about applying methods
- Reflection and exchange of experiences about personal coaching situations
- Inspiration and learning from good cases regarding organizational and team management aspects
- Decision-making under uncertainty
ContentHere is the schedule with dates and topics for Live Sessions
on Mondays, 16:15-18:00
Link to Zoom-Meetings is published in the Moodle Course:
Link

22.02.2021: Base Camp, Experience exchange
01.03.2021: Course intro, Coaching roles & Virtual coaching
08.03.2021: Active listening & Giving and receiving feedback
15.03.2021: Coaching model GROW & Asking questions
22.03.2021: Working with hypothesis & Motivation
29.03.2021: Reflection on individual coaching sessions 1
12.04.2021: 1:1 Coaching
26.04.2021: Team building & Psychological safety
03.05.2021: Facilitating conflicts
10.05.2021: Reflection on individual coaching sessions 2
17.05.2021: Reflexivity & Reviews of your interventions

For each live session preparatory material is provided on Moodle, enabling participants to start these sessions well equipped.
Prerequisites / NoticeOnly for participants (Bachelor Students, Master Students) who are teaching assistants in the innovation project).
Focus Specialization
Energy, Flows and Processes
Focus Coordinator: Prof. Christoph Müller
In order to achieve the required 20 credit points for the Focus Specialization Energy, Flows and Processes you need to choose at least 2 core courses (W+) (HS/FS) and at least 2 of the elective courses (HS/FS), according to the presentation of the Focus Specialisation (see Link). One course can be selected among all the courses offered by D-MAVT (Bachelors and Masters).
NumberTitleTypeECTSHoursLecturers
151-0206-00LEnergy Systems and Power EngineeringW+4 credits2V + 2UR. S. Abhari, A. Steinfeld
AbstractIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ObjectiveIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ContentWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles.
Lecture notesVorlesungsunterlagen werden verteilt
151-0208-00LComputational Methods for Flow, Heat and Mass Transfer ProblemsW+4 credits4GD. W. Meyer-Massetti
AbstractNumerical methods for the solution of flow, heat & mass transfer problems are presented and illustrated by analytical & computer exercises.
ObjectiveKnowledge of and practical experience with discretization and solution methods for computational fluid dynamics and heat and mass transfer problems
Content- Introduction with application examples, steps to a numerical solution
- Classification of PDEs, application examples
- Finite differences
- Finite volumes
- Method of weighted residuals, spectral methods, finite elements
- Stability analysis, consistency, convergence
- Numerical solution methods, linear solvers
The learning materials are illustrated with practical examples.
Lecture notesSlides to be completed during the lecture will be handed out.
LiteratureReferences are provided during the lecture. Notes in close agreement with the lecture material are available (in German).
Prerequisites / NoticeBasic knowledge in fluid dynamics, thermodynamics and programming (lecture: "Models, Algorithms and Data: Introduction to Computing")
151-0928-00LCO2 Capture and Storage and the Industry of Carbon-Based ResourcesW4 credits3GM. Mazzotti, A. Bardow, P. Eckle, N. Gruber, M. Repmann, T. Schmidt, D. Sutter
AbstractCarbon-based resources (coal, oil, gas): origin, production, processing, resource economics. Climate change: science, policies. CCS systems: CO2 capture in power/industrial plants, CO2 transport and storage. Besides technical details, economical, legal and societal aspects are considered (e.g. electricity markets, barriers to deployment).
ObjectiveThe goal of the lecture is to introduce carbon dioxide capture and storage (CCS) systems, the technical solutions developed so far and the current research questions. This is done in the context of the origin, production, processing and economics of carbon-based resources, and of climate change issues. After this course, students are familiar with important technical and non-technical issues related to use of carbon resources, climate change, and CCS as a transitional mitigation measure.

