Search result: Catalogue data in Spring Semester 2021

Interdisciplinary Sciences Bachelor Information
Biochemical-Physical Direction
2. Semester (Biochemical-Physical Direction)
Compulsory Subjects First Year Examinations
NumberTitleTypeECTSHoursLecturers
402-0044-00LPhysics IIO4 credits3V + 1UT. Esslinger
AbstractIntroduction to the concepts and tools in physics with the help of demonstration experiments: electromagnetism, optics, introduction to modern physics.
Learning objectiveThe concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science.
ContentElectromagnetism (electric current, magnetic fields, electromagnetic induction, magnetic materials, Maxwell's equations)
Optics (light, geometrical optics, interference and diffraction)
Short introduction to quantum physics
Lecture notesThe lecture follows the book "Physik" by Paul A. Tipler.
LiteraturePaul A. Tipler and Gene Mosca
Physik
Springer Spektrum Verlag
551-0126-00LFundamentals of Biology II: Cells Information O6 credits5GK. Weis, F. Allain, Y. Barral, W.‑D. Hardt, U. Kutay, M. Peter, I. Zemp
AbstractThe lecture provides an introduction to the function and regulations of cells.
Learning objectiveIntroduction to the function and regulation of cells
ContentThe lecture introduces a basic understanding of the structure, organization, function and regulation of the cell. The lecture is divided into two main sections:
Part 1: Cell Biology of Prokaryotes, evolution, populations
This section covers the general principles of the structure and regulation of prokaryotic cells, and explains the genetics and the evolution of bacteria.
Part II: Unifying concepts in Eukarya
This part of the lecture gives a broad introduction into the general structure of eukaryotic cells and illustrates key concepts such as intracellular architecture, transport mechanisms and the regulation of gene expression in eukaryotes.
Lecture notesThe newly conceived lecture is supported by scripts.
LiteratureThe lecture is supported by scripts. Furthermore, the textbook "Molecular Biology of the Cell", Alberts et al. 6th edition, Taylor and Francis, and "Brock Biology of Microorganisms", Madigan et al. 15th edition, Pearson can be used as support for the lecture.
401-0272-00LMathematical Foundations I: Analysis B Restricted registration - show details O3 credits2V + 1UL. Kobel-Keller
AbstractBasics about multidimensional analysis.
Ordinary differential equations as mathematical models to describe processes (continuation from Analysis A).
Numerical, analytical and geometrical aspects of differential equations.
Learning objectiveIntroduction to calculus in several dimensions.
Building simple models and analysing them mathematically.
Knowledge of the basic concepts.
ContentBasics about multidimensional analysis.
Differential equations as mathematical models to describe processes. Numerical, analytical and geometrical aspects of differential equations.
Literature- G. B. Thomas, M. D. Weir, J. Hass: Analysis 2, Lehr- und Übungsbuch, Pearson-Verlag
- D. W. Jordan, P. Smith: Mathematische Methoden für die Praxis, Spektrum Akademischer Verlag
- M. Akveld/R. Sperb: Analysis I, Analysis II (vdf)
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Bde 1,2,3. (Vieweg)
Further reading suggestions will be indicated during the lecture.
401-0622-00LMathematical Foundations II: Linear Algebra and Statistics Restricted registration - show details O3 credits2V + 1UM. Auer
AbstractSystems of linear equations; matrix algebra, determinants; vector spaces, norms and scalar products; linear maps, basis transformations; eigenvalues and eigenvectors.

Random variables and probability, discrete and continuous distribution models; expectation, variance, central limit theorem, parameter estimation; statistical hypothesis tests; confidence intervals; regression analysis.
Learning objectiveA sound knowledge of mathematics is an essential prerequisite for a quantitative and computer-based approach to natural sciences. In an intensive two-semester course the most important basic concepts of mathematics, namely univariate and multivariate calculus, linear algebra and statistics are taught.
ContentSystems of linear equations; matrix algebra, determinants; vector spaces, norms and scalar products; linear maps, basis transformations; eigenvalues and eigenvectors. - Least squares fitting and regression models; random variables, statistical properties of least-squares estimators; tests, confidence and prediction intervals in regression models; residual analysis.

