Search result: Catalogue data in Autumn Semester 2021

Civil Engineering Master Information
Master Studies (Programme Regulations 2020)
1. Semester
Major Courses
Major in Construction and Maintenance Management
NumberTitleTypeECTSHoursLecturers
151-8011-00LBuilding Physics: Theory and Applications Information Restricted registration - show details
Enrolment after agreement with the lecturer only.
W4 credits3V + 1UA. Kubilay, X. Zhou, L. D'Amato, A. Rubin, D. A. Strebel
AbstractPrinciples of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications.
ObjectiveThe students will acquire in the following fields:
- Principles of heat and mass transport and its mathematical description.
- Indoor and outdoor climate and driving forces.
- Hygrothermal properties of building materials.
- Building envelope solutions and their construction.
- Hygrothermal performance and durability.
ContentPrinciples of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications.
Lecture notesHandouts, supporting material and exercises are provided online via Moodle.
066-0427-00LDesign and Building Process MIBS Information
ITA Pool - information event on the courses offered at the institute ITA: Wednesday 8th September 2021, 10-11 h, ONLINE.
ZoomLink: Link
W2 credits2VA. Paulus
Abstract"Design and Building Process MIBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of all involved parties through the design and building process. Lectures on twelve compact aspects gaining importance in a increasingly specialised, complex and international surrounding.
ObjectiveParticipants will come to understand how they can best navigate the design and building process, especially in relation to understanding their profession, gaining a thorough knowledge of rules and regulations, as well as understanding how involved parties' minds work. They will also have the opportunity to investigate ways in which they can relate to, understand, and best respond to their clients' wants and needs. Finally, course participants will come to appreciate the various tools and instruments, which are available to them when implementing their projects. The course will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship.
Content"Design and Building Process MIBS" is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of involved parties through the design and building process. Twelve compact aspects regarding the establishe building culture are gaining importance in an increasingly specialised, complex and international surrounding. Lectures on the topics of profession, service model, organisation, project, design quality, coordination, costing, tendering and construction management, contracts and agreements, life cycle, real estate market, and getting started will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. The course introduces the key figures, depicts the criteria of the project and highlights the proveded services of the consultants. In addition to discussing the basics, the terminologies and the tendencies, the lecture units will refer to the studios as well as the prctice: Teaching-based case studies will compliment and deepen the understanding of the twelve selected aspects. The course is presented as a moderated seminar to allow students the opportunity for invididual input: active cololaboration between the students and their tutor therefore required.
Lecture notesThe recordings of the lectures are available on the MAP under the link Link (book symbol at the top right).
LiteratureLink
Prerequisites / NoticeITA Pool - information event on the courses offered at the institute ITA: Wednesday 7th September 2022, 10-11 h, ONLINE.
101-0427-01LPublic Transport Design and OperationsW6 credits4GF. Corman, F. Leutwiler
AbstractThis course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.
ObjectivePublic transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks.
Their various performance criteria based on various perspective and stakeholders.
The most relevant decision making problems in a planning tactical and operational point of view
At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
general introduction of transport, modes, technologies,
system design and line planning for different situations,
mathematical models for design and line planning
timetabling and tactical planning, and related mathematical approaches
operations, and quantitative support to operational problems,
evaluation of public transport systems.
ContentBasics for line transport systems and networks
Passenger/Supply requirements for line operations
Objectives of system and network planning, from different perspectives and users, design dilemmas
Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport

Planning process, from demand evaluation to line planning to timetables to operations
Matching demand and modes
Line planning techniques
Timetabling principles

Allocation of resources
Management of operations
Measures of realized operations
Improvements of existing services
Lecture notesLecture slides are provided.
LiteratureCeder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch)

Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English)

Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English)

Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English)

White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English)
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationassessed
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
101-0509-00LInfrastructure Management 1: ProcessO6 credits3GB. T. Adey
AbstractInfrastructure asset management is the process used to ensure that infrastructure provides adequate levels of service for specified periods of time. This course provides an overview of the process, from setting goals to developing intervention programs to analyzing the process itself. It consists of weekly lectures and a group project. Additionally, there is a weekly help session.
ObjectiveThere are a large number of efforts around the world to obtain more net benefits from infrastructure assets. This can be seen through the proliferation of codes and guidelines and the increasing amount of research in road infrastructure asset management. Many of these codes and guidelines and much of the research, however, are focused on only part of the large complex problem of infrastructure asset management.

