Suchergebnis: Katalogdaten im Frühjahrssemester 2021
Physik Master ![]() | ||||||
![]() Ein experimentelles oder theoretisches Bachelorkernfach kann als Masterkernfach angerechnet werden, allerdings kann dieses nicht benutzt werden, um das obligatorische experimentelle oder theoretische Kernfach im Master zu kompensieren. Für die Kategoriezuordnung lassen Sie bei der Prüfungsanmeldung "keine Kategorie" ausgewählt und wenden Sie sich nach dem Verfügen des Prüfungsresultates an das Studiensekretariat (www.phys.ethz.ch/de/studium/studiensekretariat.html). | ||||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
402-0871-00L | Solid State Theory Studierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das Modul PHY411 direkt an der UZH buchen. | W | 10 KP | 4V + 1U | V. Geshkenbein | |
Kurzbeschreibung | Diese Vorlesung richtet sich an Studierende der Experimentalphysik und der theoretischen Physik. Sie bietet eine Einführung in wichtige theoretische Konzepte der Festkörperphysik. | |||||
Lernziel | Ziel der Vorlesung ist die Entwicklung eines theoretischen Rahmens zum Verständnis grundlegender Phänomene der Festkörperphysik. Dazu gehören Symmetrien, Bandstrukturen, Teilchen-Teilchen Wechselwirkung, Landau Fermi-Flüssigkeiten, sowie spezifische Themen wie Transport, Quanten-Hall-Effekt und Magnetismus. Die Übungen unterstützen und illustrieren die Vorlesung durch handwerkliches Lösen spezifischer Probleme. Der Student versteht grundlegende theoretische Konzepte der Festkörperphysik und kann Probleme selbständig lösen. Es werden keine diagrammatischen Techniken verwendet. | |||||
Inhalt | Diese Vorlesung richtet sich an Studierende der Experimentalphysik und der theoretischen Physik. Sie bietet eine Einführung in wichtige theoretische Konzepte der Festkörperphysik. Es werden folgende Themen abgedeckt: Symmetrien und Gruppentheorie, Elektronenstruktur in Kristallen, Isolatoren-Halbleiter-Metalle, Phononen, Wechselwirkungseffekte, (un-)geladene Fermi-Flüssigkeiten, lineare Antworttheorie, kollektive Moden, Abschirmung, Transport in Halbleitern und Metallen, Magnetismus, Mott-Isolatoren, Quanten-Hall-Effekt. | |||||
Skript | in Englisch | |||||
402-0844-00L | Quantum Field Theory II Studierende der UZH dürfen diese Lerneinheit nicht an der ETH belegen, sondern müssen das entsprechende Modul direkt an der UZH buchen. | W | 10 KP | 3V + 2U | N. Beisert | |
Kurzbeschreibung | The subject of the course is modern applications of quantum field theory with emphasis on the quantization of non-abelian gauge theories. | |||||
Lernziel | The goal of this course is to lay down the path integral formulation of quantum field theories and in particular to provide a solid basis for the study of non-abelian gauge theories and of the Standard Model | |||||
Inhalt | The following topics will be covered: - path integral quantization - non-abelian gauge theories and their quantization - systematics of renormalization, including BRST symmetries, Slavnov-Taylor Identities and the Callan-Symanzik equation - the Goldstone theorem and the Higgs mechanism - gauge theories with spontaneous symmetry breaking and their quantization - renormalization of spontaneously broken gauge theories and quantum effective actions | |||||
Literatur | M.E. Peskin and D.V. Schroeder, "An introduction to Quantum Field Theory", Perseus (1995). S. Pokorski, "Gauge Field Theories" (2nd Edition), Cambridge Univ. Press (2000) P. Ramond, "Field Theory: A Modern Primer" (2nd Edition), Westview Press (1990) S. Weinberg, "The Quantum Theory of Fields" (Volume 2), CUP (1996). | |||||
402-0394-00L | Theoretical Cosmology Fachstudierende UZH müssen das Modul AST513 direkt an der UZH buchen. | W | 10 KP | 4V + 2U | L. M. Mayer, J. Yoo | |
Kurzbeschreibung | This is the second of a two course series which starts with "General Relativity" and continues in the spring with "Theoretical Astrophysics and Cosmology", where the focus will be on applying general relativity to cosmology as well as developing the modern theory of structure formation in a cold dark matter Universe. | |||||