Lecture homepage: https://moodle-app2.let.ethz.ch/course/view.php?id=11841
Lecture notesFor the part on Linear Algebra, there is a short script (in German) which summarizes the main concepts and results without examples. For a self-contained presentation, the book by Nipp and Stoffer should be used. For the part on Statistics there is a detailed script (in German) available which should be self-contained. The book by Stahel can be used for additional information.
LiteratureLinear Algebra: K. Nipp/D. Stoffer: "Lineare Algebra", vdf, 5th edition, 2002.
Statistics: W. Stahel, "Statistische Datenanalyse", Vieweg, 5rd edition, 2008.
529-0012-02LGeneral Chemistry (Inorganic Chemistry) IIO4 credits3V + 1UJ. Cvengros, H. Grützmacher
Abstract1) General definitions 2) The VSEPR model 3) Qualitative molecular orbital diagrams 4) Closest packing, metal structures 5) The Structures of metalloids
6) Structures of the non-metals 7) Synthesis of the elements 8) Reactivity of the elements 9) Ionic Compounds 10) Ions in Solution 11) Element hydrogen compounds 12) Element halogen compounds 13) Element oxygen compounds 14) Redox chemistry
Learning objectiveUnderstanding of the fundamental principles of the structures, properties, and reactivities of the main group elements (groups 1,2 and 13 to 18).
ContentThe course is divided in 14 sections in which the fundamental phenomena of the chemistry of the main group elements are discussed: Part 1: Introduction in the periodical properties of the elements and general definitions –Part 2: The VSEPR model –Part 3: Qualitative molecular orbital diagrams for simple inorganic molecules – Part 4: Closest packing and structures of metals Part 5: The Structures of semimetals (metalloids) of the main group elements –Part 6: Structures of the non-metals– Part 7: Synthesis of the elements. –Part 8: Reactivity of the elements Part 9: Ionic Compounds Part 10: Ions in Solution Part 11: Element hydrogen compounds Part 12: Element halogen compounds Part 13: Element oxygen compounds Part 14: Redox chemistry.
Lecture notesThe transparencies used in the course are accessible via the internet on Link
LiteratureJ. Huheey, E. Keiter, R. Keiter, Inorganic Chemistry, Principles and Reactivity, 4th edition, deGruyter, 2003.

C.E.Housecroft, E.C.Constable, Chemistry, 4th edition, Pearson Prentice Hall, 2010.
Prerequisites / NoticeBasis for the understanding of this lecture is the course Allgemeine Chemie 1.
529-0012-03LGeneral Chemistry (Organic Chemistry) IIO4 credits3V + 1UP. Chen
AbstractClassification of organic reactions, reactive intermediates: radicals, carbocations, carbanions, acids & bases, electrophilic aromatic substitution, electrophilic addition to double bonds, HSAB concept, nucleophilic substitution at sp3 hybridized carbon centres (SN1/SN2 reactions), nucleophilic aromatic substitutions, eliminations, oxidations, reductions.
Learning objectiveUnderstanding of fundamental reactivity principles and the relationship between structure and reactivity. Knowledge of the most important reaction types and of selected classes of compounds.
ContentClassification of organic reactions, reactive intermediates: radicals, carbocations, carbanions, acids & bases, electrophilic aromatic substitution, electrophilic addition to double bonds, HSAB concept, nucleophilic substitution at sp3 hybridized carbon centres (SN1/SN2 reactions), nucleophilic aromatic substitutions, eliminations, oxidations, reductions.
Lecture notespdf file available at the beginning of the course
Literature[1] P. Sykes, "Reaktionsmechanismen der Organischen Chemie", VCH Verlagsgesellschaft, Weinheim 1988.
[2] Carey/Sundberg, Advanced Organic Chemistry, Part A and B, 3rd ed., Plenum Press, New York, 1990/1991. Deutsch: Organische Chemie.
[3] Vollhardt/Schore, Organic Chemistry, 2th ed., Freeman, New York, 1994 Deutsche Fassung: Organische Chemie 1995, Verlag Chemie, Wein¬heim, 1324 S. Dazu: N. Schore, Arbeitsbuch zu Vollhardt, Organische Chemie, 2. Aufl. Verlag Chemie, Weinheim, 1995, ca 400 S.
[4] J. March, Advanced Organic Chemistry; Reactions, Mechanisms, and Structure, 5th ed., Wiley, New York, 1992.
[5] Streitwieser/Heathcock, Organische Chemie, 2. Auflage, Verlag Chemie, Weinheim, 1994.
[6] Streitwieser/Heathcock/Kosower, Introduction to Organic Chemistry, 4th ed., MacMillan Publishing Company, New York, 1992.
[7] P. Y. Bruice, Organische Chemie, 5. Auflage, Pearson Verlag, 2007.
529-0012-01LPhysical Chemistry I: ThermodynamicsO4 credits3V + 1UA. Barnes
AbstractFoundations of chemical thermodynamics: Entropy, chemical thermodynamics, laws of thermodynamics, partition functions, chemical reactions, reaction free energies, equilibrium conditions, chemical potential, standard states, ideal and real systems and gases, phase equilibria, colligative properties, with applications to current research at the ETHZ.
Learning objectiveUnderstanding of entropy and thermodynamic principles.
ContentThe first, second and third law of thermodynamics: empirical temperature and thermodynamic temperature scale, internal energy, entropy, thermal equilibrium. Models and standard states: ideal gases, ideal solutions and mixtures, real gases, real solutions and mixtures, activity, tables of standard thermodynamic quantities. Reaction thermodynamics: the chemical potential, reaction parameters and equilibrium conditions, equilibrium constants and their pressure and temperature dependence. Phase equilibria.
Lecture notesSee homepage of the lecture.
LiteratureSee homepage of the lecture.
Prerequisites / NoticeRequirements: Allgemeine Chemie I, Grundlagen der Mathematik
Additional First Year Subjects
NumberTitleTypeECTSHoursLecturers
551-0128-00LFundamentals of Biology I Information Restricted registration - show details
Registrations via myStudies until 29.1.2021 at the latest. Subsequent registrations will not be considered.