The objective of this course is to provide an overview of the entire infrastructure management process. The high-level process described can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. It also enables a clear understanding of where computer systems can be used to help automate parts of the process. Students can use this process to help improve the specific infrastructure management processes in the organisations in which they work in the future.

More specifically upon completion of the course, students will
• understand the main tasks of an infrastructure manager and the complexity of these tasks,
• understand the importance of setting goals and constraints in the management of infrastructure,
• be able to predict the deterioration of individual assets using discrete states that are often associated with visual inspections,
• be able to develop and evaluate simple management strategies for individual infrastructure assets,
• be able to develop and evaluate intervention programs that are aligned with their strategies,
• understand the principles of guiding projects and evaluating the success of projects,
• be able to formally model infrastructure management processes, and
• understand the importance of evaluating the infrastructure management process and have a general idea of how to do so.
ContentThe weekly lectures are structured as follows:
1 Introduction: An introduction to infrastructure management, with emphasis on the consideration of the benefits and costs of infrastructure to all members of society, and balancing the need for prediction accuracy with analysis effort. The expectations of your throughout the semester, including a description of the project.
2 Positioning infrastructure management in society: As infrastructure plays such an integral part in society, there is considerable need to ensure that infrastructure managers are managing it as best possible. A prominent network regulator explains the role and activities of a network regulator.
3 Setting goals and constraints – To manage infrastructure you need to know what you expect from it in terms of service and how much you are willing to pay for it. We discuss the measures of service for this purpose, as well as the ideas of quantifiable and non-quantifiable benefits, proxies of service, and valuing service.
4 Predicting the future – As infrastructure and our expectations of service from it change over time, these changes need to be included in the justification of management activities. This we discuss the connection between provided service and the physical state of the infrastructure and one way to predict their evolution over time.
5 Help session 1
6 Determining and justifying general interventions - It is advantageous to be able to explain why infrastructure assets need to be maintained, and not simply say that they need to be maintained. This requires explanation of the types of interventions that should be executed and how these interventions will achieve the goals. It also requires explaining which interventions are to be done if it is not possible to do everything due to for example budget constraints. This week we cover how to determine optimal intervention strategies for individual assets, and how to convert these strategies into network level intervention programs.
7 Determining and justifying monitoring - Once it is clear how infrastructure might change over time, and the optimal intervention strategies are determined, you need to explain how you are going to know that these states exist. This requires the construction of monitoring strategies for each of asset. This week we focus on how to develop monitoring strategies that ensure interventions are triggered at the right time.
8 Converting programs to projects / Analysing projects – Once programs are completed and approved, infrastructure managers must create, supervise and analyse projects. This week we focus on this conversion and the supervision and analysis of projects.
9 Help session 2
10 Ensuring good information – Infrastructure management requires consistent and correct information. This is enabled by the development of a good information model. This week we provide an introduction to information models and how they are used in infrastructure management.
11 Ensuring a well-run organization – How people work together affects how well the infrastructure is managed. This week we focus on the development of the human side of the infrastructure management organisation.
12 Describing the IM process – Infrastructure management is a process that is followed continually and improved over time. It should be written down clearly. This week we will concentrate on how this can be done using the formal modelling notation BPMN 2.0.
13 Evaluating the IM process – Infrastructure management processes can always be improved. Good managers acknowledge this, but also have a plan for continual improvement. This week we concentrate on how you can systematically evaluate the infrastructure management process.
14 Help session 3 and submission of project report.