The class will be structured in 2 hours of lecture and one hour of exercises/discussion. At the end of the semester a group project is planned.
ContentBoth the Swiss and the European energy system face a number of significant challenges over the coming decades. The major concerns are the security and economy of energy supply and the reduction of greenhouse gas emissions. Fossil fuels will continue to satisfy the largest part of the energy demand in the medium term for Europe, and they could become part of the Swiss energy portfolio due to the planned phase out of nuclear power. Carbon capture and storage is considered an important option for the decarbonization of the power sector and it is the only way to reduce emissions in CO2 intensive industrial plants (e.g. cement- and steel production).
Building on the previously offered class "Carbon Dioxide Capture and Storage (CCS)", we have added two specific topics: 1) the industry of carbon-based resources, i.e. what is upstream of the CCS value chain, and 2) the science of climate change, i.e. why and how CO2 emissions are a problem.
The course is devided into four parts:
I) The first part will be dedicated to the origin, production, and processing of conventional as well as of unconventional carbon-based resources.
II) The second part will comprise two lectures from experts in the field of climate change sciences and resource economics.
III) The third part will explain the technical details of CO2 capture (current and future options) as well as of CO2 storage and utilization options, taking again also economical, legal, and sociatel aspects into consideration.
IV) The fourth part will comprise two lectures from industry experts, one with focus on electricity markets, the other on the experiences made with CCS technologies in the industry.
Throughout the class, time will be allocated to work on a number of tasks related to the theory, individually, in groups, or in plenum. Moreover, the students will apply the theoretical knowledge acquired during the course in a case study covering all the topics.
Lecture notesPower Point slides and distributed handouts
LiteratureIPCC Special Report on Global Warming of 1.5°C, 2018.
Link