General safety regulations:
-Whenever possible the distance rules have to be respected.
-All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged.
-Any additional rules for individual courses have to be respected.
-Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.
O8 credits8PM. Gstaiger, A. Cléry, E. Dultz, C. H. Giese, R. Kroschewski, M. Künzler
AbstractThis 1st year Laboratory course introduces the students to the basic experimental techniques used in the classical and modern molecular biosciences. In the first year (Praktikum GL BioI) the students will be introduced into the basic concept and methods of Microbiology, Biochemistry and Molecular Biology in 12 consecutive course days.
Learning objectiveIntroduction to biology with practical work.

General Praktikum-information and course material can be obtained from Moodle

The general Praktikum information (Assignment list, Instructions and Schedule & Performance Sheet) will also be sent to the students directly (E-mail).
ContentThis 1st year Laboratory course introduces the student to the entire range of classical and modern molecular biosciences. Students will participate in 12 consecutive course days.

Because of necessary Covid-19 safety measures the practical will operate in two shifts to reduce the number of student in the practical rooms.

1. shift 8:00-13:00
2. shift 13:30-18:30

Program

Day 1: Isolation and cultivation of microorganisms
Day 2: Morphological, biochemical and genetic characterization of microorganisms
Day 3: Evolution of microorganisms and their abiotic and biotic interactions
Day 4: Lifestyle of fungi as eukaryotic representatives of the microorganisms
Day 5: DNA extraction, tranformation (E.coli, yeast)
Day 6: RNA extraction, Life cycle of eukaryotic cells
Day 7: Purification of TAQ polymerase from E coli by ionexchange chromatography
Day 8: Characterizing fractions of the purification of TAQ polymerase (SDS-PAGE, WB)
Day 9: mRNA splicing in yeast by RT-PCR and purified TAQ polymerase
Day 10: Affinity chromatography, protein crystallization and structure
Day 11: Protein folding, protein stability and Enzyme kinetics
Day 12: Protein folding, protein stability and Enzyme kinetics
Lecture notesLaboratory manuals can be downloaded from Moodle
Prerequisites / NoticePLEASE NOTE THE FOLLOWING RULES

Your attendance is obligatory and you have to attend all 12 Praktikum days of GL BioI. Absences are only acceptable if you are able to provide a Doctor’s certificate. The original Dr's certificate has to be given to Dr. M. Gstaiger (HPM F43) within five days of the absence of the Praktikum day.