The course uses a combination of qualitative and quantitative approaches. The quantitative analysis required in the project requires at least the use of Excel. Some students, however, prefer to use Python or R.
Lecture notes• The lecture materials consist of handouts, the slides, and example calculations in Excel.
• The lecture materials will be distributed via Moodle two days before each lecture.
LiteratureAppropriate literature will be handed out when required via Moodle.
Prerequisites / NoticeThis course has no prerequisites.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
101-0517-10LConstruction Management for TunnelingW3 credits2GH. Ehrbar
Abstract- Construction methods for conventional tunneling in loose material and in hard rock conditions (tunnel, shaft and cavern construction)
- Construction methods for mechanical excavation
- Decision criteria for the selection of tunneling method
- Construction facilities, logistics and construction management
ObjectiveTransfer of practical knowledge regarding
- Selection of tunneling methods
- Execution and working cycles in conventional and mechanical tunneling
- Management of the muck and of materials
- Quality control and monitoring during construction
- Occupational health and safety requirements and environmental requirements
- Maintenance
The students will be enabled to work on an underground construction project in the preliminary and final design phase as a planner (taking into account contractor's considerations).
Contentgeneral basics
- Codes SIA 196, SIA 197, SIA 198, SIA 118/198
- Knowledge of the tunneling methods
- Decision-making principles for the selection of the tunneling method
- Construction site logistics (transport, ventilation, cooling, water, material management)
- Construction materials

Conventional tunneling
- Excavation methods (full breakout / partial breakout)
- rock support
- Impermeabilisation
- Inner lining

Mechanical tunneling
- Open TBM (Gripper TBM), rock support concepts
- Shield TBM's in rock and loose ground