Lernziel | Learning the fundamentals of modern physical cosmology. This entails understanding the physical principles behind the description of the homogeneous Universe on large scales in the first part of the course, and moving on to the inhomogeneous Universe model where perturbation theory is used to study the development of structure through gravitational instability in the second part of the course. Modern notions of dark matter and dark energy will also be introduced and discussed. | |||||
Inhalt | The course will cover the following topics: - Homogeneous cosmology - Thermal history of the universe, recombination, baryogenesis and nucleosynthesis - Dark matter and Dark Energy - Inflation - Perturbation theory: Relativistic and Newtonian - Model of structure formation and initial conditions from Inflation - Cosmic microwave background anisotropies - Spherical collapse and galaxy formation - Large scale structure and cosmological probes | |||||
Skript | In 2021, the lectures will be live-streamed online at ETH from the Room HPV G5 at the lecture hours. The recordings will be available at the ETH website. The detailed information will be provided by the course website and the SLACK channel. | |||||
Literatur | Suggested textbooks: H.Mo, F. Van den Bosch, S. White: Galaxy Formation and Evolution S. Carroll: Space-Time and Geometry: An Introduction to General Relativity S. Dodelson: Modern Cosmology Secondary textbooks: S. Weinberg: Gravitation and Cosmology V. Mukhanov: Physical Foundations of Cosmology E. W. Kolb and M. S. Turner: The Early Universe N. Straumann: General relativity with applications to astrophysics A. Liddle and D. Lyth: Cosmological Inflation and Large Scale Structure | |||||
Voraussetzungen / Besonderes | Knowledge of General Relativity is recommended. | |||||
![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
402-0448-01L | Quantum Information Processing I: Concepts Dieser theoretisch ausgerichtete Teil QIP I bildet zusammen mit dem experimentell ausgerichteten Teil 402-0448-02L QIP II, die beide im Frühjahrssemester angeboten werden, im Master-Studiengang Physik das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten. | W | 5 KP | 2V + 1U | P. Kammerlander | |
Kurzbeschreibung | The course will cover the key concepts and ideas of quantum information processing, including descriptions of quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer. Key concepts such as quantum error correction will be described. These ideas provide fundamental insights into the nature of quantum states and measurement. | |||||
Lernziel | By the end of the course students are able to explain the basic mathematical formalism of quantum mechanics and apply them to quantum information processing problems. They are able to adapt and apply these concepts and methods to analyse and discuss quantum algorithms and other quantum information-processing protocols. | |||||
Inhalt | The topics covered in the course will include quantum circuits, gate decomposition and universal sets of gates, efficiency of quantum circuits, quantum algorithms (Shor, Grover, Deutsch-Josza,..), error correction, fault-tolerant design, entanglement, teleportation and dense conding, teleportation of gates, and cryptography. | |||||
Skript | More details to follow. | |||||
Literatur | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||
Voraussetzungen / Besonderes | A good understanding of linear algebra is recommended. | |||||
402-0448-02L | Quantum Information Processing II: Implementations Dieser experimentell ausgerichtete Teil QIP II bildet zusammen mit dem theoretisch ausgerichteten Teil 402-0448-01L QIP I, die beide im Frühjahrssemester angeboten werden, im Master-Studiengang Physik das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten. | W | 5 KP | 2V + 1U | J. Home | |
Kurzbeschreibung | Introduction to experimental systems for quantum information processing (QIP). Quantum bits. Coherent Control. Measurement. Decoherence. Microscopic and macroscopic quantum systems. Nuclear magnetic resonance (NMR). Photons. Ions and neutral atoms in electromagnetic traps. Charges and spins in quantum dots and NV centers. Charges and flux quanta in superconducting circuits. Novel hybrid systems. | |||||