If there will be any exceptional or important situations then you should directly contact the Director of Studies of D-Biol, who will decide if you are allowed to miss a Praktikum day or not.

HIGHLY IMPORTANT!!

1. Due to the increased number of students, the official Praktikum registration has to be done, using myStudies, preferably at the end of HS20 but not later than January 29, 2021.

2. Later registration is NOT possible and can NOT be accepted!

3. The course registration for FS2020 is usually possible at the end of fall semester 2020 and you will obtain an E-mail from the Rectorate when the course registration using myStudies is possible.

The 12 course days of the Praktikum Grundlagen Biologie-I will take place Thursday or Friday during the spring semester 2021. Therefore, you have to make sure already now that you will not have any other activities / commitments during these days. The exact course schedule will be communicated before the beginning of the spring semester.
Necessary changes in the course program in response to enhanced COVID-19 safety measures are possible and will be communicated via email and moodle.

PRAKTIKUM DAYS FS21 (Thursdays):

25.02.; 04.03.; 11.03.; 18.03.; 25.03.; 15.04.; 22.04.; 29.04.; 06.05.; 20.05.; 27.05.; 03.06.

PRAKTIKUM DAYS FS21 (Fridays):

26.02.; 05.03.; 12.03.; 19.03.; 26.03.; 16.04.; 23.04.; 30.04.; 07.05.; 21.05.; 28.05.; 04.06.

No Praktikum during the Easter vacation: 2.04.-9.04
4. Semester (Biochemical-Physical Direction)
Examination Block
NumberTitleTypeECTSHoursLecturers
529-0431-00LPhysical Chemistry III: Molecular Quantum Mechanics Information Restricted registration - show details O4 credits4GF. Merkt
AbstractPostulates of quantum mechanics, operator algebra, Schrödinger's equation, state functions and expectation values, matrix representation of operators, particle in a box, tunneling, harmonic oscillator, molecular vibrations, angular momentum and spin, generalised Pauli principle, perturbation theory, electronic structure of atoms and molecules, Born-Oppenheimer approximation.
Learning objectiveThis is an introductory course in quantum mechanics. The course starts with an overview of the fundamental concepts of quantum mechanics and introduces the mathematical formalism. The postulates and theorems of quantum mechanics are discussed in the context of experimental and numerical determination of physical quantities. The course develops the tools necessary for the understanding and calculation of elementary quantum phenomena in atoms and molecules.
ContentPostulates and theorems of quantum mechanics: operator algebra, Schrödinger's equation, state functions and expectation values. Linear motions: free particles, particle in a box, quantum mechanical tunneling, the harmonic oscillator and molecular vibrations. Angular momentum: electronic spin and orbital motion, molecular rotations. Electronic structure of atoms and molecules: the Pauli principle, angular momentum coupling, the Born-Oppenheimer approximation. Variational principle and perturbation theory. Discussion of bigger systems (solids, nano-structures).
Lecture notesA script written in German will be available. The script is, however, no replacement for personal notes during the lecture and does not cover all aspects discussed.
529-0222-00LOrganic Chemistry IIO3 credits2V + 1UB. Morandi
AbstractThis course builds on the material learned in Organic Chemistry I or Organic Chemistry II for Biology/Pharmacy Students. Topics include advanced concepts and mechanisms of organic reactions and introductions to pericyclic and organometallic reactions. The basics or retro- and forward synthesis are also introduced.
Learning objectiveGoals of this course include a deeper understanding of basic organic reactions and mechanisms as well as advanced transformations. Reactive intermediates including carbenes and nitrenes are covered, along with methods for their generation and use in complex molecule synthesis. Frontier molecular orbital theory (FMO) is introduced and used to rationalize pericyclic reactions including Diels Alder reactions, cycloadditions, and rearrangements (Cope, Claisen). The basic concepts and key reactions of catalytic organometallic chemistry, which are key methods in modern organic synthesis, are introduced, with an emphasis on their catalytic cycles and elementary steps. All of these topics are combined in an overview of strategies for complex molecule synthesis, with specific examples from natural product derived molecules used as medicines.
ContentRedox neutral reactions and rearrangements, advanced transformations of functional groups and reaction mechanisms, carbenes and nitrenes, frontier molecular orbital theory (FMO), cycloadditions and pericyclic reactions, introduction to organometallic chemistry and catalytic cross couplings, protecting groups, retrosynthetic analysis of complex organic molecules, planning and execution of multi-step reactions.
Lecture notesThe lecture notes and additional documents including problem sets are available as PDF files online, without charge. Link: https://morandi.ethz.ch/education.html
LiteratureClayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012.
Electives
The Bachelor's programme in Interdisciplinary Sciences allows students to choose from any subject taught at a Bachelor's level at ETH Zurich.