Inner lining
- Impermeabilisation and drainage
- Inner lining
- Cable ducts
Lecture notesCharts of the lecture and references
LiteratureReferences to the usual specialist literature will be made in the course of the lecture
101-0524-00LLean, Integrated and Digital Project DeliveryW4 credits3GD. Hall
AbstractThis course is an introduction to innovative construction project delivery through three strategies: integrated information, integrated organization, and integrated processes. Students will be introduced to project and production management concepts such as Lean Construction, Building Information Modeling, the Tri-Constraint Method, & Integrated Project Delivery.
ObjectiveBy the end of the course, students will be able to plan and manage the lean, integrated, and digital project delivery of a construction project.
Students will know they are able to achieve this overall course goal when they can:
1. Apply the fundamental theories of lean production to the context of construction management. This includes the ability to describe the three views of production: transformation, flow and value generation; evaluate the benefits of a pull production system compared to push production systems; evaluate how production variability and uncertainty contributes to work-in-process and 'waste'; and apply the concepts of lean production to several construction management tools including the Last Planner System, Pull Planning, Target Value Design, and Takt Planning.
2. Understand the fundamentals of Virtual Design and Construction and Building Information Modeling. This includes the ability to prepare a model breakdown structure capable of integrating project information for all stakeholders; describe the upcoming transition to a common data environment for BIM that will use platforms such as Autodesk Forge; and describe the barriers to successful implementation of BIM within construction and design firms
3. Plan and schedule an integrated '5D' scope schedule cost model using the Tri-Constraint Method. This includes the ability to understand the TCM algorithm, apply parametric logic to the creation of a virtual model for construction production; and evaluate the limitations of the critical path method when compared to resource- and space-constrained scheduling
4. Evaluate benefits of integrated project governance compared to the organization of traditional construction project delivery systems. This includes the ability to evaluate the risks, benefits and considerations for integrated teams using multi-party relational contracts that cross disciplinary and firm boundaries; and explain to others the 'elements' of integrated projects (e.g. colocation, early involvement of key stakeholders, shared risk/reward, collaborative decision making)
ContentThe construction industry is continually seeking to deliver High-Performance (HP) projects for their clients. HP buildings must meet the criteria of four focus areas – buildability, operability, usability, and sustainability. The project must be buildable, as measured by metrics of cost, schedule, and quality. It must be operable, as measured by the cost of maintaining the facility for the duration of its lifecycle. It must be usable, enabling productivity, efficiency and well-being of those who will inhabit the building. Finally, it must be sustainable, minimizing the use of resources such as energy and water. Buildings that succeed in all four of these areas can be considered HP projects.
HP buildings require the integration of building systems. However, the traditional methods of planning and construction do not use an integrated approach. Project fragmentation between many stakeholders is often cited as the cause of poor project outcomes and the reason for poor productivity gains in the construction industry. In response, the construction industry has turned to new forms of integration in order to integrate the processes, organization, and information required for high performance projects.
This course investigates emerging trends in the construction industry – e.g. colocation, shared risk/reward contracts, lean construction methods, and use of shared building information models (BIM) for virtual design and construction (VDC) – as a way to achieve HP projects.
For integrated processes, students will be introduced to the fundamentals of lean construction management. This course will look at the causes of variability in construction production and teach the theory of lean production for construction. Processes and technologies will be introduced for lean management, such as the last planner system, takt time planning, production tracking, and target value design.
For integrated information, students will be introduced to the fundamentals of virtual design and construction, including how to use work breakdown structures and model breakdown structures for building information modeling, and the fundamentals and opportunities for 4D scheduling, clash detection, and “5D and 6D” models. Future technologies emerging to integrate information such as the use of Autodesk Forge will be presented. Students will have the opportunity to discuss barriers in the industry to more advanced implementation of BIM and VDC.
For integrated organization, students will study the limitations of the construction industry to effectively organize for complex projects, including the challenges of managing highly interdependent tasks and generating knowledge and learning within large multi-organizational project teams. One emerging approach in North America known as IPD will be studied as a case example. Students will explore the benefits of certain ‘elements’ of IPD such as project team colocation, early involvement of trade contractors, shared risk/reward contracts, and collaborative decision making.
The course will also include several guest lectures from industry experts to further demonstrate how these concepts are applied in practice.
Lecture notesLecture Presentation slides will be available for viewing and download the day before each lecture.

The class will be presented in a "flipped classroom" environment where students will be required to do readings or watch video before class. In-class activities will act to reinforce and expand upon these primary concepts.

If possible due to COVID restrictions, students will be expected to attend a half-day workshop on the Last Planner System. The date of this workshop will be provided at a later point in time.
LiteratureA full list of required readings will be made available to the students via Moodle
Prerequisites / NoticeProject Management for Construction Projects (101-0007-00L) is a recommended but not required prerequisite for this course
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesCritical Thinkingassessed
Self-direction and Self-management fostered
101-0577-00LAn Introduction to Sustainable Development in the Built EnvironmentO3 credits2GG. Habert, D. Kaushal
AbstractIn 2015, the UN Conference in Paris shaped future world objectives to tackle climate change.
in 2016, other political bodies made these changes more difficult to predict.
What does it mean for the built environment?
This course provides an introduction to the notion of sustainable development when applied to our built environment
ObjectiveAt the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment.

In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment).

For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects.

The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment.

Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction.

After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development.

The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development.
ContentThe following topics give an overview of the themes that are to be worked on during the lecture.

- Overview on the history and emergence of sustainable development
- Overview on the current understanding and definition of sustainable development

Methods
- Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction)
- Method 2: Life Cycle Costing
- Method 3: Labels and certification

Main issues:
- Operation energy at building, urban and national scale
- Mobility and density questions
- Embodied energy for developing and developed world

- Synthesis: Transition to sustainable development
Lecture notesAll relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided.
LiteratureA list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures.
  •  Page  1  of  1