Lernziel | Throughout the past 20 years the realm of quantum physics has entered the domain of information technology in more and more prominent ways. Enormous progress in the physical sciences and in engineering and technology has allowed us to build novel types of information processors based on the concepts of quantum physics. In these processors information is stored in the quantum state of physical systems forming quantum bits (qubits). The interaction between qubits is controlled and the resulting states are read out on the level of single quanta in order to process information. Realizing such challenging tasks is believed to allow constructing an information processor much more powerful than a classical computer. This task is taken on by academic labs, startups and major industry. The aim of this class is to give a thorough introduction to physical implementations pursued in current research for realizing quantum information processors. The field of quantum information science is one of the fastest growing and most active domains of research in modern physics. | |||||
Inhalt | Introduction to experimental systems for quantum information processing (QIP). - Quantum bits - Coherent Control - Measurement - Decoherence QIP with - Ions - Superconducting Circuits - Photons - NMR - Rydberg atoms - NV-centers - Quantum dots | |||||
Skript | Course material be made available at www.qudev.ethz.ch and on the Moodle platform for the course. More details to follow. | |||||
Literatur | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||
Voraussetzungen / Besonderes | The class will be taught in English language. Basic knowledge of concepts of quantum physics and quantum systems, e.g from courses such as Phyiscs III, Quantum Mechanics I and II or courses on topics such as atomic physics, solid state physics, quantum electronics are considered helpful. More information on this class can be found on the web site www.qudev.ethz.ch | |||||
402-0702-00L | Phenomenology of Particle Physics II | W | 10 KP | 3V + 2U | A. Rubbia, P. Crivelli | |
Kurzbeschreibung | In PPP II the standard model of particle physics will be developed from the point of view of gauge invariance. The example of QED will introduce the essential concepts. Then we will treat both strong and electroweak interactions. Important examples like deep inelastic lepton-hadron scattering, e+e- -> fermion antifermion, and weak particle decays will be calculated in detail. | |||||
Lernziel | ||||||
402-0264-00L | Astrophysics II | W | 10 KP | 3V + 2U | A. Refregier | |
Kurzbeschreibung | The course examines various topics in astrophysics with an emphasis on physical processes occurring in an expanding Universe, from a time about 1 microsecond after the Big Bang, to the formation of galaxies and supermassive black holes within the next billion years. | |||||
Lernziel | The course examines various topics in astrophysics with an emphasis on physical processes occurring in an expanding Universe. These include the Robertson-Walker metric, the Friedmann models, the thermal history of the Universe including Big Bang Nucleosynthesis, and introduction to Inflation, and the growth of structure through gravitational instability. Finally, the physics of the formation of cosmic structures, dark matter halos and galaxies is reviewed. | |||||
Voraussetzungen / Besonderes | Prior completion of Astrophysics I is recommended but not required. | |||||
402-0265-00L | Astrophysics III | W | 10 KP | 3V + 2U | H. M. Schmid | |
Kurzbeschreibung | Astrophysics III is a course in Galactic Astrophysics. It introduces the concepts of stellar populations, stellar dynamics, interstellar medium (ISM), and star formation for understanding the physics and phenomenology of the different components of the Milky Way galaxy. | |||||
Lernziel | The course should provide basic knowledge for research projects in the field of star formation and interstellar matter. A strong emphasis is put on radiation processes and the determination of physical parameters from observations. | |||||
Inhalt | Astrophysics III: Galactic Astrophysics - components of the Milky Way: stars, ISM, dark matter, - dynamics of the Milky Way and of different subcomponents, - the physics of the interstellar medium, - star formation and feedback, and - the Milky Way origin and evolution. | |||||
Skript | A lecture script will be distributed. | |||||
Voraussetzungen / Besonderes | Astrophysics I is recommended but not required. |
Seite 1 von 1