In consultation with the Director of Studies of Interdisciplinary Sciences, every student must establish his/her own individual study programme at the beginning of the 2nd year. See the Programme Regulations 2018 for further details.
NumberTitleTypeECTSHoursLecturers
529-0058-00LAnalytical Chemistry IIW3 credits3GD. Günther, D. Bleiner, T. Bucheli, M.‑O. Ebert, G. Schwarz
AbstractEnhanced knowledge about the elemental analysis and spectrocopical techniques with close relation to practical applications. This course is based on the knowledge from analytical chemistry I. Separation methods are included.
Learning objectiveUse and applications of the elemental analysis and spectroscopical knowledge to solve relevant analytical problems.
ContentCombined application of spectroscopic methods for structure determination, and practical application of element analysis. More complex NMR methods: recording techniques, application of exchange phenomena, double resonance, spin-lattice relaxation, nuclear Overhauser effect, applications of experimental 2d and multipulse NMR spectroscopy, shift reagents. Application of chromatographic and electrophoretic separation methods: basics, working technique, quality assessment of a separation method, van-Deemter equation, gas chromatography, liquid chromatography (HPLC, ion chromatography, gel permeation, packing materials, gradient elution, retention index), electrophoresis, electroosmotic flow, zone electrophoresis, capillary electrophoresis, isoelectrical focussing, electrochromatography, 2d gel electrophoresis, SDS-PAGE, field flow fractionation, enhanced knowledge in atomic absorption spectroscopy, atomic emission spectroscopy, X-ray fluorescence spectroscopy, ICP-OES, ICP-MS.
Lecture notesScript will be available
LiteratureLiterature will be within the script.
Prerequisites / NoticeExercises for spectra interpretation are part of the lecture. In addition the lecture 529-0289-00 "Instrumentalanalyse organischer Verbindungen" (4th semester) is recommended.
Prerequisite: 529-0051-00 "Analytische Chemie I" (3rd semester)
401-1662-10LIntroduction to Numerical Methods Information W6 credits4G + 2UV. C. Gradinaru
AbstractThis course gives an introduction to numerical methods, aimed at physics majors. It covers numerical linear algebra, quadrature as well as initial vaule problems. The focus is on the ability to apply the numerical methods.
Learning objectiveOverview on the most important algorithms for the solution of the fundamental numerical problems in Physics and applications;
overview on available software for the numerical solutions;
ability to solve concrete problems
ability to interpret numerical results
ContentLeast squares (linear and non-linear), nonlinear equations,
numerical quadrature, initial value problems.
Lecture notesNotes, slides and other relevant materials will be available via the web page of the lecture.
LiteratureRelevant materials will be available via the web page of the lecture.
Prerequisites / NoticePrerequisite is familiarity with basic calculus (approximation theory and vector calculus: grad, div, curl) and linear algebra (Gauss-elimination, matrix decompositions and algorithms, determinant).