IPCC AR5 Climate Change 2014: Synthesis Report, 2014. Link

IPCC Special Report on Carbon dioxide Capture and Storage, 2005. Link

The Global Status of CCS: 2014. Published by the Global CCS Institute, Nov 2014.
Link
Prerequisites / NoticeExternal lecturers from the industry and other institutes will contribute with specialized lectures according to the schedule distributed at the beginning of the semester.
151-0946-00LMacromolecular Engineering: Networks and GelsW4 credits4GM. Tibbitt
AbstractThis course will provide an introduction to the design and physics of soft matter with a focus on polymer networks and hydrogels. The course will integrate fundamental aspects of polymer physics, engineering of soft materials, mechanics of viscoelastic materials, applications of networks and gels in biomedical applications including tissue engineering, 3D printing, and drug delivery.
ObjectiveThe main learning objectives of this course are: 1. Identify the key characteristics of soft matter and the properties of ideal and non-ideal macromolecules. 2. Calculate the physical properties of polymers in solution. 3. Predict macroscale properties of polymer networks and gels based on constituent chemical structure and topology. 4. Design networks and gels for industrial and biomedical applications. 5. Read and evaluate research papers on recent research on networks and gels and communicate the content orally to a multidisciplinary audience.
Lecture notesClass notes and handouts.
LiteraturePolymer Physics by M. Rubinstein and R.H. Colby; samplings from other texts.
Prerequisites / NoticePhysics I+II, Thermodynamics I+II
151-0966-00LIntroduction to Quantum Mechanics for EngineersW4 credits2V + 2UD. J. Norris
AbstractThis course provides fundamental knowledge in the principles of quantum mechanics and connects it to applications in engineering.
ObjectiveTo work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
ContentFundamentals of Quantum Mechanics
- Historical Perspective
- Schrödinger Equation
- Postulates of Quantum Mechanics
- Operators
- Harmonic Oscillator
- Hydrogen atom
- Multielectron Atoms
- Crystalline Systems
- Spectroscopy
- Approximation Methods
- Applications in Engineering
Lecture notesClass Notes and Handouts
LiteratureText: David J. Griffiths and Darrell F. Schroeter, Introduction to Quantum Mechanics, 3rd Edition, Cambridge University Press.
Prerequisites / NoticeAnalysis III, Mechanics III, Physics I, Linear Algebra II
Mechatronics
Focus Coordinator: Prof. Marco Hutter
To achieve the 20 credits for Focus Specialization Mechatronics, 151-0640-00L Studies on Mechatronics is compulsory.
NumberTitleTypeECTSHoursLecturers
151-0640-00LStudies on Mechatronics
The supervising professors can be selected in myStudies during registration of the course.
For exceptions please contact the focus coordinator and Link.
This course is not available to incoming exchange students.
O5 credits11ASupervisors
AbstractOverview of Mechatronics topics and study subjects. Identification of minimum 10 pertinent refereed articles or works in the literature in consultation with supervisor or instructor. After 4 weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After feedback on the substance and technical writing by the instructor, project commences.
ObjectiveThe goal of this class is to familiarize the students with this fascinating but rapidly evolving engineering discipline. The students learn to find, read and critically evaluate the pertinent literature and methods through in depth studying, presenting, debating of and writing about selected topics or case studies addressing mechatronics engineering.
ContentOverview of Mechatronics topics and study subjects. Identification of minimum ten pertinent refereed articles or works in the literature in consultation with supervisor orinstructor. After four weeks, submission of a 2-page proposal outlining the value, state-of-the art and study plan based on these articles. After detailed feedback on the substance and technical writing on the proposal by the instructor, project commences. Three to four weeks prior to the end of the semester, a 15 minute oral progress report (presentation) is given by the student that is critiqued by the instructor with detailed comments on substance and effectiveness of lecture and response on questions from audience. At the last day of the semester the student submits a written report that is no longer than 10-pages text following the format of a representative journal article. Throughout the semester the student attends and actively participates in the interactive class lectures given in the form of seminars and debates with active question and answer sessions inviting student and instructor participation.
LiteratureWill be available.
Prerequisites / NoticeLanguage: English or German - depending on the lecturer.
151-0206-00LEnergy Systems and Power EngineeringW4 credits2V + 2UR. S. Abhari, A. Steinfeld
AbstractIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ObjectiveIntroductory first course for the specialization in ENERGY. The course provides an overall view of the energy field and pertinent global problems, reviews some of the thermodynamic basics in energy conversion, and presents the state-of-the-art technology for power generation and fuel processing.
ContentWorld primary energy resources and use: fossil fuels, renewable energies, nuclear energy; present situation, trends, and future developments. Sustainable energy system and environmental impact of energy conversion and use: energy, economy and society. Electric power and the electricity economy worldwide and in Switzerland; production, consumption, alternatives. The electric power distribution system. Renewable energy and power: available techniques and their potential. Cost of electricity. Conventional power plants and their cycles; state-of-the-art and advanced cycles. Combined cycles and cogeneration; environmental benefits. Solar thermal; concentrated solar power; solar photovoltaics. Fuel cells: characteristics, fuel reforming and combined cycles.
Lecture notesVorlesungsunterlagen werden verteilt
151-0516-00LNon-smooth Dynamics
Diese Lerneinheit wird zum letzten Mal im FS21 angeboten.
W5 credits5GC. Glocker
AbstractInequality problems in dynamics, in particular friction and impact problems with discontinuities in velocity and acceleration. Mechanical models of unilateral contacts, friction, sprag clutches, pre-stressed springs. Formulation by set-valued maps as linear complementarity problems. Numerical time integration of the combined friction impact contact problem.
ObjectiveThe lecture provides the students an introduction to modern methods for inequality problems in dynamics. The contents of the lecture are fitted to frictional contact problems in mechanics, but can be transferred to a large class of inequality problems in technical sciences. The purpose of the lecture is to acquaint the students with a consistent generalization of classical mechanics towards systems with discontinuities, and to make them familiar with inequalities treated as set-valued constitutive laws.
Content1. Kinematik: Drehung, Geschwindigkeit, Beschleunigung, virtuelle Verschiebung.
2. Aufbau der Mechanik: Definition der Kraft, virtuelle Arbeit, innere und äussere Kräfte, Wechselwirkungsprinzip, Erstarrungsprinzip, mathematische Form des Freischneidens, Definition der idealen Bindung.
3. Starre Körper: Variationelle Form der Gleichgewichtsbedingungen, Systeme starrer Körper, Übergang auf Minimalkoordinaten.
4. Einfache generalisierte Kräfte: Generalisierte Kraftrichtungen, Kinematik der Kraftelemente, Kraftgesetze, Parallel- und Reihenschaltung.
5. Darstellung mengenwertiger Kraftgesetze: Normalkegel, proximale Punkte, exakte Regularisierung. Anwendung auf einseitige Kontakte und Coulomb-Reibgesetze.
6. Stossfreie und stossbehaftete Bewegung: Bewegungsgleichung, Stossgleichung, Newton-Stossgesetze, Diskussion von Mehrfachstössen, Kane's Paradoxon.
7. Numerische Behandlung: Lineares Komplementaritätsproblem (LCP), Zeitdiskretisierung nach Moreau, Kontaktproblem in lokalen Koordinaten als LCP.
Lecture notesEs gibt kein Vorlesungsskript. Den Studierenden wird empfohlen, eine eigene Mitschrift der Vorlesung anzufertigen. Ein Katalog mit Übungsaufgaben und den zugehörigen Musterlösungen wird ausgegeben.
Prerequisites / NoticeKinematik und Statik & Dynamics
  •  Page  1  of  5 Next page Last page     All