Study Center hours:
Do 17-20 in HG E 41
Fr 17-20 in HG E 41
401-1152-02LLinear Algebra II Information Restricted registration - show details W7 credits4V + 2UM. Akka Ginosar
AbstractEigenvalues and eigenvectors, Jordan normal form, bilinear forms, euclidean and unitary vector spaces, selected applications.
Learning objectiveBasic knowledge of the fundamentals of linear algebra.
LiteratureSiehe Lineare Algebra I
Prerequisites / NoticeLinear Algebra I
529-0440-00LPhysical Electrochemistry and ElectrocatalysisW6 credits3GT. Schmidt
AbstractFundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes and introduction into the technologies (e.g., fuel cell, electrolysis), electrochemical methods (e.g., voltammetry, impedance spectroscopy), mass transport.
Learning objectiveProviding an overview and in-depth understanding of Fundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes (fuel cell, electrolysis), electrochemical methods and mass transport during electrochemical reactions. The students will learn about the importance of electrochemical kinetics and its relation to industrial electrochemical processes and in the energy seactor.
ContentReview of electrochemical thermodynamics, description electrochemical kinetics, Butler-Volmer equation, Tafel kinetics, simple electrochemical reactions, electron transfer, Marcus Theory, fundamentals of electrocatalysis, elementary reaction processes, rate-determining steps in electrochemical reactions, practical examples and applications specifically for electrochemical energy conversion processes, introduction to electrochemical methods, mass transport in electrochemical systems. Introduction to fuel cells and electrolysis
Lecture notesWill be handed out during the Semester
LiteraturePhysical Electrochemistry, E. Gileadi, Wiley VCH
Electrochemical Methods, A. Bard/L. Faulkner, Wiley-VCH
Modern Electrochemistry 2A - Fundamentals of Electrodics, J. Bockris, A. Reddy, M. Gamboa-Aldeco, Kluwer Academic/Plenum Publishers
701-0401-00LHydrosphereW3 credits2VR. Kipfer, M. H. Schroth
AbstractThe course aims to describe the relevant processes that control the terrestrial water cycle. Energy and mass exchange, mixing and transport processes are described and the coupling of the hydrosphere with the atmosphere and the solid Earth are discussed.
Learning objectiveQualitative and quantitative understanding on how physical (and geochemical) processes control the natural dynamics in groundwater, lakes ans oceans and constrain the exchange of mass and energy.
ContentTopics of the course.
Physical properties of water (i.e. density and equation of state)
- global water resources
Exchange at boundaries
- energy (thermal & kinetic), gas exchange
Mixing and transport processes in open waters
- vertical stratification, large scale transport
- turbulence and mixing
- mixing and exchange processes in rivers
Groundwater and its dynamics
- ground water as part of the terrestrial water cycle
- ground water hydraulics, Darcy's law
- aquifers and their properties
- hydrochemistry and tracer
- ground water use
Case studies
- 1. Water as resource, 2. Water and climate
Lecture notesIn addition to the suggested literature handouts are distributed.
LiteratureSuggested literature.
a) Park, Ch., 2001, The Environment, Routledge, 2001
b) Fitts, C.R., 2013. Groundwater Science. 2nd ed., Academic Press, Amsterdam.
Prerequisites / NoticeThe case studies and the analysis of the questions and problems are integral part of the course.
701-0245-00LEvolutionary AnalysisW2 credits2VS. Wielgoss, G. Velicer
AbstractThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions.
Learning objectiveThis course introduces important questions about the evolutionary processes involved in the generation and maintenance of biological diversity across all domains of life and how evolutionary science investigates these questions. The topics covered range from different forms of selection, phylogenetic analysis, population genetics, life history theory, the evolution of sex, social evolution to human evolution. These topics are important for the understanding of a number of evolutionary problems in the basic and applied sciences.
ContentTopics likely to be covered in this course include research methods in evolutionary biology, adaptation, evolution of sex, evolutionary transitions, human evolution, infectious disease evolution, life history evolution, macroevolution, mechanisms of evolution, phylogenetic analysis, population dynamics, population genetics, social evolution, speciation and types of selection.
LiteratureTextbook:
Evolutionary Analysis
Scott Freeman and Jon Herron
5th Edition, English.
Prerequisites / NoticeThe exam is based on lecture and textbook.
6. Semester (Biochemical-Physical Direction)
Laboratory Courses, Semester Papers, Proseminars, Field Trips
Further Laboratory Courses arising upon specific written request by the students and permission by the Director of studies.
NumberTitleTypeECTSHoursLecturers
529-0450-00LSemester ProjectW18 credits18ASupervisors
AbstractIn a semester project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.
Learning objectiveStudents are accustomed to scientific work and they get to know one specific research field.
Bachelor's Thesis
NumberTitleTypeECTSHoursLecturers
529-0400-00LBachelor's ThesisO15 credits15DSupervisors
AbstractIt completes the Bachelor program and consists of a scientific project carried out independently.
Learning objectiveEncourages students to show independence, to produce scientifically structured work and to apply engineering working methods.
  •  Page  1  of  1